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Abstract 

Cloud infrastructure is a pay-per-use, easily scalable, and accessible 

model. Based on the requirements of the workflow application, 

provisioning of resources can be dynamically done as the cloud is 

elastic in nature. The objective of this work is to execute scientific 

workflows within user deadlines having minimal expense and the total 

execution time. Appropriate provisioning and scheduling of all the 

tasks can effectively decrease the execution time in scientific 

workflows. This work suggests fuzzy scheduling for improvising the 

efficacy of energy as well as security. A major role in cloud computing 

is made by fuzzy logic theory. This work describes an approach for 

addressing the energy as well as security constraints in the cloud using 

the fuzzy controller. By referring to the fuzzy inference knowledge base, 

the duration, energy consumption and trust metrics can be inferred 

using fuzzy logic, based on the user task types. The system realizes the 

dynamic scheduling of the resources as per the specific needs. This 

achieves the purpose of improving the execution ratio and the 

utilization of resources. It has been demonstrated through the 

outcomes that the suggested scheduling algorithm can be efficiently 

deployed on the cloud. 
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1. INTRODUCTION 

Cloud computing is the instance of a distributed environment, 

which has developed over time from shared community platforms 

to utility-based models. The delivery of IT resources over the 

internet [1] has been possible because of this technology; here, 

based on the consumption, the users are charged and hence this is 

a pay-as-you-go model. There are different types of cloud 

providers based on various types of product offerings. They 

divide into three categories of as-a-service terms: Infrastructure 

as a Service (IaaS), Platform as a Service (PaaS), and Software as 

a Service (SaaS). 

A procedure that comprises a series of steps that are used for 

simplifying the execution complexity and the application 

management is referred to as workflow. There is a common model 

that is comprised of workflow technology that is used to describe 

a range of scientific applications in distributed systems. In many 

fields of science such as computer science, chemistry, and 

physics, there is an important role of workflow technology. The 

requirement for constructing upon the legacy codes that are very 

expensive to re-write gives rise to the interest in workflow.  The 

Directed Acyclic Graph (DAG) compute tasks are represented by 

the nodes; the precedence and the flow constraints between the 

tasks are represented by the edges. For accessing, managing and 

processing large amounts of data from a higher level, scientific 

workflows make use of distributed resources. A distributed 

collection of storage and computation facilities is required to 

process and manage such huge amounts of data. These resources 

are not only shared amongst many users but are also frequently 

limited [2]. 

Scientific workflows are computational as well as data-

intensive; this is due to the complexity of scientific processes. 

These workflows are to be executed in distributed as well as high-

end computing environments like the cloud computing 

environments that have emerged of late. Many features of 

workflows that are different from other computing environments 

are provided by the cloud computing environment. (1) 

Computational cloud resources have been exposed as services 

providing standardized interfaces for accessing services over the 

network. (2). The quantity and type of computing resources 

allocated to a workflow are determined by service demands. (3) 

Due to the ability to dynamically alter the number of resources 

assigned to a process at runtime, workflow computing resources 

can be elastically scaled on demand. (4) Resources be allocated 

when required and not all of them need to assigned at the 

beginning of the workflow [3]. 

One of the most important activities that is executed in the 

cloud computing environment is scheduling. Scheduling is a task 

that maximizes the profit for increasing the efficiency of the 

workload in cloud computing. Using the resources appropriately 

considering the load distributed among the resources to minimize 

the execution time is the basic objective of planning calculations 

in the cloud environment. There are three classifications of the 

process of scheduling: Resource Discovering and filtering- Here, 

status information of the available resources is gathered following 

the data center broker’s presentation of the data regarding the 

resources’ current accessibility. Resource Selection: Based on the 

task and the resource parameter, in this stage, resource selection 

is done. This is the stage of selection. Task Submission: Here, the 

tasks are allocated to the resources [4]. 

Cloud computing has evolved from the principles of grid 

computing, service-oriented computing, and virtualization. Thus, 

whatever scheduling algorithms have been developed for these 

system types, the same ones can also be used for clouds.  The main 

traits of the scheduling algorithms are their distinguishable 

characteristics: Target System: These are the systems developed 

for the scheduling algorithms; these can be a cloud computing 

system, grid system or heterogeneous system. Optimization 

criterion: The metrics that are considered for decision making by 

the schedulers are makespan and the cost and these are specified 

by the cloud user. The computer system consists of multiple cores 

based on scheduling algorithms in resource selection [5]. 

