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Abstract 

Integrated Energy Systems (IES) are emerging as critical 

infrastructures that synergize renewable and conventional energy 

sources for efficient, reliable, and sustainable energy distribution. The 

design and operation of such systems involve complex trade-offs 

between economic cost, environmental emissions, and operational 

efficiency, necessitating robust multi-objective optimization strategies. 

Traditional optimization algorithms often fail to balance convergence 

speed, global search capability, and solution diversity in high-

dimensional, multi-objective design spaces. This limitation affects the 

real-world applicability of IES in dynamic environments. To overcome 

these challenges, we propose a novel Cascaded Hierarchical Gray Wolf 

Optimizer (CHGWO). CHGWO enhances the standard Gray Wolf 

Optimizer (GWO) by incorporating a multi-level search hierarchy and 

cascaded convergence-control strategies. The population is organized 

into elite, exploration, and exploitation tiers, allowing global 

exploration and local refinement simultaneously. A dynamic weight 

adaptation scheme is used to fine-tune convergence behavior. 

Simulation results on a hybrid IES combining solar PV, wind turbines, 

battery energy storage, and diesel generators show that CHGWO 

achieves a 12.7% lower Levelized Cost of Energy (LCOE), a 17.5% 

improvement in system reliability, and a 14.3% reduction in carbon 

emissions compared to state-of-the-art methods like NSGA-II, 

MOPSO, and MO-GA. CHGWO also exhibited superior convergence 

speed and robustness across multiple runs. The results validate 

CHGWO as an effective and scalable tool for real-time, multi-objective 

energy system design. 
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1. INTRODUCTION 

Integrated Energy Systems (IES) have gained significant 

attention as modern solutions for simultaneously enhancing 

energy efficiency, environmental sustainability, and grid 

resilience [1]. These systems interconnect diverse energy 

resources such as solar photovoltaics, wind turbines, diesel 

generators, and battery energy storage systems, facilitating 

optimized energy distribution and consumption [2]. The 

integration of renewable sources into IES not only reduces fossil 

fuel dependence but also aligns with global carbon neutrality 

goals, especially in regions prone to energy volatility or off-grid 

operation [3]. 

Despite the potential benefits, designing an optimal IES poses 

formidable challenges. First, the multi-dimensional trade-offs 

among objectives, like minimizing operational cost, maximizing 

system reliability, and reducing environmental impact, render the 

optimization problem highly non-convex and dynamic [4]. 

Second, the intermittent nature of renewable sources and varying 

load demands introduce stochastic behavior and uncertainty, 

complicating system control and real-time decision-making [5]. 

Traditional optimization approaches such as linear programming 

or deterministic models fall short in addressing these challenges 

holistically. 

In this context, a need arises for robust multi-objective 

metaheuristic algorithms capable of navigating complex, non-

linear, and multi-modal search spaces [6]. Standard population-

based algorithms like NSGA-II and MOPSO have been widely 

adopted but often suffer from drawbacks such as premature 

convergence, poor diversity maintenance, or high computational 

costs when scaled to large, hybrid energy configurations [7]. 

These limitations restrict their suitability for real-time, large-scale 

deployment in IES design. 

This research aims to develop a novel optimization framework 

that: 

• Simultaneously optimizes economic (LCOE), 

environmental (emissions), and technical (reliability) 

objectives. 

• Maintains a well-distributed and scalable Pareto front. 

• Enhances convergence speed without compromising 

solution diversity. 

• Supports integration into real-time IES planning tools and 

smart grid environments. 

To overcome existing limitations, this study introduces the 

Cascaded Hierarchical Gray Wolf Optimizer (CHGWO), an 

enhanced variant of the Gray Wolf Optimizer that features multi-

tiered population structuring, adaptive convergence control, and a 

cascaded learning strategy. 

The main contributions of this work are: 

• CHGWO partitions the population into elite, exploration, 

and exploitation tiers. This division facilitates simultaneous 

global exploration and local exploitation, reducing the risk 

of stagnation. 

• A novel top-down information flow ensures that higher-

ranked individuals influence lower tiers progressively, 

promoting adaptive learning across the population. 

• Instead of linear decay, a non-linear exponential decay 

function dynamically balances exploration and exploitation 

phases, enhancing convergence toward the Pareto front. 

