
P THARANI et al.: FUZZY SCHEDULING OF SCIENTIFIC WORKFLOWS WITH ENERGY AND SECURITY CONSTRAINTS IN CLOUD

DOI: 10.21917/ijsc.2025.0542

3914

FUZZY SCHEDULING OF SCIENTIFIC WORKFLOWS WITH ENERGY AND

SECURITY CONSTRAINTS IN CLOUD

P. Tharani, K. Manimala and A.M. Kalpana
Department of Computer Science and Engineering, Government College of Engineering, Salem, India

Abstract

Cloud infrastructure is a pay-per-use, easily scalable, and accessible

model. Based on the requirements of the workflow application,

provisioning of resources can be dynamically done as the cloud is

elastic in nature. The objective of this work is to execute scientific

workflows within user deadlines having minimal expense and the total

execution time. Appropriate provisioning and scheduling of all the

tasks can effectively decrease the execution time in scientific

workflows. This work suggests fuzzy scheduling for improvising the

efficacy of energy as well as security. A major role in cloud computing

is made by fuzzy logic theory. This work describes an approach for

addressing the energy as well as security constraints in the cloud using

the fuzzy controller. By referring to the fuzzy inference knowledge base,

the duration, energy consumption and trust metrics can be inferred

using fuzzy logic, based on the user task types. The system realizes the

dynamic scheduling of the resources as per the specific needs. This

achieves the purpose of improving the execution ratio and the

utilization of resources. It has been demonstrated through the

outcomes that the suggested scheduling algorithm can be efficiently

deployed on the cloud.

Keywords:

Fuzzy Scheduling, Scientific Workflow, Partial Critical Path (PCP),

Energy Factor, Cloud Computing

1. INTRODUCTION

Cloud computing is the instance of a distributed environment,

which has developed over time from shared community platforms

to utility-based models. The delivery of IT resources over the

internet [1] has been possible because of this technology; here,

based on the consumption, the users are charged and hence this is

a pay-as-you-go model. There are different types of cloud

providers based on various types of product offerings. They

divide into three categories of as-a-service terms: Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), and Software as

a Service (SaaS).

A procedure that comprises a series of steps that are used for

simplifying the execution complexity and the application

management is referred to as workflow. There is a common model

that is comprised of workflow technology that is used to describe

a range of scientific applications in distributed systems. In many

fields of science such as computer science, chemistry, and

physics, there is an important role of workflow technology. The

requirement for constructing upon the legacy codes that are very

expensive to re-write gives rise to the interest in workflow. The

Directed Acyclic Graph (DAG) compute tasks are represented by

the nodes; the precedence and the flow constraints between the

tasks are represented by the edges. For accessing, managing and

processing large amounts of data from a higher level, scientific

workflows make use of distributed resources. A distributed

collection of storage and computation facilities is required to

process and manage such huge amounts of data. These resources

are not only shared amongst many users but are also frequently

limited [2].

Scientific workflows are computational as well as data-

intensive; this is due to the complexity of scientific processes.

These workflows are to be executed in distributed as well as high-

end computing environments like the cloud computing

environments that have emerged of late. Many features of

workflows that are different from other computing environments

are provided by the cloud computing environment. (1)

Computational cloud resources have been exposed as services

providing standardized interfaces for accessing services over the

network. (2). The quantity and type of computing resources

allocated to a workflow are determined by service demands. (3)

Due to the ability to dynamically alter the number of resources

assigned to a process at runtime, workflow computing resources

can be elastically scaled on demand. (4) Resources be allocated

when required and not all of them need to assigned at the

beginning of the workflow [3].

One of the most important activities that is executed in the

cloud computing environment is scheduling. Scheduling is a task

that maximizes the profit for increasing the efficiency of the

workload in cloud computing. Using the resources appropriately

considering the load distributed among the resources to minimize

the execution time is the basic objective of planning calculations

in the cloud environment. There are three classifications of the

process of scheduling: Resource Discovering and filtering- Here,

status information of the available resources is gathered following

the data center broker’s presentation of the data regarding the

resources’ current accessibility. Resource Selection: Based on the

task and the resource parameter, in this stage, resource selection

is done. This is the stage of selection. Task Submission: Here, the

tasks are allocated to the resources [4].

Cloud computing has evolved from the principles of grid

computing, service-oriented computing, and virtualization. Thus,

whatever scheduling algorithms have been developed for these

system types, the same ones can also be used for clouds. The main

traits of the scheduling algorithms are their distinguishable

characteristics: Target System: These are the systems developed

for the scheduling algorithms; these can be a cloud computing

system, grid system or heterogeneous system. Optimization

criterion: The metrics that are considered for decision making by

the schedulers are makespan and the cost and these are specified

by the cloud user. The computer system consists of multiple cores

based on scheduling algorithms in resource selection [5].

On-demand resources: Depending on demand, resources

might be planned or leased for an extended period. During the

execution of the workflow, the scheduling algorithm treats the on-

demand leasing of resources as a “single expense”. Reserved

Resources: The use of these resources is considered by the

algorithm for a long period. Levels in a Service Level Agreement

(SLA): The SLAs can be hierarchically organized by the

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02

3915

scheduling algorithms. Clients and providers are allowed to

directly interact and negotiate the prices and the capacities of the

resources by the SLAs with a single level. Heuristics information:

It guides the direction of search and is some problem-based value.

