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Abstract 

Brain haemorrhage remains a critical medical condition with high 

mortality and disability rates, necessitating timely and precise 

diagnosis. Traditional diagnostic approaches such as CT imaging often 

suffer from delays and subjectivity due to the reliance on radiologist 

interpretation. The main goal of this study is to create a deep learning-

driven system that can automatically and reliably identify and 

categorize brain haemorrhages. The research addresses key challenges 

such as diagnostic delays, inconsistencies between medical evaluations, 

and the necessity for scalable and efficient diagnostic methods. This 

work aims to bridge the existing knowledge gap in real-time, 

generalized haemorrhage detection across diverse imaging scenarios. 

This work introduces a unique hybrid deep learning framework that 

integrates EfficientNetB0 with Bidirectional LSTM and Multi-Head 

Attention components. The EfficientNetB0 component efficiently 

extracts spatial features from CT images. These features are reshaped 

into temporal sequences and processed by BiLSTM to capture 

bidirectional dependencies. Subsequently, Multi-Head Attention is 

applied to focus dynamically on significant sequence segments, with 

residual connections enhancing stability. The training process employs 

the Adam optimization algorithm along with categorical cross-entropy 

loss enhanced by label smoothing for improved performance. Training 

is further regulated through dropout, early stopping, and learning rate 

scheduling—ensuring robustness. The combination of these elements 

enhances both the originality and performance of the suggested 

framework. Experimental results demonstrate that the model attains a 

classification accuracy of 98.03% and an F1-score of 0.99, surpassing 

traditional architectures like ResNet50, MobileNet, and DenseNet. 

Confusion matrix analysis demonstrates minimal false predictions, 

underscoring high sensitivity and specificity. These findings indicate 

that the model holds strong potential for use in clinical environments, 

especially where access to radiological expertise is limited. The 

integration of convolutional, sequential, and attention-based 

mechanisms significantly enhances diagnostic performance, offering 

an intelligent, a scalable approach aimed at enhancing diagnosis and 

treatment outcomes for individuals with potential brain haemorrhages. 
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1. INTRODUCTION 

Brain haemorrhage is a severe and potentially fatal condition 

caused by bleeding within the brain due to ruptured blood vessels. 

It stands among the top causes of death and long-term disability 

across the globe [1]. Representing a considerable share of stroke-

related cases, it necessitates rapid detection and treatment to 

enhance survival and recovery outcomes. Diagnostic techniques 

like computed tomography (CT) and magnetic resonance imaging 

(MRI) are commonly employed to detect and assess haemorrhagic 

incidents in clinical settings [2]. Nonetheless, these imaging 

modalities rely heavily on the skill and availability of radiology 

professionals, which can pose significant challenges, particularly 

in emergency scenarios or areas with limited medical resources. 

With the rapid surge in medical imaging data and the growing 

complexity of clinical conditions, artificial intelligence (AI) has 

garnered significant interest for its potential to improve diagnostic 

precision [3]. Deep learning, in particular, has proven effective in 

identifying complex patterns within high-dimensional datasets. 

Its use in analyzing medical images has led to encouraging 

outcomes in fields like tumor identification, anatomical 

segmentation, and disease diagnosis [4]. Increasingly, deep 

learning is being investigated for its ability to assist in the 

automated detection of brain haemorrhages from neuroimaging 

scans, aiming to facilitate faster and more informed clinical 

decisions 

Despite these advancements, several challenges continue to 

hinder the reliable deployment of automated systems in real-

world clinical environments. Brain haemorrhages present with 

diverse appearances, locations, and severities, often complicated 

by the presence of overlapping pathologies or imaging artifacts 

[5]. Moreover, the scarcity of large, annotated datasets and the 

inherent variability in scan quality pose significant obstacles to 

the development of robust models. Misclassification or delayed 

detection can have critical implications, underscoring the need for 

solutions that are both highly accurate and interpretable [6]. 

Moreover, the evolving characteristics of brain injuries and 

the requirement to accurately differentiate between various 

haemorrhage types—such as subarachnoid, subdural, epidural, 

and intraparenchymal—necessitate advanced analytical methods 

that surpass the limitations of traditional image processing 

approaches. The heterogeneity in clinical presentations and 

patient demographics adds another layer of complexity [7]. These 

limitations call for the integration of sophisticated learning 

architectures that can generalize across diverse datasets and adapt 

to varying clinical requirements with minimal human 

intervention. 

