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Abstract 

In complex engineering systems, solving high-dimensional, nonlinear, 

and multimodal optimization problems remains a formidable 

challenge. Traditional optimization techniques often converge 

prematurely or fail to scale effectively with problem complexity. 

Nature-inspired metaheuristics, such as Differential Evolution (DE) 

and Gazelle Optimization Algorithm (GOA), have shown promise in 

addressing such issues due to their adaptive exploration and 

exploitation capabilities. While DE excels in global exploration 

through mutation and crossover strategies, it suffers from limited 

convergence precision in rugged landscapes. Conversely, the Gazelle 

Optimization Algorithm, inspired by the evasive and coordinated 

movement of gazelles under predation, provides better adaptability in 

exploitation but lacks the stochastic diversity for broad search spaces. 

Thus, combining the strengths of both may overcome their individual 

limitations. This paper proposes a novel hybrid approach termed 

Gazelle-Differential Evolution (GoDE). The algorithm synergistically 

integrates the exploitation ability of GOA with the exploration strength 

of DE. Specifically, GoDE leverages gazelle dynamics for local 

refinement and DE’s differential mutation for global search. A 

dynamic control parameter regulates the hybridization intensity, 

ensuring a balanced optimization process. GoDE was evaluated on 25 

benchmark functions (CEC 2023) and three real-world engineering 

design problems (pressure vessel, welded beam, and hydro-turbine 

blade design). Compared to five baseline methods—Standard DE, PSO, 

GOA, GWO, and CMA-ES—GoDE achieved superior convergence 

accuracy, stability, and computation time. Results confirm its 

robustness in navigating complex, multimodal spaces without being 

trapped in local optima. 
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1. INTRODUCTION 

Nature-inspired optimization algorithms have gained 

significant attention in the last two decades for solving complex 

real-world engineering problems, have proven their effectiveness 

in dealing with multimodal, nonlinear, and high-dimensional 

search spaces [1–3]. These algorithms are attractive due to their 

derivative-free nature, adaptability to different problem domains, 

and simplicity of implementation. 

Despite the successes of these algorithms, several challenges 

persist. One major issue is premature convergence, especially 

when the algorithm gets trapped in local optima in rugged or 

deceptive landscapes [4]. Another challenge is imbalanced 

exploration and exploitation, which affects convergence speed 

and solution accuracy in complex and constrained engineering 

problems [5]. Most single-strategy algorithms fail to adaptively 

switch between global and local search behaviors based on the 

problem’s dynamic requirements. 

While Differential Evolution (DE) is well-known for its robust 

exploration capabilities due to its stochastic mutation and 

recombination strategies, it often struggles with fine-tuning 

solutions during exploitation phases [6]. Conversely, Gazelle 

Optimization Algorithm (GOA), inspired by the evasive and 

dynamic behavior of gazelles under predator threats, excels at 

local adaptation but lacks the global search diversity required for 

high-dimensional landscapes [7]. These limitations suggest the 

need for a hybrid strategy that can intelligently combine 

exploration and exploitation strengths from both algorithms. 

This research aims to develop a hybrid metaheuristic named 

Gazelle-Differential Evolution (GoDE) that: 

• Maintains global diversity while improving local solution 

refinement, 

• Prevents premature convergence in multimodal functions, 

• Offers scalable performance across real-world constrained 

optimization problems, 

• Demonstrates robustness across both benchmark and real-

world engineering domains. 

The proposed GoDE algorithm introduces a novel 

hybridization strategy that dynamically balances the contributions 

of DE and GOA using a time-dependent control parameter α(t). 

Unlike conventional hybrid methods, GoDE: 

• Adapts the degree of hybridization progressively over 

iterations, favoring DE in early stages and GOA in later 

stages for refined search, 

• Incorporates elitism and convergence checks to enhance 

stability and reduce computational cost, 

The major contributions of this study are as follows: 

• A novel hybrid metaheuristic combining Gazelle-inspired 

local search with DE-based global exploration, governed by 

an adaptive hybridization mechanism. 

• An elitism-based convergence controller that ensures 

solution preservation and early stopping when improvement 

stalls. 

 

2. RELATED WORKS 

2.1 DIFFERENTIAL EVOLUTION AND VARIANTS 

Differential Evolution (DE) has been widely used due to its 

simplicity and effectiveness in handling continuous optimization 

problems. Several improved versions have been proposed, such 
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as adaptive DE, self-adaptive DE, and multi-strategy DEs [8]. 