Heuristics are designed based on the workflow problem.

Multicore, bandwidth, makespan and cost are the main heuristics.

These are some of the common aims for the scheduling

schemes of the workflows: Budget: It defines the expenses

incurred by the consumers for using the cloud resources.

Deadline: The limit of time for executing the workflow and also

its support is an important Quality of Service (QoS) requirement.

Reliability: Scheduling techniques such as active replications and

backup/restart schemes that correspond to resource and time

redundancy may be used to increase the task’s likelihood of

completion. Availability: tasks are not only executed faster but the

executions are also terminated quickly due to the proper

scheduling of workflows. The availability of cloud resources is

improvised by this [6]. Minimizing the makespan: The time at

which the final workflow task execution is completed is referred

to as makespan. Supporting SLA: A document that contains

various considerations from the service providers and the

consumers is referred to as the SLA that comprises the discussions

regarding the delivery performance assurance of the QoS.

Security: Some of the features of the cloud may be misused by the

attackers and the components are also misused for launching

cloud-specific attacks. Load Balancing: To avoid the overloading

of any of the cloud resources, a scheduler has to optimize the

usage of resources.

The user should have some knowledge of the energy that is

needed for executing their application in the model of energy-

constrained provisioning. This should be based on the provider’s

information and a workflow ensemble for execution that specifies

the energy constraints has been submitted. For the total

consumption of energy to stay within an energy budget limit,

provisioning is made. Particularly, for executing as many

workflows as possible for the given energy constraints, a

scheduling plan for the ensemble is developed. When the overall

energy usage is less than the energy, the group’s workflow is

approved and added. Different amounts of energy to be spent for

the execution of workflows are required by different execution

schemes. Static and dynamic energy are the two schemes for the

consumption of energy. The former refers to the energy that is

consumed by the system resources when idle and the latter refers

to the energy consumed when the applications are running and

this can be adapted by the workflow depending on the resources

that are required by the tasks [7].

Because of the unreliability of the distributed systems and the

intrinsic uncertainty, security is an important issue in cloud

computing. For instance, in Google, the event of file leakage is

not allowed; also, interrupting Amazon’s simple storage service

S3 leads to the paralysis of the service. It is a subjective statement

of the trustor regarding the security, honesty, reality, and

dependability of a service held by the trustee and affects security

in a large, dispersed internet environment. The user’s decision

about the authenticity, integrity, reliability and stability of

services delivered by Cloud Service Providers (CSPs) is

replicated by trust. Identifying if the cloud service can live up to

its identity is referred to as authenticity. Verifying whether the

cloud services behave as claimed is referred to as integrity. The

ability of the cloud services to ensure data and application security

is referred to as reliability. The stability of cloud services is

referred to as stability and the likelihood of the effective execution

of user’s tasks is referred to as stability. Fraudulent services exist

in real cloud environments as the resources and the service types

are generally uncertain and they change dynamically. This makes

it adverse for the users to claim appropriate services. Hence, it is

of paramount importance to evaluate the trust of the cloud

services and to select high-quality cloud services for the users [8].

This work proposes PCP, robustness and fuzzy logic for

cloud-based scheduling. The remainder of the work is structured

as follows: In the second part, the relevant literary works are

examined. The various techniques used in the work are discussed

in the third section. The fourth portion discusses the empirical

findings, while the fifth section provides the work’s conclusion.

2. RELATED WORKS

For maximizing resource utilization, a delay-constrained

optimization problem has been formulated by Zhu et al. [9]. Also,

to minimize the cloud overhead within the execution time bound

that is user-specified, it has suggested a two-step workflow

scheduling algorithm. It has been shown via the extensive

simulation outcomes that lower computing overhead are achieved

using this approach consistently; also within the execution time

limits, higher resource utilization has been achieved. The total

execution time has been decreased using the approach; this is

done by strategically selecting the appropriate mapping nodes for

the modules that are prioritized.

The issue of workflow scheduling in cloud computing and

utilities has been taken into consideration by Cai et al. [10]. This

takes care of the assignment of tasks so that while the precedence

constraints are met along with meeting the workflow deadlines,

the total rental cost of the resources is also minimized. For solving

small problem instances, A Mixed Integer programming (MILP)

model is developed. Since this is a problem of non-deterministic

polynomial (NP) hardness, a Critical Path-based Iterative (CPI)

heuristic is created. This heuristic can find accurate solutions for

huge problem instances wherein there is an iterative construction

of several complete critical paths; dynamic programming is used

to do this, with the longest and least expensive services for

unscheduled activities and service assignments for scheduled

ones. After relaxing every critical path to a Multi-stage Decision

Process (MDP) problem, a dynamic programming-based Pareto

method is suggested for optimization. It has been shown via

empirical outcomes that the existing state-of-the-art algorithms

are outperformed by the suggested CPI heuristic on many of the

problem instances.

Completion Time Driven Hyper-Heuristic (CTDHH) is a

proposed method for cost optimization of Scientific Workflow

Scheduling (SWFS) in a cloud setting by Alkhanak and Lee [11].