In response to these critical challenges, this research presents 

a deep learning framework designed to automate the assessment 

of brain haemorrhages. Utilizing convolutional neural networks 

(CNNs) trained on labeled neuroimaging data, the model is 

developed to accurately identify haemorrhage types and detect 

bleeding [8]. This AI-driven approach not only improves 

diagnostic accuracy but also minimizes reliance on manual 

interpretation, making it a scalable and efficient alternative. 

Comprehensive testing and performance analysis highlight the 

framework’s strong potential to transform early-stage detection 

and classification of brain haemorrhages in clinical practice. 

2. LITERATURE SURVEY 

Payal Malik et al. [9] emphasized the importance of early and 

accurate diagnosis in the management of brain haemorrhages. 

Their study investigated the application of deep learning 

techniques for identifying haemorrhagic conditions from medical 
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imaging data. The study evaluated models based on accuracy, 

sensitivity, specificity, and computational efficiency. Results 

showed that deep learning significantly aids in diagnosing this 

life-threatening condition. EfficientNetB3 outperformed other 

models with 99.95% training and 93.29% validation accuracy. 

Despite its complexity, EfficientNetB3 remained efficient and 

well-suited for transfer learning. Other models tested included 

EfficientNetB2, ResNet, SEResNext, and ResNext, with lower 

performance. 

Shanu Nizarudeen et al. [10] investigated deep learning-based 

approaches for identifying intracranial haemorrhage (ICH), a 

condition requiring rapid medical attention. Their research 

involved evaluating models such as HResNet, HResNet-SE, and 

HRaNet using 22,811 CT scans from the CQ500 dataset. Among 

these, HRaNet achieved the best results, recording an AUC above 

0.96, a Jaccard index of 0.9130, and Macro and Micro F1-scores 

of 0.9464 and 0.9545, respectively. It also achieved a Kappa score 

over 0.9063, indicating strong reliability. The study tackled multi-

label classification for identifying multiple haemorrhage types. It 

highlighted HRaNet’s efficiency in both accuracy and prediction 

time. These findings show deep learning’s promise in aiding ICH 

diagnosis and improving clinical outcomes. 

Cansu Yalcin et al. [11] introduced a deep learning-based 

method aimed at forecasting hematoma expansion (HE) in 

patients with intracerebral haemorrhage (ICH) by analysing their 

initial non-contrast CT images. HE, seen in 30–38% of cases 

within 24 hours, worsens patient outcomes but is difficult to 

predict due to limited data. The study used a 2D Efficient Net B0 

model trained on 122 patient scans, including 35 HE cases, with 

manual lesion annotations. To address data scarcity, synthetic 

images were added to the training set. The best results came from 

using five synthetic versions per image with standard 

augmentation. This boosted accuracy from 0.56 to 0.84 and F1-

score from 0.53 to 0.82. The method shows strong potential to aid 

early HE prediction and improve clinical management. 

Anandakumar Haldorai et al. [12] highlighted the potential of 

deep learning in medical diagnostics, particularly for extracting 

critical insights from healthcare data. The study underscored the 

need for timely evaluation of CT scans by radiologists to facilitate 

early identification of cerebral haemorrhages. Utilizing a dataset 

containing full-body DICOM CT scans from 3,000 individuals, 

brain images were isolated using segmentation techniques. These 

segmented scans were grouped based on visual features to 

improve both the precision and speed of haemorrhage detection. 

This clustering strategy contributed to more consistent diagnostic 

outcomes. Furthermore, a convolutional neural network (CNN) 

was applied to classify the brain CT images, effectively 

distinguishing between haemorrhagic and non-haemorrhagic 

cases. 