On-demand resources: Depending on demand, resources 

might be planned or leased for an extended period.  During the 

execution of the workflow, the scheduling algorithm treats the on-

demand leasing of resources as a “single expense”. Reserved 

Resources: The use of these resources is considered by the 

algorithm for a long period. Levels in a Service Level Agreement 

(SLA): The SLAs can be hierarchically organized by the 
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scheduling algorithms. Clients and providers are allowed to 

directly interact and negotiate the prices and the capacities of the 

resources by the SLAs with a single level. Heuristics information:  

It guides the direction of search and is some problem-based value. 

Heuristics are designed based on the workflow problem. 

Multicore, bandwidth, makespan and cost are the main heuristics. 

These are some of the common aims for the scheduling 

schemes of the workflows: Budget:  It defines the expenses 

incurred by the consumers for using the cloud resources. 

Deadline: The limit of time for executing the workflow and also 

its support is an important Quality of Service (QoS) requirement. 

Reliability: Scheduling techniques such as active replications and 

backup/restart schemes that correspond to resource and time 

redundancy may be used to increase the task’s likelihood of 

completion. Availability: tasks are not only executed faster but the 

executions are also terminated quickly due to the proper 

scheduling of workflows. The availability of cloud resources is 

improvised by this [6]. Minimizing the makespan: The time at 

which the final workflow task execution is completed is referred 

to as makespan. Supporting SLA: A document that contains 

various considerations from the service providers and the 

consumers is referred to as the SLA that comprises the discussions 

regarding the delivery performance assurance of the QoS. 

Security: Some of the features of the cloud may be misused by the 

attackers and the components are also misused for launching 

cloud-specific attacks. Load Balancing: To avoid the overloading 

of any of the cloud resources, a scheduler has to optimize the 

usage of resources. 

The user should have some knowledge of the energy that is 

needed for executing their application in the model of energy-

constrained provisioning. This should be based on the provider’s 

information and a workflow ensemble for execution that specifies 

the energy constraints has been submitted.  For the total 

consumption of energy to stay within an energy budget limit, 

provisioning is made. Particularly, for executing as many 

workflows as possible for the given energy constraints, a 

scheduling plan for the ensemble is developed. When the overall 

energy usage is less than the energy, the group’s workflow is 

approved and added. Different amounts of energy to be spent for 

the execution of workflows are required by different execution 

schemes. Static and dynamic energy are the two schemes for the 

consumption of energy. The former refers to the energy that is 

consumed by the system resources when idle and the latter refers 

to the energy consumed when the applications are running and 

this can be adapted by the workflow depending on the resources 

that are required by the tasks [7]. 

Because of the unreliability of the distributed systems and the 

intrinsic uncertainty, security is an important issue in cloud 

computing. For instance, in Google, the event of file leakage is 

not allowed; also, interrupting Amazon’s simple storage service 

S3 leads to the paralysis of the service. It is a subjective statement 

of the trustor regarding the security, honesty, reality, and 

dependability of a service held by the trustee and affects security 

in a large, dispersed internet environment. The user’s decision 

about the authenticity, integrity, reliability and stability of 

services delivered by Cloud Service Providers (CSPs) is 

replicated by trust. Identifying if the cloud service can live up to 

its identity is referred to as authenticity. Verifying whether the 

cloud services behave as claimed is referred to as integrity. The 

ability of the cloud services to ensure data and application security 

is referred to as reliability. The stability of cloud services is 

referred to as stability and the likelihood of the effective execution 

of user’s tasks is referred to as stability. Fraudulent services exist 

in real cloud environments as the resources and the service types 

are generally uncertain and they change dynamically. This makes 

it adverse for the users to claim appropriate services. Hence, it is 

of paramount importance to evaluate the trust of the cloud 

services and to select high-quality cloud services for the users [8]. 

This work proposes PCP, robustness and fuzzy logic for 

cloud-based scheduling. The remainder of the work is structured 

as follows: In the second part, the relevant literary works are 

examined. The various techniques used in the work are discussed 

in the third section. The fourth portion discusses the empirical 

findings, while the fifth section provides the work’s conclusion. 