Four of the popular population-based meta-heuristic algorithms

have been employed by the CTDHH approach and these act as

Level Heuristic (LLH) algorithms. Furthermore, after each run,

the CTDHH approach dynamically chooses an appropriate

algorithm from the LLH algorithm pool by including the optimal

workflow completion time and functioning as a high-level

selector; this is how it enhances the native random selection

technique. The suggested CTDHH approach has been evaluated

P THARANI et al.: FUZZY SCHEDULING OF SCIENTIFIC WORKFLOWS WITH ENERGY AND SECURITY CONSTRAINTS IN CLOUD

3916

using practical cloud-based experimentation; there are five

baseline approaches with which it has been compared- of these,

four are population-based approaches and one is an existing

hyper-heuristic approach named Hyper-Heuristic Scheduling

Algorithm (HHSA). For evaluating the computational and data

intensities, many different scenarios have been taken into

consideration. The suggested approach has generated good results

across experimental scenarios and hence proved its efficacy.

The cloud centers are comprised of Virtual Machines (VMs)

as well as Physical Machines (PMs). Huge amounts of energy are

consumed by the data centers as a result of improper utilization of

resources as well as the non-existence of effective scheduling

algorithms for performing task resource mapping. Carbon

emissions, high maintenance costs and heavy consumption of

energy are some of the effects of this issue. For addressing these

issues and the challenges that are associated, Mohanapriya et al.

[12] proposed a Power Efficient Scheduling and VM

Consolidation (PESVMC) algorithm. The various works in

literature that have been carried out pay attention to the techniques

of energy management to hardware level support for decreasing

the consumption of energy. The flexibility of the virtualization

technology has been taken into consideration and the suggested

algorithm has emphasized the software level; there are two

phases: the VM scheduling phase, and the VM consolidation

phase. WorkflowSim is used for performing the experimental

evaluation and not only is better resource utilization achieved, but

also the suggested algorithm achieves significant consumption of

energy.

A Particle Swarm Optimization (PSO) based heuristic has

been presented by Pandey et al. [13]. It can take into consideration

the costs of data transmission as well as computation and can thus

schedule applications to cloud resources. Experiments have been

conducted using workflow models and by changing the costs of

communication as well as computation. When employing the PSO

and the current "Best Resource Selection" (BRS) method, the cost

of savings has been calculated. It has been shown via the

outcomes that PSO can attain upto thrice the savings in cost

compared to BRS and that there is an effective workload

distribution among the resources.

A heuristic scheduling approach based on Cat Swarm

Optimization (CSO) has been proposed for allocating an

application’s tasks to the available resources suggested by

Bilgaiyan et al. [14]. The execution cost of the task on different

resources as well as the data transmission cost between two

dependent resources are considered in the CSO heuristic

algorithm. By using a hypothetical workflow, the authors have

experimented with the suggested CSO algorithm; they have

compared the outcomes of the workflow scheduling with the

existing PSO algorithm. It has been shown by the experimental

outcomes that (1) The CSO provides an ideal Task-to-Resource

(TOR) scheduling plan that reduces the overall cost. (2) The task

improvises in terms of the number of iterations using the CSO

over the existing PSO. There is an optimal workload distribution

amongst various resources using CSO.

As there are more and more applications that involve data of

huge sizes, the current computing systems require greater data

handling and processing capabilities. This is why cloud services

are expensive. There is a requirement for effective scheduling so

that the tasks are allocated resources to optimize the overall cost.

A Bat Algorithm (BA) application for scheduling workflow or

data-intensive applications in a cloud computing environment

was presented by Sagnika et al. [15]. After executing the

algorithm, the outcomes have been compared with two popular

algorithms-PSO and CSO. The suggested BA algorithm has

proven to present a fair distribution of load alongside the optimal

cost of processing with better convergence.

Verma and Kaushal [16] accessed a non-dominance sort-

based Hybrid Particle Swarm Optimization (HPSO) algorithm.

These suggested approaches link the multi-objective PSO with the

previously suggested Budget and deadline-constrained

Heterogeneous Earliest Finish Time (BDHEFT) algorithm.

Makespan and cost are the two conflicting heuristics that the

HPSO tries to optimize using the deadline and the budget

constraints. The energy that is consumed when the workflow

schedule is created is also minimized along with these two

conflicting objectives. A set of Pareto optimal solutions has been

generated by the suggested algorithm and this is where the best

solution can be chosen from.

To strictly restrict other Genetic Algorithms (GA), an adaptive

penalty function was proposed by Liu et al. [17]. Also, for

adjusting the probability of crossover and mutation, the co-

evolution approach was used and this was able to enhance the

speed of convergence and also pre-empt prematurity. The

algorithm has also been compared with standards like random,

PSO, Heterogeneous Earliest Finish Time (HEFT), and GA in a

WorkflowSim simulator on four representative scientific

workflows. The results demonstrate that the proposed method

outperformed the other well-known ones in terms of meeting time

requirements and lowering the overall cost of execution.

Guo et al. [18] presented a Workflow Task Scheduling

algorithm based on the Resources’ Fuzzy Clustering (FCBWTS).