Andrea Zirn et al. [13] investigated the application of post-

mortem CT (PMCT) imaging for identifying fatal cerebral 

haemorrhages, emphasizing its potential as a rapid and non-

invasive complement to traditional autopsy methods. The study 

analysed 81 PMCT cases, including 36 confirmed haemorrhage 

cases and 45 neurologically normal controls, to train and validate 

a set of six machine learning algorithms alongside two deep 

learning architectures—CNN and DenseNet. An 80/20 train-

validation split with five-fold cross-validation was used to assess 

model performance. The convolutional neural network (CNN) 

outperformed all others, achieving an accuracy of 0.94. These 

findings highlight the capability of deep learning models in 

enhancing post-mortem diagnostic processes and suggest that 

CNNs can support forensic pathologists in determining causes of 

death using PMCT scans, promoting more efficient and 

automated autopsy practices. 

Chi-Tung Cheng et al. [14] reviewed the growing role of deep 

learning (DL) in trauma imaging, highlighting its effectiveness in 

detecting injuries across modalities like FAST, X-rays, and CT 

scans. DL has been applied to identify intracranial haemorrhages, 

vertebral fractures, and organ damage in trauma patients. The 

study outlines core principles for DL algorithm development and 

showcases current clinical applications. Future directions include 

federated learning for diverse datasets, improved model 

transparency, and integration of multimodal data for better 

insights. Although some FDA-approved AI tools exist, clinical 

adoption remains limited. The study emphasizes the importance 

of cross-disciplinary cooperation in developing effective and 

clinically validated tools. Overall, deep learning demonstrates 

significant promise in enhancing trauma diagnosis and improving 

patient care outcomes. 

A.S. Neethi et al. [15] investigated deep learning approaches 

for the automatic detection of haemorrhagic stroke, highlighting 

the critical need for timely and precise diagnosis. Their research 

involved a systematic review and gap analysis, leveraging 

extensive publicly available datasets of non-contrast brain CT 

images. By evaluating across multisite data and varying 

haemorrhage complexities, key challenges and limitations in 

current models were identified. Results revealed gaps in accuracy 

and reliability, underscoring the need for enhanced techniques. 

The research highlights how AI can support radiologists and 

improve diagnostic efficiency. It also offers guidance for future 

development of robust diagnostic tools. Overall, the study aims to 

advance sustainable and effective stroke care. 

Süleyman Uzun et al. [16] explored AI-based detection of 

brain strokes, focusing on real-time analysis of CT scans using 

YOLO models. Strokes, particularly common in those over 65, 

are classified as ischemic or haemorrhagic, with early diagnosis 

being critical. The study compared YOLOv7, YOLOv8, and 

YOLOv9 against U-Net and Mask-RCNN using 6,951 

anonymised CT slices. YOLOv9-Seg achieved the highest 

performance, with mAP@0.5 scores of 99.50% for ischemic, 

99.49% for haemorrhagic, and 99.71% for combined stroke cases. 

Models were trained using Pytorch and CUDA acceleration. 

Results show YOLOv9-Seg’s superiority in accuracy and speed, 

making it ideal for emergency stroke detection. The findings 

highlight the model’s potential to support rapid, AI-assisted 

diagnosis in clinical settings. 

3. PROPOSED MODEL 

The developed model introduces a hybrid deep learning 

framework that integrates EfficientNetB0, Bidirectional LSTM, 

and Multi-Head Attention to improve the accuracy of brain 

haemorrhage classification. Initially, grayscale medical images 

are converted into three-channel inputs to align with the 

requirements of EfficientNetB0, a high-performance pretrained 

CNN known for extracting detailed spatial features. These spatial 

features are then reshaped into a sequential format, enabling a 
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Bidirectional LSTM to learn contextual relationships in both 

temporal directions. To enhance feature relevance, a Multi-Head 

Attention module is employed, allowing the model to concentrate 

selectively on crucial parts of the sequence while maintaining 

contextual integrity via residual connections. The attention-

weighted outputs are subsequently flattened and fed through fully 

connected layers, with dropout applied to mitigate overfitting, 

leading to a softmax layer for binary classification. Training 

optimization is carried out using the Adam algorithm, 

complemented by label smoothing for better generalization. 

Additionally, the model employs early stopping and adaptive 

learning rate scheduling to achieve stable and efficient 

convergence. 