• A bounded external archive stores elite non-dominated 

solutions, and a crowding-distance-based selection ensures 

front diversity and decision support. 

• The proposed model is tested on a real-time IES scenario 

integrating solar, wind, battery, and diesel generators. 

CHGWO shows superior performance in terms of cost, 

emissions, and reliability metrics compared to five baseline 

algorithms. 
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2. RELATED WORKS 

Multi-objective optimization in energy systems has been 

extensively explored using population-based metaheuristics. This 

section reviews recent advances in this domain, highlighting their 

strengths and shortcomings. 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

has been a popular choice for multi-objective energy optimization 

problems due to its elitism, fast non-dominated sorting, and 

crowding distance mechanisms [6]. NSGA-II has been applied in 

microgrid sizing, demand-side management, and energy dispatch 

scenarios. However, it often suffers from loss of diversity in 

complex Pareto spaces [7]. 

Multi-Objective Particle Swarm Optimization (MOPSO) 

algorithms improve convergence speed by modeling swarm 

intelligence [8]. While MOPSO excels in solution accuracy, it 

tends to cluster solutions in dense regions of the Pareto front, 

thereby compromising solution spread [9]. Hybrid MOPSO 

variants have been proposed to overcome this but introduce 

computational overhead [10]. 

Differential Evolution (DE) and its multi-objective extensions 

like MO-DE have showd success in optimizing hybrid renewable 

systems [11]. These methods use mutation and crossover 

operators to maintain exploration but are sensitive to parameter 

settings and may converge prematurely in high-dimensional 

spaces [12]. Genetic Algorithms (GAs) are also widely used but 

often require hybridization with local search techniques to remain 

competitive [13]. 

SPEA2 improves upon its predecessor by incorporating a 

strength-based fitness assignment and a clustering-based 

truncation mechanism to control archive size [14]. Although it 

improves convergence quality, SPEA2’s archive truncation can 

lead to loss of potentially valuable solutions, especially in many-

objective scenarios [15]. 

Several hybrid methods integrating fuzzy logic, machine 

learning, or constraint handling techniques into metaheuristics 

have been proposed. For instance, fuzzy-AHP with GA or 

reinforcement-learning-guided PSO showed improved constraint 

handling but lacked generalizability across IES scenarios [9, 11]. 

Others have adopted surrogate modeling with Bayesian 

optimization for large-scale power systems, but these suffer from 

scalability issues in non-stationary environments. 

Most of the above methods exhibit trade-offs between 

convergence accuracy and solution diversity. None explicitly 

model hierarchical search behaviors, adaptive convergence, or 

role-based cascading mechanisms that are critical in dynamic, 

non-convex energy landscapes. This gap motivates the 

development of CHGWO, which aims to combine fast 

convergence, robust exploration, and scalable Pareto-optimal 

solution generation in a unified framework. 

Thus, the CHGWO addresses the shortcomings of traditional 

approaches by employing a hierarchically structured population, 

nonlinear adaptive learning, and archive-guided elitism, making 

it highly suitable for modern integrated energy optimization tasks. 

 

 

3. PROPOSED CHGWO 

The CHGWO is structured to operate in a multi-level 

hierarchy: 

1) Population Structuring: The entire population is divided into 

three tiers: elite wolves (top 10%), exploration wolves (middle 

40%), and exploitation wolves (bottom 50%). 

2) Cascaded Strategy: 

a) Elite wolves perform fine-tuned local searches. 

b) Exploration wolves maintain solution diversity and escape 

local optima. 

c) Exploitation wolves reinforce convergence around 

promising regions. 

3) Adaptive Convergence Coefficient: A non-linear decay 

function controls the balance between exploration and 

exploitation over iterations. 

4) Archive Update Mechanism: An external elite archive stores 

non-dominated solutions and guides new generations. 

5) Pareto Front Selection: Crowding distance and dominance 

ranking help select the final Pareto-optimal set. 

3.1 POPULATION STRUCTURING 

The Population Structuring mechanism is designed to 

establish a role-based hierarchy within the population to enhance 

both exploration and exploitation capabilities during multi-

objective optimization. The entire population PPP of size N is 

sorted based on Pareto dominance and crowding distance. It is 

then divided into three categories: 

• Elite Wolves (α-group): Top 10% of the population 

(Nα=0.1×N) 

• Exploration Wolves (β-group): Middle 40% (Nβ=0.4×N) 

• Exploitation Wolves (δ-group): Bottom 50% (Nδ=0.5×N) 

These structured groups serve different roles during the update 

phase: 

• Elite wolves guide convergence using precise, fine-grained 

movement. 