These variants introduce mechanisms for adjusting control 

parameters like mutation factor FFF and crossover rate CRCRCR, 

which improves adaptability. However, they often still lack the 

local refinement necessary for constrained or highly non-linear 

real-world problems. 

2.2 PARTICLE SWARM AND SWARM-BASED 

ALGORITHMS 

PSO is another popular swarm intelligence algorithm that 

updates particles based on their velocity and cognitive-social 

learning [9]. Though PSO converges quickly, it is prone to 

stagnation in complex multimodal search spaces. Hybrid PSO 

variants that integrate local search (e.g., PSO-GA, PSO-DE) have 

shown improvement, yet the risk of getting stuck in local optima 

persists, especially under hard constraints. 

2.3 GOA 

GOA is a recent addition to bio-inspired algorithms, modeled 

on the evasive behavior of gazelles escaping predators [10]. It has 

shown promise in dealing with continuous optimization and 

engineering problems, particularly due to its agility in local search 

and adaptive movement behavior. However, GOA's performance 

significantly depends on initial population diversity and lacks 

mechanisms for global exploration, leading to stagnation in 

complex landscapes. 

2.4 GRAY WOLF OPTIMIZER AND SIMILAR 

METAHEURISTICS 

GWO mimics the hunting behavior and social hierarchy of 

gray wolves. It has been widely used in structural optimization, 

energy dispatch, and control system design [11]. GWO performs 

well in balancing search phases but may suffer from premature 

convergence. Hybrid variants like GWO-DE or GWO-PSO have 

attempted to enhance diversity and solution quality, though 

integration often increases algorithmic complexity and parameter 

tuning difficulty. 

2.5 CMA-ES AND EVOLUTION STRATEGIES 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

is known for its statistical approach to mutation and adaptive 

learning of search space geometry [12]. While it performs 

exceptionally well in continuous, non-convex optimization, it is 

computationally expensive and sensitive to parameter settings, 

especially in high-dimensional domains. It is also prone to 

overfitting in constrained optimization scenarios. 

2.6 HYBRID METAHEURISTICS IN 

ENGINEERING DESIGN 

Many hybrid metaheuristics have been developed to tackle 

real-world engineering optimization problems such as pressure 

vessel design, truss topology, and heat exchanger systems [13]. 

These methods combine global and local search operators from 

different paradigms. However, most hybrids use fixed or static 

rules to switch between methods, lacking dynamic control based 

on problem progression. This often results in inefficient 

transitions or suboptimal balance between exploration and 

exploitation. 

The literature shows that while individual and hybrid 

algorithms have made substantial progress, the gap between 

adaptive exploration and efficient exploitation remains a core 

limitation. The proposed GoDE algorithm directly addresses this 

by combining the stochastic global reach of DE with the adaptive 

and intelligent local search of GOA, and introduces a time-

adaptive hybridization scheme that dynamically manages their 

interaction throughout the optimization process. 

3. METHODS 

The GoDE algorithm operates in the following key steps: 

• Initialization: A population of candidate solutions is 

randomly initialized across the feasible search space. 

• Gazelle Phase (Exploitation): Models herd behavior, 

escape dynamics, and safe zone awareness. Each gazelle 

updates its position by considering local fitness gradients 

and predator (local optima) threat modeling. 

• Differential Evolution Phase (Exploration): Applies 

mutation using scaled differences of three randomly selected 

vectors. It performs binomial crossover and selection to 

maintain diversity. 

• Hybrid Strategy: Each iteration probabilistically selects 

between GOA-based update and DE-based update, 

controlled by a hybridization factor α(t), dynamically 

adjusted based on iteration progress. 

• Elitism and Convergence Check: Best solutions are 

preserved, and convergence is evaluated through fitness 

improvement or iteration threshold. 

3.1 INITIALIZATION PHASE 

A high-quality initialization ensures sufficient diversity, 

which is crucial for exploring complex and multimodal objective 

landscapes. 

3.1.1 Procedure: 

• Let the population size be N and the dimensionality of the 

optimization problem be D. 

• Each individual 
1 2[ , , , ]i i i iDX x x x=  , where i=1,2,…,N, is 

initialized using: 

 min max min(0,1) ( )id d d dx x rand x x= +  −  

where, 

min

dx  and max

dx   are the lower and upper bounds for the dth 

dimension 

rand(0,1) is a uniform random number in [0,1] 

This Eq.(1) ensures uniform coverage of the search space. 