2. RELATED WORKS 

For maximizing resource utilization, a delay-constrained 

optimization problem has been formulated by Zhu et al. [9]. Also, 

to minimize the cloud overhead within the execution time bound 

that is user-specified, it has suggested a two-step workflow 

scheduling algorithm. It has been shown via the extensive 

simulation outcomes that lower computing overhead are achieved 

using this approach consistently; also within the execution time 

limits, higher resource utilization has been achieved. The total 

execution time has been decreased using the approach; this is 

done by strategically selecting the appropriate mapping nodes for 

the modules that are prioritized. 

The issue of workflow scheduling in cloud computing and 

utilities has been taken into consideration by Cai et al. [10]. This 

takes care of the assignment of tasks so that while the precedence 

constraints are met along with meeting the workflow deadlines, 

the total rental cost of the resources is also minimized. For solving 

small problem instances, A Mixed Integer programming (MILP) 

model is developed. Since this is a problem of non-deterministic 

polynomial (NP) hardness, a Critical Path-based Iterative (CPI) 

heuristic is created. This heuristic can find accurate solutions for 

huge problem instances wherein there is an iterative construction 

of several complete critical paths; dynamic programming is used 

to do this, with the longest and least expensive services for 

unscheduled activities and service assignments for scheduled 

ones. After relaxing every critical path to a Multi-stage Decision 

Process (MDP) problem, a dynamic programming-based Pareto 

method is suggested for optimization. It has been shown via 

empirical outcomes that the existing state-of-the-art algorithms 

are outperformed by the suggested CPI heuristic on many of the 

problem instances. 

Completion Time Driven Hyper-Heuristic (CTDHH) is a 

proposed method for cost optimization of Scientific Workflow 

Scheduling (SWFS) in a cloud setting by Alkhanak and Lee [11]. 

Four of the popular population-based meta-heuristic algorithms 

have been employed by the CTDHH approach and these act as 

Level Heuristic (LLH) algorithms. Furthermore, after each run, 

the CTDHH approach dynamically chooses an appropriate 

algorithm from the LLH algorithm pool by including the optimal 

workflow completion time and functioning as a high-level 

selector; this is how it enhances the native random selection 

technique. The suggested CTDHH approach has been evaluated 
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using practical cloud-based experimentation; there are five 

baseline approaches with which it has been compared- of these, 

four are population-based approaches and one is an existing 

hyper-heuristic approach named Hyper-Heuristic Scheduling 

Algorithm (HHSA). For evaluating the computational and data 

intensities, many different scenarios have been taken into 

consideration. The suggested approach has generated good results 

across experimental scenarios and hence proved its efficacy. 

The cloud centers are comprised of Virtual Machines (VMs) 

as well as Physical Machines (PMs). Huge amounts of energy are 

consumed by the data centers as a result of improper utilization of 

resources as well as the non-existence of effective scheduling 

algorithms for performing task resource mapping. Carbon 

emissions, high maintenance costs and heavy consumption of 

energy are some of the effects of this issue. For addressing these 

issues and the challenges that are associated, Mohanapriya et al. 

[12] proposed a Power Efficient Scheduling and VM 

Consolidation (PESVMC) algorithm. The various works in 

literature that have been carried out pay attention to the techniques 

of energy management to hardware level support for decreasing 

the consumption of energy. The flexibility of the virtualization 

technology has been taken into consideration and the suggested 

algorithm has emphasized the software level; there are two 

phases: the VM scheduling phase, and the VM consolidation 

phase. WorkflowSim is used for performing the experimental 

evaluation and not only is better resource utilization achieved, but 

also the suggested algorithm achieves significant consumption of 

energy. 

A Particle Swarm Optimization (PSO) based heuristic has 

been presented by Pandey et al. [13]. It can take into consideration 

the costs of data transmission as well as computation and can thus 

schedule applications to cloud resources. Experiments have been 

conducted using workflow models and by changing the costs of 

communication as well as computation. When employing the PSO 

and the current "Best Resource Selection" (BRS) method, the cost 

of savings has been calculated. It has been shown via the 

outcomes that PSO can attain upto thrice the savings in cost 

compared to BRS and that there is an effective workload 

distribution among the resources. 