 

Fig.1, Structural Overview of the Proposed Hybrid Framework 

for Brain Haemorrhage 

The Fig.1 presents the structure of the proposed hybrid deep 

learning model tailored for detecting brain haemorrhages. The 

workflow starts with input medical images that undergo 

preprocessing before being passed into EfficientNetB0—a robust 

CNN pretrained on ImageNet—to extract meaningful spatial 

features. These features are then reformatted into a sequential 

structure and processed through a Bidirectional LSTM layer, 

which captures bidirectional temporal relationships to deepen 

contextual interpretation. To further refine the learned features, a 

Multi-Head Attention module is employed, enabling the model to 

selectively emphasize the most relevant information across 

multiple representation subspaces. The refined features are finally 

passed to a dense output layer for classification, enabling accurate 

prediction of brain haemorrhage presence and type. This hybrid 

architecture effectively combines convolutional, recurrent, and 

attention-based mechanisms to achieve robust diagnostic 

performance. 

3.1 EFFICIENTNET-B0 

EfficientNetB0, developed by Google AI, serves as the 

foundational model in the EfficientNet series, known for its 

balance between performance and computational efficiency. It 

employs a unique compound scaling strategy that simultaneously 

adjusts the network’s depth, width, and input resolution to 

optimize accuracy and resource usage. The architecture is based 

on Mobile Inverted Bottleneck Convolutions (MBConv) 

combined with squeeze-and-excitation blocks, which contribute 

to its lightweight design and reduced computational cost. 

Although it is the most compact model in the Efficient Net family, 

EfficientNetB0 surpasses larger architectures like ResNet-50 in 

both classification accuracy and inference speed, making it 

particularly suitable for applications on mobile and edge devices 

with limited processing power. 

 

Fig.2. Architecture for EfficientNet-B0 

The Fig.2 showcases a deep convolutional neural network 

architecture inspired by EfficientNet, tailored to extract detailed 

feature representations from crop images. The network is 

structured into seven consecutive blocks, comprising standard 

convolutional and Mobile Inverted Bottleneck Convolution 

(MBConv) layers, with kernel sizes of 3×3 and 5×5. The model 

begins with a conventional convolution layer, followed by 

MBConv layers distributed across Blocks 1 to 7. Among these, 

MBConv6 layers are prominently featured to enhance model 

depth and computational efficiency, utilizing depthwise separable 

convolutions to lower processing demands. As the input passes 

through each block, the network captures progressively richer 

spatial and semantic features. The resulting "Feature Map" 

provides a high-level abstraction of the original image, making it 

suitable for advanced tasks such as classification, object 

detection, or image segmentation. 

3.2 BIDIRECTIONAL LSTM 

A Bidirectional Long Short-Term Memory (BiLSTM) 

network extends the conventional LSTM by processing sequence 

data in two directions—forward and backward—thereby offering 

a more comprehensive understanding of contextual information. 

Unlike standard LSTMs, which operate solely from past to future, 

BiLSTM consists of two separate LSTM layers: one handling the 

sequence in its original order, and the other processing it in 

reverse. This structure enables the model to incorporate insights 

from both preceding and succeeding elements at each time step. 

Such an approach is highly effective in applications like language 

modeling, speech processing, and biomedical signal 

interpretation, where capturing temporal dependencies from both 

directions enhances predictive accuracy. 

Input 
Efficient 

NetB0 

Bidirectional 

LSTM 

Multi Head 

Attention 
Output 
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Fig.3. Architecture of the Proposed Approach 

3.2.1 Input Layer (Input): 

This layer specifies the dimensions of the incoming data. 

Here, the model is configured to accept grayscale images with a 

resolution of 256 by 256 pixels, represented by the input shape 

(256, 256, 1). It acts as the entry point into the neural network and 

does not perform any computation itself. This layer ensures the 

model knows what type of data to expect during training and 

inference. 

 
256 256 3

rgb Concatenate( , , )X X X X  = R  

3.2.2 Concatenate Layer (Concatenate): 

The Concatenate layer is used to combine multiple tensors 

along a specified axis. Here, it duplicates the single-channel 

grayscale image three times to create a 3-channel tensor. This is 

necessary because EfficientNetB0, which is pretrained on RGB 

images (3 channels), expects input data with three channels. The 

result is a (256, 256, 3) image tensor. 