Table.1. Initial population of 3 individuals across 5 dimensions. 

Individual x1 x2 x3 x4 x5 

X1 -3.21 4.12 0.67 -5.90 7.23 

X2 1.09 -2.67 8.90 3.45 6.71 

X3 5.66 1.33 -4.75 6.02 -1.55 
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As shown in Table 1, candidate solutions are uniformly 

initialized within the range bounds of each variable. These 

solutions serve as the foundation for both exploitation (gazelle 

phase) and exploration (DE phase) operations in subsequent 

iterations. 

Gazelle Phase (Exploitation) 

The gazelle phase emulates the evasive and collective 

behavior of gazelles to improve local search (exploitation). 

Inspired by natural predator-prey interaction, this phase helps 

guide the population toward local optima while avoiding 

premature convergence. 

Behavioral Modeling: 

Each individual in the population behaves like a gazelle that 

evaluates its fitness environment. The following movement rule 

is applied to balance speed and directional intelligence: 

1

best(0,1) ( ) ()t t t

i i iX X rand X X randn + = +   − +   

Where, 

t

iX   is the position of the ith gazelle at iteration t 

bestX is the global best solution 

β is the herd-following coefficient (0.1 to 1.0) 

ρ is the safety-zone perturbation strength 

randn()is normally distributed noise for evasive dynamics 

The first term attracts gazelles to better regions, while the 

second simulates random evasive jumps in high-threat areas. 

Table.2. Position updates during the Gazelle Phase (one-

dimensional) 

Gazelle (ID) 
t

iX  (Fitness) Xbest β ρ 
1t

iX +  

1 32.14 25.76 0.6 0.5 28.05 

2 40.91 25.76 0.8 0.3 31.67 

3 28.83 25.76 0.4 0.2 27.14 

In Table.2, each gazelle moves toward the best-known 

position while adjusting based on herd-following (β) and threat-

driven randomness (ρ). These adaptive updates improve local 

exploitation efficiency without overshooting optimal areas. 

3.2 DIFFERENTIAL EVOLUTION PHASE 

(EXPLORATION) 

The DE phase enhances global exploration by generating 

candidate solutions through mutation and crossover mechanisms. 

This phase ensures that the population maintains diversity and 

avoids premature convergence by exploring distant and 

potentially unexplored regions of the solution space. 

Let each individual t D

iX   at iteration t participate in the 

DE operations. The DE phase consists of three key operations: 

mutation, crossover, and selection. 

3.2.1 Mutation: 

A mutant vector t

iV  is generated using the DE/rand/1 strategy: 

 
1 2 3( )t t t t

i r r rV X F X X= +  −  

where, 

1 2 3, ,t t t

r r rX X X are three randomly selected distinct individuals 

from the population 

F is the differential weight or mutation factor (commonly between 

0.4 and 0.9) 

This operation introduces stochastic diversity by extrapolating 

search vectors in random directions. 

3.2.2 CrossoverL 

A trial vector t

iU  is formed by combining components of t

iV  

and the original t

iX : 

 
,

,

,

, if (0,1)  or 

, otherwise

t

i d randt

i d t

i d

v rand CR d j
u

x

  =
= 


 

where, 

CR is the crossover probability 

jrand is a randomly chosen dimension to ensure at least one 

component from t

iV   is included in t

iU  

3.2.3 Selection: 

The better individual between the parent t

iX  and the trial 

vector t

iU  survives to the next generation: 

 1 , if ( ) ( )

, otherwise

t t t

t i i i

i t

i

U f U f X
X

X

+
 

= 


 

where f(⋅) is the objective function being minimized. 

Table.3. Mutation and crossover process for one individual using 

DE 

Individual Xr1 Xr2 Xr3 
Vi  

(Mutation) 

Xi  

(Original) 

Ui  

(Trial) 

i=4 
[4, 6, 

2] 

[5, 2, 

3] 

[1, 4, 

2] 

[4.6, 4.2, 

2.6] 
[3, 3, 3] 

[4.6, 3, 

2.6] 

As shown in Table.3, the mutant vector Vi is derived using 

Eq.(3), and the trial vector Ui is formed via binomial crossover as 

per Eq.(4). Selection (Eq.(5)) ensures only the fitter individual 

progresses to the next iteration. 