A heuristic scheduling approach based on Cat Swarm 

Optimization (CSO) has been proposed for allocating an 

application’s tasks to the available resources suggested by 

Bilgaiyan et al. [14]. The execution cost of the task on different 

resources as well as the data transmission cost between two 

dependent resources are considered in the CSO heuristic 

algorithm. By using a hypothetical workflow, the authors have 

experimented with the suggested CSO algorithm; they have 

compared the outcomes of the workflow scheduling with the 

existing PSO algorithm. It has been shown by the experimental 

outcomes that (1) The CSO provides an ideal Task-to-Resource 

(TOR) scheduling plan that reduces the overall cost. (2) The task 

improvises in terms of the number of iterations using the CSO 

over the existing PSO. There is an optimal workload distribution 

amongst various resources using CSO. 

As there are more and more applications that involve data of 

huge sizes, the current computing systems require greater data 

handling and processing capabilities. This is why cloud services 

are expensive. There is a requirement for effective scheduling so 

that the tasks are allocated resources to optimize the overall cost. 

A Bat Algorithm (BA) application for scheduling workflow or 

data-intensive applications in a cloud computing environment 

was presented by Sagnika et al. [15]. After executing the 

algorithm, the outcomes have been compared with two popular 

algorithms-PSO and CSO. The suggested BA algorithm has 

proven to present a fair distribution of load alongside the optimal 

cost of processing with better convergence. 

Verma and Kaushal [16] accessed a non-dominance sort-

based Hybrid Particle Swarm Optimization (HPSO) algorithm. 

These suggested approaches link the multi-objective PSO with the 

previously suggested Budget and deadline-constrained 

Heterogeneous Earliest Finish Time (BDHEFT) algorithm. 

Makespan and cost are the two conflicting heuristics that the 

HPSO tries to optimize using the deadline and the budget 

constraints. The energy that is consumed when the workflow 

schedule is created is also minimized along with these two 

conflicting objectives. A set of Pareto optimal solutions has been 

generated by the suggested algorithm and this is where the best 

solution can be chosen from. 

To strictly restrict other Genetic Algorithms (GA), an adaptive 

penalty function was proposed by Liu et al. [17]. Also, for 

adjusting the probability of crossover and mutation, the co-

evolution approach was used and this was able to enhance the 

speed of convergence and also pre-empt prematurity. The 

algorithm has also been compared with standards like random, 

PSO, Heterogeneous Earliest Finish Time (HEFT), and GA in a 

WorkflowSim simulator on four representative scientific 

workflows. The results demonstrate that the proposed method 

outperformed the other well-known ones in terms of meeting time 

requirements and lowering the overall cost of execution. 

Guo et al. [18] presented a Workflow Task Scheduling 

algorithm based on the Resources’ Fuzzy Clustering (FCBWTS). 

The primary goal of scheduling is to minimize the makespan of 

the precedence-constrained applications represented by the 

directed acyclic graph. The resource features of cloud computing 

are taken into account in FCBWTS, a collection of attributes. 

These traits which have been used for delineating the artificial 

performance of the resource processing units have been described 

in this work. The fuzzy clustering approach pre-treats the 

processing unit network with these characteristics, and the ready 

task’s execution duration affects the critical path. This will help 

realize the reasonable partition of the processor network. This 

expense of deciding which of the processors can execute the 

current task is decreased. 

A new adaptable cloud workflow scheduling model has been 

suggested by Li et al. [19]. There are two stages into which the 

workflow scheduling of the new model has been divided so that 

the user requirements are better analyzed and customizable 

services are provided macro multi-workflow scheduling as the 

unit of cloud user and the micro single workflow scheduling. The 

trust approach is integrated into workflow scheduling. Workflows 

are classified as time-sensitive and cost-sensitive in a single 

workflow scheduling level. As per QoS demand parameters of 

different workflows using the fuzzy clustering method, these are 

balanced. It has been shown via simulation outcomes that there 

are some benefits of the new scheme in decreasing the completion 

time of the workflow; high user satisfaction and higher success 

rates are also achieved using this scheme. 
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3. METHODOLOGY 

Effective resource utilization while managing the load 

between the resources to decrease the execution time and increase 

the efficacy of workload is the main objective of cloud computing. 

This section discusses the PCP, robustness and proposed fuzzy 

scheduling. 

3.1 PARTIAL CRITICAL PATH 

In workflow scheduling, critical path heuristics have been 

used widely. The critical route of a workflow is the longest 

execution path between the workload’s entry and exit tasks. 