The primary goal of scheduling is to minimize the makespan of

the precedence-constrained applications represented by the

directed acyclic graph. The resource features of cloud computing

are taken into account in FCBWTS, a collection of attributes.

These traits which have been used for delineating the artificial

performance of the resource processing units have been described

in this work. The fuzzy clustering approach pre-treats the

processing unit network with these characteristics, and the ready

task’s execution duration affects the critical path. This will help

realize the reasonable partition of the processor network. This

expense of deciding which of the processors can execute the

current task is decreased.

A new adaptable cloud workflow scheduling model has been

suggested by Li et al. [19]. There are two stages into which the

workflow scheduling of the new model has been divided so that

the user requirements are better analyzed and customizable

services are provided macro multi-workflow scheduling as the

unit of cloud user and the micro single workflow scheduling. The

trust approach is integrated into workflow scheduling. Workflows

are classified as time-sensitive and cost-sensitive in a single

workflow scheduling level. As per QoS demand parameters of

different workflows using the fuzzy clustering method, these are

balanced. It has been shown via simulation outcomes that there

are some benefits of the new scheme in decreasing the completion

time of the workflow; high user satisfaction and higher success

rates are also achieved using this scheme.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02

3917

3. METHODOLOGY

Effective resource utilization while managing the load

between the resources to decrease the execution time and increase

the efficacy of workload is the main objective of cloud computing.

This section discusses the PCP, robustness and proposed fuzzy

scheduling.

3.1 PARTIAL CRITICAL PATH

In workflow scheduling, critical path heuristics have been

used widely. The critical route of a workflow is the longest

execution path between the workload’s entry and exit tasks.

Mostly, those tasks that belong to the critical paths are first

scheduled by these heuristics that allocate resources to them so

that they are processed first. This helps in minimizing the

execution time of the entire workflow. Based on a similar

heuristic, the proposed algorithm would first schedule the critical

nodes while minimizing the cost of carrying out the critical path

while satisfying user deadlines and maintaining execution time.

Every critical node after being scheduled has a start time or

deadline for its direct predecessors in the workflow known as

parent nodes. Thus, by considering every critical node as an exit

node with its start time as the deadline, it can carry out the same

procedure; this leads to the creation of PCP that ends the critical

node leading to a node already scheduled. This task recursively

goes on in the PCP algorithm until all of the tasks are successfully

scheduled [20].

The Critical Parent (CP) tj is the parent tp, whose sum of start

time, data transfer time and execution time is maximum among

other parent nodes. The PCP of the node tj is a collection of tasks

for which there is a high degree of dependence. By detecting the

unallocated parents, PCP is found. Unallocated parents are nodes

not allocated to any PCP. Furthermore, by finding the unallocated

critical parent of the node, PCP is created and this is recursively

done until there are no more unallocated parents. This procedure

optimizes time and cost by identifying the PCP-PCPs that can be

scheduled on a single resource. Workflows are divided by this

algorithm into smaller groups of tasks that help to schedule. The

PCPs of the workflows are mutually exclusive meaning, only one

PCP is allocated to one task [21].

The VM having the most robustness type is selected for every

PCP. The quantity of clack that will be added to the PCP

execution time is the robustness type. The extent of execution

time variation tolerated by a PCP is dictated by it. There are four

robustness types in PCP-1) No robustness: this will refrain from

adding any slack time to the PCP’s execution time. 2) Slack: This

adds a predetermined amount of time to the PCP execution time

and allows for execution time variances up to a particular point.

3) One node failure: This adds the largest execution time of the

PCP nodes to the execution time of the PCP and it gives enough

slack time for handling the failure of the task having the largest

execution time in PCP. 4) Two Node Failure: in this case, the PCP

execution time is increased by the execution times of the two

largest nodes; Only when there are three nodes comprised in a

PCP this is done. Up to two disk failures can be tolerated by PCP

with this robustness type. Upto two node failures are tolerated by

four robustness types; it is also possible to develop robustness

types with a higher amount of node failures.

3.1.1 PCP Algorithm:

Allocate Resources (PCP)

//Allocate a suitable robust resource to the PCP

Input : PCP

Output : Robust Resource for PCP

//Create Solution Set SS;

for Every Instance type do

for Every Robustness type do

Create Solution set with PCPt and PCPc

FS = null;

Calculate PCPb according to equation 6;

//Create a Feasible Solution Set FS;

for Every solution in SS do

time = PCPt + TopLevel + BottomLevel;

if time <=D and PCPc <= PCPb then

Add to FS

//finds the next solution according to the chosen policy

RobustResource = findBestSolution(FS, Policy);

Assign every task in PCP to the RobustResource

The above resource allocation algorithm explains the process

of VM selection which attains a robust result. The complete

solution set SS = {s1,s2,…,sm*l } is produced in which m and l are

the number of VM types and robustness types respectively. This

solution set SS includes all robustness types for every VM type

defined. Each solution, si={vti,RTi,PCPci,PCPti} includes a

robustness type (RTi) PCP cost (PCPci) and PCP execution time

(PCPti) for VM type vti. As m and l are generally not large, the

time and space required are reasonable.