3.2.3 Global Average Pooling Layer (Global Average 

Pooling2D): 

GlobalAveragePooling2D simplifies each feature map by 

computing the average of all its elements, resulting in a single 

value per channel. Positioned after convolutional layers, it 

transforms the 3D feature output (height × width × channels) into 

a 1D vector consisting only of channel values. This operation 

helps lower model complexity and minimizes the risk of 

overfitting. It retains spatially summarized global features and is 

often used before fully connected layers. 

 
1280

, ,:

1 1

1 H W

i j

i j

v F
H W = =

= 

 R  

3.2.4 Reshape Layer (Reshape): 

The Reshape layer changes the shape of its input tensor 

without altering its data. In your model, it reshapes the 1280-

dimensional vector (from Global Average Pooling) into a shape 

of (10, 128), simulating 10 time steps with 128 features each. This 

transformation prepares the data for processing by the LSTM, 

which requires sequential input. 

 10 128Reshape( )S v = R  

3.2.5 Bidirectional LSTM Layer (Bidirectional (LSTM)): 

The Bidirectional wrapper allows an LSTM layer to analyse 

sequence data in two directions—forward and backward—

capturing contextual information from both the past and future. It 

internally runs two separate LSTM layers on the input sequence 

(one in the original order and one in reverse) and merges their 

outputs. This dual processing enhances the model’s ability to 

recognize temporal patterns within the transformed feature 

sequences.  

• The BiLSTM layer captures context by traversing the 

sequence in both directions: 

 LSTM ( )t f th s=  

 LSTM ( )t b th s=  

 
10*128[ ; ]t t th h h= R  

• Output sequence: 

 10 128

1 2 10[ , , , ]H h h h =  R  

3.2.6 Multi-Head Attention Layer (Multi Head Attention): 

This layer employs the attention mechanism across multiple 

parallel heads (in this case, two), with each head learning to attend 

to different segments of the input sequence. This allows the model 

to identify diverse contextual relationships within the data. By 

assigning dynamic importance to various time steps or features, 

attention mechanisms enhance the model’s performance in 

handling sequential tasks such as this one. 

• Let Q=K=V=H (self-attention): 

 Attention( , , ) softmax
T

k

QK
Q K V V

d

 
=  

 
 

 

• Multi-head attention with 2 heads: 

 10 128

1 2MHA( ) Concat(head ,head ) OH W = R  

• Residual connection: 

 MHA( )A H H= +  

3.2.7 Add Layer (Add): 

The Add layer performs element-wise addition of two tensors. 

In this model, it implements a residual connection by adding the 

original LSTM output with the output of the MultiHeadAttention. 

This helps in stabilizing training and preserving the original 

sequential features while integrating the learned attention 

patterns, much like in Transformer or ResNet architectures. 

3.2.8 Flatten Layer (Flatten): 

The Flatten layer transforms a multi-dimensional tensor into a 

one-dimensional array, preparing the data for input into fully 

connected dense layers. Following the temporal feature 

extraction. it compresses the entire sequence structure into one 

long vector, enabling classification or regression tasks using 

dense layers. 

Input Layer 

Concatenate Layer 

GlobalAveragePooling2D 

Reshape 

Bidirectional (LSTM) Layer 

Multi Head Attention Layer 

Add 

Flatten Layer 

Dense Layer 

Dropout Layer 

Dense Layer 
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Flatten the sequence: 

 
1280Flatten( )fA A= R  

3.2.9 Dense Layer (Dense(256)): 

This dense layer, consisting of 256 units and using ReLU 

activation, is designed to learn intricate patterns from the input 

features. By connecting each neuron to all elements of the 

flattened input, the layer enables high-level interpretation of the 

integrated spatial and temporal information extracted by the 

preceding layers. 

Dense layer with ReLU: 

 
256

1 1 1ReLU( )fz W A b= + R  

3.2.10 Dropout Layer (Dropout(0.4)): 

During training, the Dropout layer deactivates 40% of its input 

units at random. This regularization strategy reduces overfitting 

by preventing the model from relying too heavily on particular 

neurons. As a result, it encourages the learning of more 

generalizable and resilient features that perform well on new, 

unseen data. 