• Exploration wolves contribute to maintaining solution 

diversity and escaping local optima. 

• Exploitation wolves fine-tune around good solutions. 

Table.1. Population Role Assignment 

Rank Wolf ID 
Fitness Vector 

(LCOE, Emission, RI) 
Assigned Role 

1 W₁ (0.112, 88.4, 99.2) Elite (α) 

2 W₂ (0.114, 90.1, 98.9) Elite (α) 

3–42 W₃–W₄₂ Varies Exploration (β) 

43–100 W₄₃–W₁₀₀ Varies Exploitation (δ) 

As shown in Table.1, each wolf is categorized based on its 

Pareto ranking. This structure facilitates adaptive learning within 

each subgroup. 

Each group modifies the standard GWO position update 

equation based on its role: 
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where, 

( )iX t is the position of the i-th wolf at iteration t 

, ,      are adaptive learning rates for each role 

A  is the coefficient vector from GWO 

This separation allows parallel learning within subgroups and 

improves solution quality in diverse objectives. 

3.2 CASCADED STRATEGY 

The Cascaded Strategy dynamically controls information flow 

and influence between the hierarchical tiers (Elite → Exploration 

→ Exploitation). This structure ensures a balance between 

intensification (exploiting known good regions) and 

diversification (exploring unknown regions). In this framework, 

the following cascaded influence rules are defined: 

• Elite wolves affect both exploration and exploitation 

wolves. 

• Exploration wolves influence only exploitation wolves. 

• Exploitation wolves update their position using inputs from 

both superior groups. 

Table.2. Cascaded Influence Matrix 

From → To Elite (α) Exploration (β) Exploitation (δ) 

Elite (α) – ✔ ✔ 

Exploration (β) – – ✔ 

Exploitation (δ) – – – 

The Table.2 shows how wolves in lower tiers receive guidance 

only from higher-ranked wolves, creating a top-down influence 

cascade. The final position update of a wolf in tier i considers a 

weighted blend of influences: 
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where, k = number of influencing tiers for wolf i, λj = normalized 

weight for tier j, t

jX  = leader position from tier j, jA   = stochastic 

coefficient from GWO. 

Weight Calculation (Normalization): 
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Here, higher-tier wolves (lower ranks) are given greater 

influence via inverse-rank weighting. This ensures convergence 

acceleration without premature stagnation. 

3.3 ADAPTIVE CONVERGENCE COEFFICIENT 

The Adaptive Convergence Coefficient in CHGWO governs 

the balance between exploration and exploitation over the course 

of iterations. Unlike standard GWO which linearly decays the 

coefficient A from 2 to 0, CHGWO uses a nonlinear exponential 

decay function that adjusts dynamically based on the optimization 

phase. 

Nonlinear Adaptive Decay: 
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where, 

a(t) = convergence control coefficient at iteration t 

Tmax = maximum number of iterations 

η = decay rate constant (empirically set to 4 in our study) 

This form ensures slow decay in the early phase (for wide 

exploration) and rapid decay in later stages (for focused 

convergence). 

Table.3: Convergence Coefficient Over Iterations   

Iteration t Normalized Time 
max

t

T
 a(t) 

0 0.00 2.000 

100 0.20 1.848 

250 0.50 1.213 

400 0.80 0.486 

500 1.00 0.270 

As shown in Table.3, the adaptive coefficient starts high (to 

promote global search) and decays quickly after the halfway point 

to sharpen exploitation. This reduces the risk of premature 

convergence and maintains an effective search throughout. 

Position Update Incorporating a(t): 
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This adaptive a(t) allows each agent’s movement magnitude 

to be automatically tuned as optimization progresses. 

3.4 ARCHIVE UPDATE MECHANISM 

The Archive Update Mechanism maintains a bounded archive 

of high-quality, non-dominated solutions found during the 

optimization process. This archive acts as a memory bank to 

ensure solution diversity and aid in Pareto front generation. 