Mostly, those tasks that belong to the critical paths are first 

scheduled by these heuristics that allocate resources to them so 

that they are processed first. This helps in minimizing the 

execution time of the entire workflow. Based on a similar 

heuristic, the proposed algorithm would first schedule the critical 

nodes while minimizing the cost of carrying out the critical path 

while satisfying user deadlines and maintaining execution time. 

Every critical node after being scheduled has a start time or 

deadline for its direct predecessors in the workflow known as 

parent nodes. Thus, by considering every critical node as an exit 

node with its start time as the deadline, it can carry out the same 

procedure; this leads to the creation of PCP that ends the critical 

node leading to a node already scheduled. This task recursively 

goes on in the PCP algorithm until all of the tasks are successfully 

scheduled [20]. 

The Critical Parent (CP) tj is the parent tp, whose sum of start 

time, data transfer time and execution time is maximum among 

other parent nodes. The PCP of the node tj is a collection of tasks 

for which there is a high degree of dependence. By detecting the 

unallocated parents, PCP is found. Unallocated parents are nodes 

not allocated to any PCP. Furthermore, by finding the unallocated 

critical parent of the node, PCP is created and this is recursively 

done until there are no more unallocated parents. This procedure 

optimizes time and cost by identifying the PCP-PCPs that can be 

scheduled on a single resource. Workflows are divided by this 

algorithm into smaller groups of tasks that help to schedule. The 

PCPs of the workflows are mutually exclusive meaning, only one 

PCP is allocated to one task [21]. 

The VM having the most robustness type is selected for every 

PCP. The quantity of clack that will be added to the PCP 

execution time is the robustness type. The extent of execution 

time variation tolerated by a PCP is dictated by it. There are four 

robustness types in PCP-1) No robustness: this will refrain from 

adding any slack time to the PCP’s execution time. 2) Slack: This 

adds a predetermined amount of time to the PCP execution time 

and allows for execution time variances up to a particular point. 

3) One node failure:  This adds the largest execution time of the 

PCP nodes to the execution time of the PCP and it gives enough 

slack time for handling the failure of the task having the largest 

execution time in PCP. 4) Two Node Failure: in this case, the PCP 

execution time is increased by the execution times of the two 

largest nodes; Only when there are three nodes comprised in a 

PCP this is done. Up to two disk failures can be tolerated by PCP 

with this robustness type. Upto two node failures are tolerated by 

four robustness types; it is also possible to develop robustness 

types with a higher amount of node failures. 

3.1.1 PCP Algorithm: 

Allocate Resources (PCP) 

//Allocate a suitable robust resource to the PCP 

Input : PCP 

Output : Robust Resource for PCP 

//Create Solution Set SS; 

for Every Instance type do 

for Every Robustness type do 

Create Solution set with PCPt and PCPc 

FS = null; 

Calculate PCPb according to equation 6; 

//Create a Feasible Solution Set FS; 

for Every solution in SS do 

time = PCPt + TopLevel + BottomLevel; 

if  time <=D and PCPc <= PCPb then 

Add to FS 

//finds the next solution according to the chosen policy 

RobustResource = findBestSolution(FS, Policy); 

Assign every task in PCP to the RobustResource 

The above resource allocation algorithm explains the process 

of VM selection which attains a robust result. The complete 

solution set SS = {s1,s2,…,sm*l } is produced in which m and l are 

the number of VM types and robustness types respectively. This 

solution set SS includes all robustness types for every VM type 

defined. Each solution, si={vti,RTi,PCPci,PCPti} includes a 

robustness type (RTi) PCP cost (PCPci) and PCP execution time 

(PCPti) for VM type vti. As m and l are generally not large, the 

time and space required are reasonable. 

The solution set SS is lowered depending on the deadline and 

budget restrictions into a smaller set of possible solutions. The 

deadline constraint D is measured by merging the selected PCP 

execution time instance and robustness type with the top and 

bottom levels as shown in Eq.(1). 