The solution set SS is lowered depending on the deadline and

budget restrictions into a smaller set of possible solutions. The

deadline constraint D is measured by merging the selected PCP

execution time instance and robustness type with the top and

bottom levels as shown in Eq.(1).

 TopLevel+PCPt+BottomLevel≤D (1)

Here, the sum of execution times of nodes on the longest path

from the entry to the first node and from the end node of PCP to

the exit node is the top level and bottom level of PCP. Budget

Constraint is evaluated by the following Eq.(2):

 PCPc≤PCPb (2)

where PCPc represents the total cost of the PCP. PCP Budget,

PCPb, means the amount spent on the PCP. This can be

decomposed from the overall budget based on Eq.(3):

 PCPb=(PCPt|TT)*B (3)

where TT represents the workflow’s total time is measured by

adding the execution times of the tasks on the reference VM type,

vtref. VM with the minimum MIPS value is taken as the reference

type, vtref. PCPt which means that the total execution time of the

PCP is on vtref. When PCPb is less than LPr, which is the price is

essential to perform on the cheapest resource, then PCPb is

assigned the value LPr.

Using these two constraints as given in the allocate resource

algorithm, a feasible solution set FS is generated. The appropriate

VM type vti for a PCP is chosen using the findBestSolution,

P THARANI et al.: FUZZY SCHEDULING OF SCIENTIFIC WORKFLOWS WITH ENERGY AND SECURITY CONSTRAINTS IN CLOUD

3918

method described in Algorithm 2, based on the resource selection

policy from the feasible solution set FS.

3.2 ROBUSTNESS SCHEDULING

A schedule that is not affected by the workflow processing

time disturbances is referred to as a robust schedule. The measure

of the degree of “insensitiveness” is given by the robustness of the

schedule. This is also defined as a linear mixture of assumed

makespan and delay as per one of the first attempts in formalizing

the definition of schedule robustness. Nonetheless, it limits the

applicability as the definition combines the idea of robustness

with optimization criteria of makespan minimization. Although

the empirical formula for measuring robustness has been designed

by the authors as an objective function to be optimized, there is

no way to evaluate the schedule’s robustness. It assumed that the

schedule’s robustness must show the stability of the actual

makespan concerning the expected one. Both the expected

makespan and the robustness must be considered by the overall

performance of a schedule. In this regard, two definitions are

proposed [22]:

1. Definition 1: Let M0(s) denote the expected makespan of

schedule s obtained with expected workflow execution

time and Mi(s) the real makespan with ith realization of

expected workflow execution times. The relative schedule

tardiness is:

 0

0

max(0, () ())
()

()

i

i

M s M s
s

M s

−
= (4)

The first definition of the robustness of schedules is Eq.(5):

 1

1
()

(())i

R s
E s

= (5)

where E(·) represents the expectation operator.

2. Definition 2: M0(s) and Mi(s) are defined as above. N

realizations of the expected workflow execution times are

performed. Let M={Mi(s)|Mi(s)>M0(s)}. The schedule

miss rate is α(s)=(|M|)/N. Then, the second definition of the

robustness of schedules is Eq.(6):

 2

1
()

()
R s

s
= (6)

3.3 PROPOSED FUZZY SCHEDULING

The performance of the majority of useful scheduling methods

in heterogeneous systems is compared to their computational

complexity. There should be appropriate and timed execution of

tasks in real time. Identifying minimal scheduling time in real-

time constrained multiprocessor systems is an NP-hard problem.

There is no deterministic response time in real-time scheduling

algorithms. For the analysis of the robustness of a system,

determining the timing behavior is crucial. The complexities of

the scheduling problems are increased due to the inherent

uncertainties in dynamic real-time systems. For arranging real-

time periodic and non-periodic tasks in the systems, a fuzzy

scheduling approach has been employed to alleviate these issues.

When non-critical overload condition occurs, static and dynamic

optimal scheduling algorithms fail. To improve the performance

of heterogeneous systems, knowledge-based algorithms can be

devised [23].

Fuzzy logic is employed by the suggested fuzzy controller.

This was introduced in 1965 by Zadeh. There is no strict

allocation of elements to sets like binary in fuzzy logic. In its

place, each element has a degree of membership to a set which is

denoted between 0 and 1. A fuzzy system needs to be constructed

for applying the fuzzy logic to specific issues like scheduling

between cloudlets or VMs. There are three steps for the

construction of a fuzzy system- Fuzzification: here the fuzzy sets

are assigned with the degree of membership of input value. The

degree of membership is given by μ: X→ [0, 1], where X is the

set of input values. As a result, every input value is converted to

a value between 0 and 1. Inference engine: According to the rule

sets, this system maps input regions to output regions using rules.

De-Fuzzification: a numerical output value is generated from the

output set [24].

Fuzzy set theory is responsible for representing uncertainties

is, it admits circumstances either moderately true or false. Fuzzy

logic is effective for treating random uncertainty where it is not

possible to predict a sequence of events. A collection of fuzzy

rules in the fuzzy control system illustrates a control decision

mechanism to modify the consequences of certain systemic

causes. The objective is to replace a skilled human operator with

a fuzzy rule-based system. An online decision for adapting the

system behavior to ensure optimality in some cases is determined

by the current state of a network-based inference engine

comprising a fuzzy rule base [25].