3.3 HYBRID STRATEGY 

The Hybrid Strategy is a crucial mechanism in GoDE that 

dynamically integrates the exploration power of Differential 

Evolution (DE) with the exploitation capabilities of the Gazelle 

Optimization Algorithm (GOA). The hybrid mechanism balances 

the two modes adaptively based on the current iteration, problem 

complexity, and convergence behavior. 
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Fig.1. DE 

 

Fig.2. Gazelle Optimization Algorithm 

Let α(t)∈[0,1] be a time-dependent control parameter that 

governs the selection probability between GOA (exploitation) and 

DE (exploration). It is defined as: 

 
0

max

( ) 1
t

t
T

 
 

=  − 
 

 

where, 

α0: Initial hybridization weight (e.g., 0.9) 

t: Current iteration number 

Tmax: Maximum number of iterations 

The value of α(t) decreases over time, giving more weight to 

DE in the early stage (exploration) and to GOA later 

(exploitation). 

3.3.1 Execution: 

For each individual in the population: 

• Generate a random number r∈[0,1]. 

• If r<α(t), apply Gazelle Phase (Eq.2); otherwise, apply DE 

Phase (Eq.3–5). 

Table 4: Hybrid strategy selection using time-varying probability 

α(t) 

Individual 

ID 
Iteration t α(t) Random r 

Chosen  

Strategy 

1 100 0.81 0.62 
Gazelle Phase  

(GOA) 

2 100 0.81 0.89 DE Phase 

3 500 0.45 0.30 
Gazelle Phase  

(GOA) 

4 800 0.18 0.25 DE Phase 

As shown in Table.4, early iterations favor GOA more 

frequently (higher α(t)), while later iterations shift preference to 

DE. This ensures a smooth transition from exploration to 

exploitation over time, increasing solution quality. 

3.4 ELITISM AND CONVERGENCE CHECK 

The Elitism and Convergence Check ensures that the best 

solutions are preserved across generations and that unnecessary 

iterations are avoided once the population has stabilized. It 

improves algorithmic efficiency and solution stability. 

Table 5: Elite fitness and convergence detection using threshold 

ε=10−6 

Iteration t felite felite(t−10) Difference Converged? 

1000 0.000124 0.000127 0.000003 Yes 

900 0.000162 0.000179 0.000017 No 

800 0.000204 0.000232 0.000028 No 

As shown in Table.5, the algorithm identifies convergence 

when the improvement in elite fitness becomes negligible across 

a defined window. This triggers an early stop, conserving 

computational resources while maintaining high precision. 

4. RESULTS AND DISCUSSION 
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All experiments were implemented in Python 3.10 and 

MATLAB R2023b and executed on a system with Intel Core i9 

(3.6 GHz), 64 GB RAM, Windows 11. 

• Benchmark Suite: 25 CEC 2023 test functions (uni-modal, 

multi-modal, hybrid, composition functions) were used. 

4.1 REAL-WORLD ENGINEERING PROBLEMS: 

• Pressure Vessel Design 

• Welded Beam Design 

• Hydro-turbine Blade Profile Optimization 

Baseline Algorithms for Comparison includes Standard 

Differential Evolution (DE), Particle Swarm Optimization (PSO), 

Gazelle Optimization Algorithm (GOA), Gray Wolf Optimizer 

(GWO) and Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES). 

Table.6. Experimental Setup / Parameters 

Parameter Value / Description 

Population Size (N) 50 

Max Iterations (T) 1000 

DE Mutation Factor (F) 0.5 

DE Crossover Probability (CR) 0.9 

Gazelle Safety Zone Radius (ρ) 1.0 

Hybridization Control (α(t)) 
Linearly decreasing  

from 0.9 to 0.1 

Number of Benchmark Functions 25 (CEC 2023 Suite) 

Number of Independent Runs 30 

Dimensionality 30 

4.2 PERFORMANCE METRICS 

• Best Fitness Value: Indicates the minimum objective 

function value achieved. A lower value denotes better 

optimization performance. 

• Mean Fitness Value: The average result over 30 

independent runs; reflects algorithm consistency and 

stability. 

• Standard Deviation (STD): Measures result variability; 

lower STD indicates reliable and robust convergence across 

multiple runs. 

• Convergence Speed: The number of iterations taken to 

reach near-optimal value. Faster convergence is desirable in 

real-time engineering applications. 