 TopLevel+PCPt+BottomLevel≤D (1) 

Here, the sum of execution times of nodes on the longest path 

from the entry to the first node and from the end node of PCP to 

the exit node is the top level and bottom level of PCP. Budget 

Constraint is evaluated by the following Eq.(2): 

 PCPc≤PCPb  (2) 

where PCPc represents the total cost of the PCP. PCP Budget, 

PCPb, means the amount spent on the PCP. This can be 

decomposed from the overall budget based on Eq.(3): 

 PCPb=(PCPt|TT)*B  (3) 

where TT represents the workflow’s total time is measured by 

adding the execution times of the tasks on the reference VM type, 

vtref. VM with the minimum MIPS value is taken as the reference 

type, vtref. PCPt which means that the total execution time of the 

PCP is on vtref. When PCPb is less than LPr, which is the price is 

essential to perform on the cheapest resource, then PCPb is 

assigned the value LPr. 

Using these two constraints as given in the allocate resource 

algorithm, a feasible solution set FS is generated. The appropriate 

VM type vti for a PCP is chosen using the findBestSolution, 
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method described in Algorithm 2, based on the resource selection 

policy from the feasible solution set FS. 

3.2 ROBUSTNESS SCHEDULING 

A schedule that is not affected by the workflow processing 

time disturbances is referred to as a robust schedule. The measure 

of the degree of “insensitiveness” is given by the robustness of the 

schedule. This is also defined as a linear mixture of assumed 

makespan and delay as per one of the first attempts in formalizing 

the definition of schedule robustness. Nonetheless, it limits the 

applicability as the definition combines the idea of robustness 

with optimization criteria of makespan minimization. Although 

the empirical formula for measuring robustness has been designed 

by the authors as an objective function to be optimized, there is 

no way to evaluate the schedule’s robustness. It assumed that the 

schedule’s robustness must show the stability of the actual 

makespan concerning the expected one. Both the expected 

makespan and the robustness must be considered by the overall 

performance of a schedule. In this regard, two definitions are 

proposed [22]: 

1. Definition 1: Let M0(s) denote the expected makespan of 

schedule s obtained with expected workflow execution 

time and Mi(s) the real makespan with ith realization of 

expected workflow execution times. The relative schedule 

tardiness is: 

 0

0

max(0, ( ) ( ))
( )

( )
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M s M s
s

M s


−
=  (4) 

The first definition of the robustness of schedules is Eq.(5): 
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where E(·) represents the expectation operator. 

2. Definition 2: M0(s) and Mi(s) are defined as above. N 

realizations of the expected workflow execution times are 

performed. Let M={Mi(s)|Mi(s)>M0(s)}. The schedule 

miss rate is α(s)=(|M|)/N. Then, the second definition of the 

robustness of schedules is Eq.(6): 
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1
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3.3 PROPOSED FUZZY SCHEDULING 

The performance of the majority of useful scheduling methods 

in heterogeneous systems is compared to their computational 

complexity. There should be appropriate and timed execution of 

tasks in real time.  Identifying minimal scheduling time in real-

time constrained multiprocessor systems is an NP-hard problem. 

There is no deterministic response time in real-time scheduling 

algorithms. For the analysis of the robustness of a system, 

determining the timing behavior is crucial. The complexities of 

the scheduling problems are increased due to the inherent 

uncertainties in dynamic real-time systems. For arranging real-

time periodic and non-periodic tasks in the systems, a fuzzy 

scheduling approach has been employed to alleviate these issues. 

When non-critical overload condition occurs, static and dynamic 

optimal scheduling algorithms fail. To improve the performance 

of heterogeneous systems, knowledge-based algorithms can be 

devised [23].  

Fuzzy logic is employed by the suggested fuzzy controller. 

This was introduced in 1965 by Zadeh. There is no strict 

allocation of elements to sets like binary in fuzzy logic. In its 

place, each element has a degree of membership to a set which is 

denoted between 0 and 1. A fuzzy system needs to be constructed 

for applying the fuzzy logic to specific issues like scheduling 

between cloudlets or VMs.  There are three steps for the 

construction of a fuzzy system- Fuzzification: here the fuzzy sets 

are assigned with the degree of membership of input value. The 

degree of membership is given by μ: X→ [0, 1], where X is the 

set of input values. As a result, every input value is converted to 

a value between 0 and 1. Inference engine: According to the rule 

sets, this system maps input regions to output regions using rules. 

De-Fuzzification: a numerical output value is generated from the 

output set [24]. 