There are a series of steps for designing the fuzzy control step.

The first is defining the input and the control variables. It is

necessary to quantify each variable. For every variable quantified,

it is assigned to a membership function. This necessitates creating

a fuzzy rule basis that establishes which control action ought to

occur under various input circumstances. The rules are written in

the if-then form. For evaluating the individual if-then rules in the

rule base, an implication formula is used. For aggregating the rule

outcomes so that a fuzzy output set is obtained, a composition rule

is employed. Mamdani minimum inference method has been used

in the suggested fuzzy system as a fuzzy inference technique.

The input of the fuzzy is security and energy. The security

considers the trust computation model. Direct trust [26]:

Let ϕi,j(t) represent the total number of historical trust

feedbacks of Cloud Service Users (CSU) CSUi for CSPj through

window t, t=1,2,…W, where , ,

1

()
W

i j i j

t

t
=

= . Let a trust feedback

rating be represented as
,i jf ,

,0 1i jf in which 0 and 1 means

untrustworthy and trustworthy respectively. Let fi,j specify the

average trust feedback ratings of CSUi for CSPj during window t.

()

, ()

,
,

()

,

0.5
, if [0.5,1]

{ } 0.5

0, if [0,0.5)

t

i j t
t i j
i j

t

i j

f
f

sm T

f

−

−

−

 −

=

()

, ()

,
,

()

,

0.5
, if [0,0.5]

{ } 0.5

0, if (0.5,1]

t

i j t
t i j
i j

t

i j

f
f

sm T

f

−

−

−

 −

− =

 , , ,{ } 1 { } { }t t t

i j i j i jsm U sm T sm T= − − − (7)

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02

3919

Assume that if
()

,

t

i jf −
is 0.5 then the assessment has the highest

ambiguity equal to 1; if
()

, 0t

i jf − or
()

, 0.5t

i jf − , then the

estimation consists of trust and uncertainty. It alters the
()

,

t

i jf −

values to the possibilities that the subjective trust evidence of

CSUi for CSPj in time window t is trustworthy
, { ,t

i jm T

untrustworthy
, { }t

i jm T− , and indeterminate
, { }t

i jm U , as in Eq.(7):

The local subjective trust value of CSUi for CSPj in time

window t is represented as in Eq.(8):

, , , ,({ }, { }, { })T t t t

i j i j i j i jLST lsm T lsm T lsm U= − (8)

where,
, , ,{ }, { }, { }t t t

i j i j i jlsm T lsm T lsm U− represents the possibility

of the local subjective trustworthiness, untrustworthiness, and

local subjective uncertainty, respectively, are measured as in

Eq.(9):

,1

, ,

,1

, , ,

1 1

, , ,

0.5
{ } () (1)

0.5

0.5
{ } () (1)

0.5

{ } 1 () ()

t

i jt t

i j i j

t

i jt t t

i j i j i j

t t t

i j i j i j

f
lsm T sm T

f
LST lsm T sm T

lsm U sm T sm T

−

−

− −

 −
= + −

 −

= − = − + −

= − − −

 (9)

where 0≤ ≤1 is a weight factor.

For t=0, it is set
0

, (0.5,0,1)i jLST = .

Indirect trust is the belief that one entity holds on another

entity in a particular context depending on the references obtained

from its peer entities’ experience with that entity. The indirect

trust of platform A about platform B is measured by merging

satisfaction and certification opinion of the recommenders on the

platform belongings.
ind

,(,)i jB c pA O or
ind

,()kB pOA or
ind

,(,)iB c pA O is the

complete recommended opinions concerning various types of

properties of platform A on B. The complete opinion is measured

from the individual opinions of A’s recommenders using a

consensus ⊕ operator. The recommender opinions based on the

service platform B are discounted (using a discounting (⊕)

operator) based on A’s opinion (positive or negative experience)

on the recommender in Eq.(10)-Eq.(12).

1

1,(,) ,(,)

,(,)

() ...

 ... ()

i j i j

m

m i j

RA ind A

B c p R B c p

RA

R B c p

O O O

O O

− =

 (10)

1

1,() ,()

,()

() ...

 ... ()

k k

q

m k

RA ind A

B p R B p

RA

R B p

O O O

O O

− =

 (11)

1

1,(,) ,(,)

,(,)

() ...

 ... ()

l l

s

m l

RA ind A

B c p R B c p

RA

R B c p

O O O

O O

− =

 (12)

3.4 ENERGY MODEL

There are two consumptions- static energy consumption and

dynamic energy consumption in the power consumption for

application execution denoted respectively by Estatic and Edynamic

The static consumption of energy has been ignored here as the

dynamic consumption of energy is more significant [27]. The

dynamic power dissipation j

kP of VM type vmk in the voltage

level j is described in Eq.(13).

 2.() .j j j

k k k kP v f= (13)

where the constant parameter λk is associated with the dynamic

power based on VM type and capacity j

kv . This means that the

supply voltage at level j on the VM of type k and parameter j

kf is

the frequency with matching j

kv . The parameter j

kf and j

kv are in

amount of the computing capacity j

kp and hence they are in the

range min

kf , max

kf and min

kv , max

kv respectively.