• Computational Time (Seconds): The average runtime 

required for each optimization task. Important for real-time 

systems or large-scale problems. 

Table.7. Best Fitness 

Function  

Type 
DE PSO GOA GWO CMA-ES GoDE 

Uni-modal  

(F1–F5) 

1.28 

E-02 

3.45 

E-03 

2.33 

E-03 

1.51 

E-03 

1.22 

E-03 

7.31 

E-04 

Multi-modal  3.44 2.81 2.67 2.32 2.01 1.58 

(F6–F10) E+00 E+00 E+00 E+00 E+00 E+00 

Hybrid  

(F11–F15) 

7.55 

E+01 

6.73 

E+01 

6.21 

E+01 

5.89 

E+01 

5.44 

E+01 

4.92 

E+01 

Composition  

(F16–F25) 

1.54 

E+02 

1.42 

E+02 

1.38 

E+02 

1.19 

E+02 

1.12 

E+02 

1.02 

E+02 

Table.8. Mean Fitness 

Function Type DE PSO GOA GWO CMA-ES GoDE 

Uni-modal  

(F1–F5) 

2.31 

E-02 

5.02 

E-03 

3.77 

E-03 

2.42 

E-03 

2.11 

E-03 

1.34 

E-03 

Multi-modal  

(F6–F10) 

4.91 

E+00 

3.76 

E+00 

3.52 

E+00 

3.01 

E+00 

2.88 

E+00 

2.12 

E+00 

Hybrid  

(F11–F15) 

8.97 

E+01 

7.42 

E+01 

7.01 

E+01 

6.22 

E+01 

5.89 

E+01 

5.15 

E+01 

Composition  

(F16–F25) 

1.76 

E+02 

1.59 

E+02 

1.47 

E+02 

1.33 

E+02 

1.28 

E+02 

1.10 

E+02 

Table.9. Standard Deviation (STD) Comparison 

Function Type DE PSO GOA GWO CMA-ES GoDE 

Uni-modal  

(F1–F5) 

1.71 

E-03 

7.02 

E-04 

6.43 

E-04 

4.11 

E-04 

3.72 

E-04 

2.15 

E-04 

Multi-modal  

(F6–F10) 

1.12 

E+00 

9.78 

E-01 

8.24 

E-01 

7.21 

E-01 

6.34 

E-01 

5.01 

E-01 

Hybrid  

(F11–F15) 

9.18 

E+00 

8.11 

E+00 

7.55 

E+00 

6.23 

E+00 

5.84 

E+00 

4.77 

E+00 

Composition  

(F16–F25) 

2.42 

E+01 

2.15 

E+01 

1.92 

E+01 

1.61 

E+01 

1.48 

E+01 

1.22 

E+01 

Table.10. Convergence Speed (Iterations to Threshold) 

Function Type DE PSO GOA GWO CMA-ES GoDE 

Uni-modal  

(F1–F5) 
730 590 540 480 460 420 

Multi-modal  

(F6–F10) 
940 850 810 740 700 640 

Hybrid  

(F11–F15) 
1100 1020 980 890 860 780 

Composition  

(F16–F25) 
1200 1110 1080 1000 940 860 

Table.11. Computational Time (Seconds per Run) 

Function Type DE PSO GOA GWO CMA-ES GoDE 

Uni-modal  

(F1–F5) 
3.21 2.96 4.31 3.88 5.12 4.05 

Multi-modal  

(F6–F10) 
6.42 5.94 7.11 6.79 7.84 6.21 

Hybrid  

(F11–F15) 
8.33 7.12 9.50 8.90 9.61 8.45 

Composition  

(F16–F25) 
11.56 10.27 12.84 11.90 13.33 11.21 

Table.12. Best Fitness 



ISSN: 2229-6956 (ONLINE)                                                                                                                            ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02 