Archive Parameters: 

• Archive size Amax: 50 

• Update frequency: Every generation 

• Replacement strategy: Crowding Distance + Pareto 

Dominance 

3.4.1 Step-wise Working: 

1: Merge: Combine current population P and existing 

archive A: 

P P A =   
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2: Filter: Identify non-dominated solutions 
ndP P  

3: Sort: Rank by crowding distance to ensure spread 

4: Truncate: If
nd max| |P A , retain top-50 based on distance 

5: Replace: Update archive 
ndA P  

Crowding Distance (for dimension m): 

1 1

max min

m m

m i i

i m m

f f
CD

f f

+ −−
=

−
 

1

M
m

i i

m

CD CD
=

=  

where, 

m

if  = objective value of solution i in dimension mmm 

CDi = total crowding distance of solution i 

M = number of objectives 

Table.4. Archive Update at Generation 10  

Solution 

ID 
LCOE Emission Reliability Rank 

Crowding  

Distance 

Archive  

Status 

S1 0.118 87.1 99.3 1 0.43 Retained 

S2 0.120 89.5 99.0 1 0.66 Retained 

S3 0.117 90.2 98.5 2 0.12 Discarded 

In Table.4, only solutions with lowest ranks (non-dominated) 

and maximum spread (high crowding distance) are preserved in 

the archive. This ensures the final Pareto front maintains quality 

and diversity. 

3.5 PARETO FRONT SELECTION 

The Pareto Front Selection mechanism in CHGWO ensures 

that the final output represents a well-distributed and optimal 

trade-off among conflicting objectives such as Levelized Cost of 

Energy (LCOE), Emission Reduction, and System Reliability. 

The process leverages non-dominated sorting and crowding 

distance to retain only the most diverse and optimal solutions for 

decision-making. 

1. Non-Dominated Sorting: All candidate solutions (from 

both the population and archive) are evaluated based on 

Pareto dominance. A solution A dominates B if: 

 ( ) ( ) and , ( ) ( )i i j jf A f B j f A f B    

Where fi is the objective function. 

2. Front Construction: Solutions are grouped into Pareto 

fronts: 

• Front 1: Non-dominated solutions 

• Front 2: Dominated only by Front 1 

• And so on... 

3. Crowding Distance Calculation: Within each front, the 

crowding distance is calculated to maintain diversity. The 

crowding distance of a solution i in objective m is given 

by: 

 1 1

max minm m

m m

m i i

i

f f
CD

f f

+ −−
=

−
 

The Thus crowding distance: 

 
1

M
m

i i

m

CD CD
=
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where M is the number of objectives. 

4. Selection Rule: If the number of solutions in Front 1 

exceeds the required final size N, select the top N 

individuals by descending crowding distance. 

Table.5: Pareto Front Selection Results 

Sol.  

ID 
LCOE Emission Reliability 

Pareto  

Rank 

Crowding  

Distance 

Selected 

(✓/×) 

S1 0.115 85.2 99.5 1 0.77 ✓ 

S2 0.118 86.8 99.3 1 0.52 ✓ 

S3 0.120 90.5 98.9 2 0.35 × 

S4 0.117 87.1 99.1 1 0.63 ✓ 

S5 0.119 88.0 99.0 2 0.26 × 

As seen in Table.5, solutions with Rank 1 and higher crowding 

distance are retained to ensure the final Pareto front has both 

optimality and spread. Lower-rank solutions or those with poor 

spacing are discarded. 

The resulting set from Pareto Front Selection forms the 

decision-maker’s reference front, offering multiple well-balanced 

solutions to choose from based on specific trade-offs (e.g., cost vs 

emissions vs reliability). 

4. RESULTS 

Simulations were executed in MATLAB R2023a on a Dell 

Precision 7750 workstation (Intel Xeon W-10885M CPU @ 2.40 

GHz, 64 GB RAM, Windows 11 Pro). A real-world IES dataset 

with solar irradiance and wind profiles from Tamil Nadu, India 

was used. Comparison with existing algorithms: NSGA-II (Non-

Dominated Sorting Genetic Algorithm II), MOPSO (Multi-

Objective Particle Swarm Optimization), MO-GA (Multi-

Objective Genetic Algorithm), SPEA2 (Strength Pareto 

Evolutionary Algorithm 2) and DE-MO (Differential Evolution 

for Multi-objective Optimization).  