The energy consumption in runtime
runtimet is measured as the

Eq.(14).

 2. .() . .j j j j

k k runtime k k k runtimeE P t v f t= = (14)

The product of power and time is referred to as energy. Here,

execution time and frequency are inversely proportional. Hence,

the power needed is proportional to the square of the voltage.

Thus, energy consumed can be effectively decreased by

decreasing the voltage. For instance, a seventy percent decrease

in voltage leads to a fifty percent decrease in power required. Due

to their inability to scale to zero, the supply voltage and frequency

stay in their lowest voltage condition for the greatest energy

savings. Hence, the energy consumption of idle time is defined by

Eq.(15):

 min 2 min.() . .idle k k k idletimeE v f t= (15)

The total energy consumption of a VM instance is represented

by the Eq.(16).

 j

total k idleE E E= + (16)

4. RESULTS AND DISCUSSION

In this section, the PCP, robustness cost time and proposed

fuzzy scheduling methods are used. Experiments are carried out

using a 0.1 to 1 energy factor. The mean of tolerance time and

mean of makespan as shown in tables 1 and 2 and figures 1 and 2.

Table.1. Mean of tolerance time

Energy

Factor
PCP

Robustness

cost time

Proposed

Fuzzy Scheduling

0.1 24 25 26

0.2 120 125 129

0.3 160 165 170

0.4 185 191 198

0.5 232 241 250

0.6 245 254 263

0.7 290 301 311

0.8 365 377 390

0.9 445 459 475

1 634 658 683

P THARANI et al.: FUZZY SCHEDULING OF SCIENTIFIC WORKFLOWS WITH ENERGY AND SECURITY CONSTRAINTS IN CLOUD

3920

Fig.1. Mean of tolerance time for proposed fuzzy scheduling

From Fig.1, it can be observed that the proposed fuzzy

scheduling has a higher mean tolerance time of 6.97% for PCP

and 3.47% for robustness cost time.

Table.2. Mean of makespan

Energy

Factor
PCP

Robustness

cost time

Proposed

Fuzzy Scheduling

0.1 332 320 296

0.2 348 336 321

0.3 362 337 311

0.4 374 345 325

0.5 376 355 344

0.6 382 363 346

0.7 398 383 359

0.8 442 420 390

0.9 448 433 399

1 490 468 452

From Fig.2, it can be observed that the proposed fuzzy

scheduling has a higher mean of makespan by 10.91% for PCP

and by 5.94% for robustness cost time.

Fig.2. Mean of makespan for proposed fuzzy scheduling

5. CONCLUSION

A set of characteristics that are ideal for cloud infrastructure

execution are provided by scientific workflows; they can scale the

resources based on the requirements of the application. In terms

of scheduling overhead time, the PCP schedulers achieve

effective outcomes. Robust scheduling algorithms should

comprise resource allocation policies for scheduling workflow

tasks on heterogeneous cloud resources while minimizing the

makespan and the cost. A new approach for scheduling algorithms

on the cloud known as the fuzzy scheduling technique has been

proposed in this work. This technique allocates resources to the

VM ID in such a way that the least completion time is taken.

Results show that the proposed fuzzy scheduling has a higher

mean of makespan by 10.91% for PCP and by 5.94% for

robustness cost time.

REFERENCES

[1] M.A. Rodriguez and R. Buyya, “Deadline-based Resource

Provisioning and Scheduling Algorithm for Scientific

Workflows on Clouds”, IEEE Transactions on Cloud

Computing, Vol. 2, No. 2, pp. 222-235, 2018.

[2] F. Fakhfakh, H.H. Kacem and A.H. Kacem, “Workflow

Scheduling in Cloud Computing: A Survey”, Enterprise

Distributed Object Computing Conference Workshops and

Demonstrations, pp. 372-378, 2018.

[3] C. Lin and S. Lu, “Scheduling Scientific Workflows

Elastically for Cloud Computing”, Proceedings of

International Conference on Cloud Computing, pp. 746-

757, 2019.

[4] P. Thakur and M. Mahajan, “Different Scheduling

Algorithm in Cloud Computing: A Survey”, International

Journal of Modern Education and Computer Science, Vol.

5, No. 2, pp. 45-58, 2017.

[5] J. Elayaraja and S. Dhanasekar, “A Survey on Workflow

Scheduling in Cloud using Ant Colony Optimization”,

International Journal of Computer Science and Mobile

Computing, Vol. 3, No. 4, pp. 39-44, 2018.

[6] M. Masdari, S. ValiKardan, Z. Shahi and S.I. Azar,

“Towards Workflow Scheduling in Cloud Computing: A

Comprehensive Analysis”, Journal of Network and

Computer Applications, Vol. 66, No. 4, pp. 64-82, 2016.

[7] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski

and R. Sakellariou, “Energy-Constrained Provisioning for

Scientific Workflow Ensembles”, Proceedings of

International Conference on Cloud and Green Computing,

pp. 34-41, 2018.

[8] X. Li, W. Hu, T. Ding and R. Ruiz, “Trust Constrained

Workflow Scheduling in Cloud Computing”, Proceedings of

International Conference on Systems, Man and Cybernetics,

pp. 164-169, 2017.