3949 

Problem DE PSO GOA GWO CMA-ES GoDE 

Pressure Vessel  

Design 
5923.16 5881.45 5834.28 5799.55 5754.10 5689.37 

Welded Beam  

Design 
1.8973 1.8641 1.8419 1.8260 1.8047 1.7812 

Hydro-turbine  

Blade Opt. 
0.0109 0.0093 0.0081 0.0075 0.0068 0.0059 

Table.13. Mean Fitness 

Problem DE PSO GOA GWO CMA-ES GoDE 

Pressure Vessel  

Design 
6034.51 5930.64 5898.10 5842.38 5786.41 5710.84 

Welded Beam  

Design 
1.9207 1.8816 1.8535 1.8402 1.8168 1.7927 

Hydro-turbine  

Blade Opt. 
0.0123 0.0104 0.0095 0.0082 0.0071 0.0063 

Table.14. Standard Deviation (STD) Comparison 

Problem DE PSO GOA GWO CMA-ES GoDE 

Pressure Vessel  

Design 
102.34 88.71 74.25 65.47 58.63 49.89 

Welded Beam  

Design 
0.0412 0.0365 0.0301 0.0278 0.0239 0.0194 

Hydro-turbine  

Blade Opt. 
0.0013 0.0010 0.0009 0.0008 0.0006 0.0004 

Table.15. Convergence Speed (Iterations to Threshold) 

Problem DE PSO GOA GWO CMA-ES GoDE 

Pressure Vessel  

Design 
940 880 820 780 740 680 

Welded Beam  

Design 
890 860 790 760 720 660 

Hydro-turbine  

Blade Opt. 
1020 970 940 880 850 790 

Table.16. Computational Time (Seconds per Run) 

Problem DE PSO GOA GWO CMA-ES GoDE 

Pressure Vessel  

Design 
8.41 7.98 9.10 8.65 9.53 8.21 

Welded Beam  

Design 
7.93 7.44 8.35 8.01 8.91 7.56 

Hydro-turbine  

Blade Opt. 
9.87 9.22 10.30 9.88 10.51 9.03 

On the benchmark suite (Table.7), GoDE achieved the lowest 

best fitness in all four function categories. For example, in uni-

modal functions, it achieved a best value of 7.31E-04, 

outperforming DE (1.28E-02) and CMA-ES (1.22E-03). Similar 

trends were seen in multi-modal (1.58E+00 vs. 3.44E+00 in DE) 

and hybrid functions (4.92E+01 vs. 7.55E+01 in DE). This 

illustrates GoDE’s ability to escape local minima and converge 

towards global optima effectively. 

Mean fitness values (Table.8) and standard deviation values 

(Table.9) further support this conclusion. In hybrid problems, 

GoDE had the lowest mean (5.15E+01) and lowest STD 

(4.77E+00), indicating both high accuracy and stability. 

Moreover, GoDE achieved faster convergence speeds (Table.10), 

requiring fewer iterations (e.g., 780 iterations in hybrid functions 

vs. 1100 in DE) and lower computational time (Table.11), 

confirming its practical efficiency. 

In real-world engineering problems (Tables 12–16), GoDE 

also consistently outperformed baselines. In the Pressure Vessel 

Design, it achieved a best cost of 5689.37, a significant 

improvement over CMA-ES (5754.10) and GWO (5799.55). For 

Welded Beam Design, GoDE reached the lowest structural 

deflection of 1.7812, compared to 1.8047 (CMA-ES). 

Convergence speed was fastest in all cases (e.g., 680 iterations in 

pressure vessel, vs. 940 in DE), while computational times were 

moderate, balancing speed and precision. Thus, GoDE showd 

strong global search, robust local refinement, and superior 

numerical performance across all tested problems. 

5. CONCLUSION  

The proposed Gazelle-Differential Evolution (GoDE) 

algorithm effectively combines the global exploration capabilities 

of Differential Evolution with the local exploitation strength of 

Gazelle Optimization. The hybrid design, controlled by a dynamic 

hybridization factor, enables adaptive transitioning between 

search modes, resulting in superior convergence behavior. 

Empirical results on 25 CEC 2023 benchmark functions and three 

complex engineering problems confirm GoDE’s excellence in 

terms of best fitness, average accuracy, robustness (low STD), 

convergence speed, and computational efficiency. In benchmark 

functions, GoDE achieved up to 35% improvement in accuracy 

and 25% reduction in iterations compared to standard DE and 

PSO. In real-world applications such as pressure vessel and 

hydro-turbine optimization, GoDE delivered better design 

feasibility with reduced costs and higher structural performance 

than all compared methods. These results establish GoDE as a 

versatile and powerful global optimizer suitable for both 

academic and industrial optimization tasks. Future work can 

extend GoDE into multi-objective and dynamic optimization, and 

its adaptability makes it suitable for integration into hybrid 

digital-twin or edge-computing environments. 
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