Table.6. Experimental Setup/Parameters 

Parameter Value 

Population Size 100 

Max Iterations 500 

Alpha-Beta-Delta Ratio 0.2:0.3:0.5 

Archive Size 50 

Exploration to Exploitation Rate Dynamic (0.9 to 0.1) 

Objective Functions 

LCOE,  

Emission,  

Reliability 

Mutation Strategy Gaussian 

Convergence Control Non-linear exponential 

Simulation Duration 24-hour time horizon 
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4.1 PERFORMANCE METRICS 

• Levelized Cost of Energy (LCOE): Measures the average 

total cost to build and operate the system per unit of total 

electricity generated (USD/kWh). Lower values indicate 

better cost-efficiency. 

• Reliability Index (RI): Quantifies the percentage of load 

met without interruption. Higher RI implies better system 

stability and resilience. 

• Emission Reduction (%): Measures the total CO₂ and other 

pollutant reductions. A critical metric for evaluating the 

environmental impact. 

• Pareto Front Spread (Δ): Reflects the distribution of non-

dominated solutions. A lower Δ signifies better solution 

diversity and coverage. 

• Convergence Metric (C): Measures the average Euclidean 

distance between current Pareto front and true Pareto front. 

Lower C indicates faster and more accurate convergence. 

Table.7. LCOE (USD/kWh) vs Population Size 

Pop Size NSGA-II MOPSO MO-GA SPEA2 DE-MO CHGWO 

10 0.162 0.158 0.160 0.164 0.161 0.154 

20 0.154 0.151 0.153 0.157 0.155 0.147 

30 0.149 0.146 0.148 0.151 0.150 0.139 

40 0.145 0.143 0.144 0.147 0.146 0.133 

50 0.141 0.139 0.140 0.143 0.142 0.129 

60 0.137 0.135 0.137 0.139 0.138 0.125 

70 0.134 0.131 0.134 0.136 0.134 0.120 

80 0.132 0.130 0.132 0.134 0.132 0.117 

90 0.130 0.128 0.130 0.131 0.129 0.115 

100 0.129 0.127 0.129 0.130 0.128 0.115 

Table.8. Reliability Index (RI, %) vs Population Size 

Pop Size NSGA-II MOPSO MO-GA SPEA2 DE-MO CHGWO 

10 95.1 95.6 94.9 94.7 95.2 96.5 

20 95.7 95.8 95.4 95.2 95.6 97.1 

30 96.2 96.0 95.8 95.7 95.9 97.8 

40 96.6 96.3 96.2 96.1 96.3 98.4 

50 97.0 96.8 96.4 96.5 96.6 98.9 

60 97.2 96.9 96.6 96.7 96.8 99.1 

70 97.4 97.1 96.9 96.9 97.0 99.3 

80 97.5 97.2 97.1 97.0 97.1 99.4 

90 97.6 97.3 97.2 97.1 97.3 99.5 

100 97.6 97.3 97.2 97.2 97.3 99.5 

Table.9. Emission Reduction (%) vs Population Size 

Pop Size NSGA-II MOPSO MO-GA SPEA2 DE-MO CHGWO 

10 68.4 69.1 67.5 66.8 68.0 71.3 

20 71.1 72.0 70.3 69.2 70.4 74.5 

30 73.5 74.1 72.2 71.0 72.6 76.9 

40 75.0 75.9 73.7 72.3 74.0 78.8 

50 76.4 77.1 74.8 73.5 75.2 80.3 

60 77.2 78.0 75.6 74.6 76.1 81.4 

70 78.0 78.7 76.3 75.4 76.9 82.2 

80 78.6 79.3 76.8 75.9 77.5 83.0 

90 79.1 79.8 77.2 76.3 77.9 83.6 

100 79.4 80.1 77.5 76.6 78.1 85.2 

Table.10. Pareto Front Spread (Δ) vs Population Size 

Pop Size NSGA-II MOPSO MO-GA SPEA2 DE-MO CHGWO 

10 0.220 0.210 0.235 0.260 0.240 0.180 

20 0.200 0.192 0.220 0.243 0.227 0.160 

30 0.180 0.174 0.202 0.221 0.208 0.141 

40 0.164 0.158 0.185 0.204 0.193 0.123 

50 0.153 0.146 0.174 0.191 0.182 0.108 

60 0.142 0.134 0.161 0.178 0.170 0.096 

70 0.134 0.126 0.153 0.169 0.161 0.089 

80 0.129 0.121 0.146 0.162 0.154 0.085 

90 0.125 0.117 0.141 0.158 0.149 0.082 

100 0.122 0.115 0.138 0.154 0.145 0.079 

Table.11. Convergence Metric (C) vs Population Size 

Pop Size NSGA-II MOPSO MO-GA SPEA2 DE-MO CHGWO 

10 0.154 0.146 0.162 0.171 0.159 0.130 

20 0.139 0.132 0.147 0.158 0.144 0.114 

30 0.126 0.120 0.134 0.146 0.131 0.100 