[9] M. Zhu, Q. Wu and Y. Zhao, “A Cost-Effective Scheduling

Algorithm for Scientific Workflows in Clouds”,

Proceedings of International Conference on Performance

Computing and Communications Conference, pp. 256-265,

2018.

[10] Z. Cai, X. Li and J.N. Gupta, “Critical Path-based Iterative

Heuristic for Workflow Scheduling in Utility and Cloud

Computing”, Proceedings of International Conference on

Service-Oriented Computing, pp. 207-221, 2020.

[11] E.N. Alkhanak and S.P. Lee, “A Hyper-Heuristic Cost

Optimisation Approach for Scientific Workflow Scheduling

in Cloud Computing”, Future Generation Computer

Systems, Vol. 86, No. 8, pp. 66-78, 2018.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02

3921

[12] N. Mohanapriya, G. Kousalya, P. Balakrishnan and C.

Pethuru Raj, “Energy Efficient Workflow Scheduling with

Virtual Machine Consolidation for Green Cloud

Computing”, Journal of Intelligent and Fuzzy Systems, Vol.

34, No. 3, 1561-1572, 2018.

[13] S. Pandey, L. Wu, S.M. Guru and R. Buyya, “A Particle

Swarm Optimization-based Heuristic for Scheduling

Workflow Applications in Cloud Computing

Environments”, Proceedings of International Conference on

Advanced Information Networking and Applications, pp.

400-407, 2019.

[14] S. Bilgaiyan, S. Sagnika and M. Das, “Workflow Scheduling

in Cloud Computing Environment using Cat Swarm

Optimization”, Proceedings of International Conference on

Advance Computing, pp. 680-685, 2017.

[15] S. Sagnika, S. Bilgaiyan and B.S.P. Mishra, “Workflow

Scheduling in Cloud Computing Environment using Bat

Algorithm”, Proceedings of International Conference on

Smart System, Innovations and Computing, pp. 149-163,

2020.

[16] A. Verma and S. Kaushal, “A Hybrid Multi-Objective

Particle Swarm Optimization for Scientific Workflow

Scheduling”, Journal of Parallel Computing, Vol. 62, No. 6,

pp. 1-19, 2017.

[17] L. Liu, M. Zhang, R. Buyya and Q. Fan, “Deadline‐

Constrained Coevolutionary Genetic Algorithm for

Scientific Workflow Scheduling in Cloud Computing”,

Concurrency and Computation Practice and Experience,

Vol. 8, No.4, pp. 1-12, 2018.

[18] F. Guo, L. Yu, S. Tian and J. Yu, “A Workflow Task

Scheduling Algorithm based on the Resources’ Fuzzy

Clustering in Cloud Computing Environment”,

International Journal of Communication Systems, Vol. 28,

No. 6, pp. 1053-1067, 2023.

[19] W. Li, J. Wu, Q. Zhang, K. Hu and J. Li, “Trust-Driven and

QoS Demand Clustering Analysis based Cloud Workflow

Scheduling Strategies”, Journal of Cluster Computing, Vol.

17, No. 7, pp. 1013-1030, 2023.

[20] S. Abrishami, M. Naghibzadeh and D.H. Epema, “Cost-

Driven Scheduling of Grid Workflows using Partial Critical

Paths”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 14, No. 5, pp. 1400-1414, 2022.

[21] D. Poola, S.K. Garg, R. Buyya, Y. Yang and K.

Ramamohanarao, “Robust Scheduling of Scientific

Workflows with Deadline and Budget Constraints in

Clouds”, Proceedings of International Conference on

Advanced Information Networking and Applications, pp.

858-865, 2017.

[22] Z. Shi, E. Jeannot and J.J. Dongarra, “Robust Task

Scheduling in Non-Deterministic Heterogeneous

Computing Systems”, Proceedings of International

Conference on Cluster Computing, pp. 1-10, 2018.

[23] M.R.A. Kulkarni, S.H. Patil and N. Balaji, “Fuzzy Real

Time Scheduling on Distributed Systems to Meet the

Deadline of Applications”, International Journal of New

Technology and Research, Vol. 2, No. 4, pp. 56-58, 2016.

[24] S.S. Devi and G. Muthulakshmi, “An Enhanced

Optimization Technique for Scheduling in Cloud based

Applications”, International Journal of Scientific Research

in Computer Science Engineering and Information

Technology, Vol. 3, No. 3, pp. 918-925, 2018.

[25] A. Mehranzadeh and S.M. Hashemi, “A Novel-Scheduling

Algorithm for Cloud Computing based on Fuzzy Logic”,

International Journal of Applied Information Systems, Vol.

5, No. 7, pp. 58-68, 2018.

[26] W. Fan and H. Perros, “A Novel Trust Management

Framework for Multi-Cloud Environments based on Trust

Service Providers”, Knowledge-based Systems, Vol. 70,

No.10, pp. 392-406, 2014.

[27] Z. Li, J. Ge, H. Hu, W. Song, H. Hu and B. Luo, “Cost and

Energy Aware Scheduling Algorithm for Scientific

Workflows with Deadline Constraint in Clouds”, IEEE

Transactions on Services Computing, Vol. 10, No. 4, pp.

113-120, 2021.