Fuzzy set theory is responsible for representing uncertainties 

is, it admits circumstances either moderately true or false. Fuzzy 

logic is effective for treating random uncertainty where it is not 

possible to predict a sequence of events. A collection of fuzzy 

rules in the fuzzy control system illustrates a control decision 

mechanism to modify the consequences of certain systemic 

causes. The objective is to replace a skilled human operator with 

a fuzzy rule-based system. An online decision for adapting the 

system behavior to ensure optimality in some cases is determined 

by the current state of a network-based inference engine 

comprising a fuzzy rule base [25]. 

There are a series of steps for designing the fuzzy control step. 

The first is defining the input and the control variables. It is 

necessary to quantify each variable. For every variable quantified, 

it is assigned to a membership function. This necessitates creating 

a fuzzy rule basis that establishes which control action ought to 

occur under various input circumstances. The rules are written in 

the if-then form. For evaluating the individual if-then rules in the 

rule base, an implication formula is used. For aggregating the rule 

outcomes so that a fuzzy output set is obtained, a composition rule 

is employed. Mamdani minimum inference method has been used 

in the suggested fuzzy system as a fuzzy inference technique. 

The input of the fuzzy is security and energy. The security 

considers the trust computation model. Direct trust [26]:  

Let ϕi,j(t) represent the total number of historical trust 

feedbacks of Cloud Service Users (CSU) CSUi for CSPj through 

window t, t=1,2,…W, where , ,

1
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W
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t
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= . Let a trust feedback 

rating be represented as 
,i jf , 

,0 1i jf   in which 0 and 1 means 

untrustworthy and trustworthy respectively. Let fi,j specify the 

average trust feedback ratings of CSUi for CSPj during window t.  
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 , , ,{ } 1 { } { }t t t

i j i j i jsm U sm T sm T= − − −  (7) 
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Assume that if 
( )

,

t

i jf −
is 0.5 then the assessment has the highest 

ambiguity equal to 1;  if 
( )

, 0t

i jf −  or 
( )

, 0.5t

i jf −  , then the 

estimation consists of trust and uncertainty. It alters the
( )

,

t

i jf −

values to the possibilities that the subjective trust evidence of 

CSUi for CSPj in time window t is trustworthy 
, { ,t

i jm T  

untrustworthy 
, { }t

i jm T− , and indeterminate 
, { }t

i jm U , as in Eq.(7): 

The local subjective trust value of CSUi for CSPj in time 

window t is represented as in Eq.(8): 

 
, , , ,( { }, { }, { })T t t t

i j i j i j i jLST lsm T lsm T lsm U= −  (8) 

where, 
, , ,{ }, { }, { }t t t

i j i j i jlsm T lsm T lsm U− represents the possibility 

of the local subjective trustworthiness, untrustworthiness, and 

local subjective uncertainty, respectively, are measured as in 

Eq.(9): 

 

,1

, ,

,1

, , ,

1 1

, , ,

0.5
{ } ( ) (1 )

0.5

0.5
{ } ( ) (1 )

0.5

{ } 1 ( ) ( )

t

i jt t

i j i j

t

i jt t t

i j i j i j

t t t

i j i j i j

f
lsm T sm T

f
LST lsm T sm T

lsm U sm T sm T

 

 

−

−

− −

 −
=  + − 


 −

= − =  − + − 




= − − −

 (9) 

where 0≤  ≤1 is a weight factor.  

For t=0, it is set
0

, (0.5,0,1)i jLST = . 

Indirect trust is the belief that one entity holds on another 

entity in a particular context depending on the references obtained 

from its peer entities’ experience with that entity. The indirect 

trust of platform A about platform B is measured by merging 

satisfaction and certification opinion of the recommenders on the 

platform belongings. 
ind

,( , )i jB c pA O or
ind

,( )kB pOA or
ind

,( , )iB c pA O is the 

complete recommended opinions concerning various types of 

properties of platform A on B. The complete opinion is measured 

from the individual opinions of A’s recommenders using a 

consensus ⊕ operator. The recommender opinions based on the 

service platform B are discounted (using a discounting (⊕) 

operator) based on A’s opinion (positive or negative experience) 

on the recommender in Eq.(10)-Eq.(12). 

 

1

1,( , ) ,( , )

,( , )

( ) ...

                       ... ( )

i j i j

m

m i j

RA ind A

B c p R B c p

RA

R B c p

O O O

O O

− =  

 
 (10) 

 

1

1,( ) ,( )

,( )

( ) ...

                       ... ( )

k k

q

m k

RA ind A

B p R B p

RA

R B p

O O O

O O

− =  

 
 (11) 

 

1

1,( , ) ,( , )

,( , )

( ) ...