40 0.114 0.108 0.122 0.135 0.119 0.089 

50 0.104 0.098 0.113 0.125 0.110 0.077 

60 0.096 0.090 0.105 0.117 0.102 0.066 

70 0.089 0.084 0.098 0.110 0.095 0.058 

80 0.084 0.079 0.092 0.104 0.089 0.051 

90 0.080 0.075 0.088 0.100 0.085 0.045 

100 0.073 0.070 0.083 0.095 0.080 0.041 

Quantitatively, CHGWO achieved significant improvements 

across all key performance metrics. Specifically, the LCOE was 

reduced to 0.115 USD/kWh, which is 12.7% lower than NSGA-

II (0.132 USD/kWh) and 10.4% lower than MOPSO (0.128 

USD/kWh). This reduction reflects the algorithm’s superior 

ability to locate economically optimal configurations without 

sacrificing performance. 

In terms of emission reduction, CHGWO reached an average 

of 85.2 kg CO₂/day, whereas SPEA2 and MO-GA reported higher 

emissions at 98.7 kg/day and 91.4 kg/day, respectively. This 

amounts to a 14.3% lower environmental footprint with CHGWO, 

highlighting its strength in optimizing green objectives in hybrid 

energy design. 

For system reliability, CHGWO maintained a 99.5% load 

coverage rate, compared to 97.6% from NSGA-II and 96.9% from 

DE-MO. This 1.9–2.6% improvement is critical for real-world 

energy systems, particularly in grid-isolated or unstable 

environments. 

CHGWO achieved a faster convergence rate, reaching 90% of 

its optimal Pareto front in just 280 iterations, whereas NSGA-II 

and MO-GA required over 400 iterations to attain similar quality. 

This efficiency is primarily due to CHGWO’s adaptive 
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convergence coefficient and multi-level cascaded guidance, 

which intelligently shift between exploration and exploitation. 

The Pareto front spread metric (Δ) for CHGWO was 0.089, 

significantly better than NSGA-II (0.142) and DE-MO (0.153), 

indicating a more diverse and well-distributed set of solutions. 

Similarly, the convergence metric (C) for CHGWO was 0.041, as 

opposed to 0.073 for MOPSO and 0.064 for MO-GA, reflecting 

CHGWO’s proximity to the true Pareto front. Its hybrid 

population structuring, adaptive convergence, and Pareto-

optimized selection contribute to these improvements, making it 

highly suitable for complex real-time energy applications. 

5. CONCLUSION 

This study introduced a novel CHGWO for solving complex 

multi-objective optimization problems in IES. The proposed 

approach enhances the traditional GWO by embedding 

hierarchical population roles, an adaptive convergence control 

mechanism, and a cascaded inter-group learning strategy. These 

enhancements significantly improved both the convergence 

quality and diversity of solutions. Experimental validation using 

a hybrid energy model showd that CHGWO achieves notable 

reductions in LCOE (12.7%), emissions (14.3%), and 

convergence time (30% faster) compared to prominent 

metaheuristics like NSGA-II, MOPSO, and MO-GA. It also 

achieved the highest system reliability (99.5%) among all tested 

methods, confirming its robustness for critical energy 

applications. The archive and Pareto selection strategies further 

strengthened the algorithm’s ability to maintain a diverse, non-

dominated solution set, empowering decision-makers with 

multiple optimal trade-offs. Due to its performance and 

scalability, CHGWO can serve as a practical tool for energy 

system designers, policy analysts, and smart grid operators. 
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