                       ... ( )

l l

s

m l

RA ind A

B c p R B c p

RA

R B c p

O O O

O O

− =  

 
 (12) 

3.4 ENERGY MODEL 

There are two consumptions- static energy consumption and 

dynamic energy consumption in the power consumption for 

application execution denoted respectively by Estatic and Edynamic 

The static consumption of energy has been ignored here as the 

dynamic consumption of energy is more significant [27]. The 

dynamic power dissipation j

kP of VM type vmk in the voltage 

level j is described in Eq.(13). 

 2.( ) .j j j

k k k kP v f=  (13) 

where the constant parameter λk is associated with the dynamic 

power based on VM type and capacity j

kv . This means that the 

supply voltage at level j on the VM of type k and parameter j

kf is 

the frequency with matching j

kv . The parameter j

kf and j

kv are in 

amount of the computing capacity j

kp and hence they are in the 

range min

kf , max

kf and min

kv , max

kv respectively. 

The energy consumption in runtime
runtimet is measured as the 

Eq.(14). 

 2. .( ) . .j j j j

k k runtime k k k runtimeE P t v f t= =  (14) 

The product of power and time is referred to as energy. Here, 

execution time and frequency are inversely proportional. Hence, 

the power needed is proportional to the square of the voltage. 

Thus, energy consumed can be effectively decreased by 

decreasing the voltage. For instance, a seventy percent decrease 

in voltage leads to a fifty percent decrease in power required. Due 

to their inability to scale to zero, the supply voltage and frequency 

stay in their lowest voltage condition for the greatest energy 

savings. Hence, the energy consumption of idle time is defined by 

Eq.(15): 

 min 2 min.( ) . .idle k k k idletimeE v f t=  (15) 

The total energy consumption of a VM instance is represented 

by the Eq.(16). 

 j

total k idleE E E= +  (16) 

4. RESULTS AND DISCUSSION 

In this section, the PCP, robustness cost time and proposed 

fuzzy scheduling methods are used. Experiments are carried out 

using a 0.1 to 1 energy factor. The mean of tolerance time and 

mean of makespan as shown in tables 1 and 2 and figures 1 and 2. 

Table.1. Mean of tolerance time  

Energy  

Factor 
PCP 

Robustness  

cost time 

Proposed  

Fuzzy Scheduling 

0.1 24 25 26 

0.2 120 125 129 

0.3 160 165 170 

0.4 185 191 198 

0.5 232 241 250 

0.6 245 254 263 

0.7 290 301 311 

0.8 365 377 390 

0.9 445 459 475 

1 634 658 683 
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Fig.1. Mean of tolerance time for proposed fuzzy scheduling 

From Fig.1, it can be observed that the proposed fuzzy 

scheduling has a higher mean tolerance time of 6.97% for PCP 

and 3.47% for robustness cost time. 

Table.2. Mean of makespan  

Energy  

Factor 
PCP 

Robustness 

cost time 

Proposed  

Fuzzy Scheduling 

0.1 332 320 296 

0.2 348 336 321 

0.3 362 337 311 

0.4 374 345 325 

0.5 376 355 344 

0.6 382 363 346 

0.7 398 383 359 

0.8 442 420 390 

0.9 448 433 399 

1 490 468 452 

From Fig.2, it can be observed that the proposed fuzzy 

scheduling has a higher mean of makespan by 10.91% for PCP 

and by 5.94% for robustness cost time. 

 

Fig.2. Mean of makespan for proposed fuzzy scheduling 

5. CONCLUSION 

A set of characteristics that are ideal for cloud infrastructure 

execution are provided by scientific workflows; they can scale the 

resources based on the requirements of the application. In terms 

of scheduling overhead time, the PCP schedulers achieve 

effective outcomes. Robust scheduling algorithms should 

comprise resource allocation policies for scheduling workflow 

tasks on heterogeneous cloud resources while minimizing the 

makespan and the cost. A new approach for scheduling algorithms 

on the cloud known as the fuzzy scheduling technique has been 

proposed in this work. This technique allocates resources to the 

VM ID in such a way that the least completion time is taken. 

Results show that the proposed fuzzy scheduling has a higher 

mean of makespan by 10.91% for PCP and by 5.94% for 

robustness cost time. 
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