Dropout: 

 
1 1Dropout( , rate 0.4)z z = =  

3.2.11 Output Dense Layer (Dense(2, softmax)): 

The final Dense layer contains two output neurons, each 

representing one of the target classes. Using the softmax 

activation function, it transforms the outputs into probability 

scores for each class. The class with the highest probability is 

selected as the model’s predicted label. This configuration is well-

suited for binary classification tasks. 

Output layer (Softmax): 

 2

2 1 2
ˆ softmax( )y W z b= + R  

3.3 OPTIMIZATION FUNCTION (ADAM 

OPTIMIZER) 

The model employs the Adam optimizer (Adaptive Moment 

Estimation) to adjust its weights throughout the training process. 

Adam is a refined version of stochastic gradient descent that 

assigns unique learning rates to each parameter by adaptively 

estimating the first and second moments of the gradients. At each 

iteration t, it computes the exponentially weighted moving 

averages of the gradients (mₜ for the mean) and their squares (vₜ 

for the variance), followed by bias correction. The parameters are 

then updated based on these corrected estimates using the 

following rule: 

 
1 1 1(1 )t t tm m g −= + −  

2

2 1 2(1 )t t tv v g −= + −  

1 2

,ˆ ˆ
1 1

t t

t tt t

m v
m v

 
= =

− −
 

1

ˆ

ˆ

t

t t

t

m

v
  −= − 

+ò
 

In this context, θ denotes the model’s parameters, while gₜ is 

the computed gradient at iteration t. The learning rate is 

represented by η, and β₁ and β₂ are decay rate hyperparameters for 

the exponential moving averages—commonly set to β₁ = 0.9 and 

β₂ = 0.999. A small constant ϵ (typically 10⁻⁸) is added to ensure 

numerical stability. For this model, the learning rate is set to a 

constant value of 1 × 10⁻⁴. 

3.4 LOSS FUNCTION (CATEGORICAL CROSS 

ENTROPY WITH LABEL SMOOTHING) 

The training process utilizes categorical cross-entropy as the 

loss function, incorporating label smoothing to enhance 

generalization. This method softens the target labels by replacing 

strict 0s and 1s with slightly adjusted values, which discourages 

the model from making overconfident predictions and helps 

improve robustness. Instead of using target labels like [1, 0], it 

uses softened targets like [0.9, 0.1]. The smoothed label smooth

iy is 

calculated as: 

 smooth (1 )i iy y
C

= − +
ò

ò  

where, ϵ denotes the smoothing coefficient (set to 0.1 in this 

instance), C represents the total number of classes (which is 2), 

and yᵢ corresponds to the original one-hot encoded label. With 

label smoothing applied, the categorical cross-entropy loss is 

modified as follows: 

 
smooth

1

log( )ˆ
C

i i

i

L y y
=

= −   

This loss function improves generalization and helps reduce 

overfitting, particularly in cases where training data is limited or 

noisy. The soft targets encourage the model to output probability 

distributions that are less extreme, thus improving calibration and 

robustness. 

The proposed model incorporates various advanced deep 

learning techniques for efficient image processing and 

classification. It begins by accepting a grayscale image of size 

(256, 256, 1), which is then duplicated across three channels to 

match the input format required by the pre-trained EfficientNetB0 

feature extractor. EfficientNetB0, known for its computational 

efficiency, serves as the backbone for feature extraction, 

capturing high-level spatial features from the image without the 

final classification layer. This setup enables the model to leverage 

rich image features. To consolidate these features, Global 

Average Pooling is applied, reducing the feature map to a single 

vector, making it suitable for sequential analysis. The reshaped 

output forms a sequence with 10-time steps, each containing 128 

features, preparing the data for temporal modelling. 

For sequence processing, a Bidirectional LSTM layer is 

employed, allowing the model to capture both past and future 

dependencies in the data. To enhance its focus on the most 

relevant features at each time step, a Multi-Head Attention 

mechanism is used, followed by a residual connection that 

combines the attention output with the original input, preserving 

important features. Finally, the model utilizes several fully 

connected layers with dropout regularization to combat 

overfitting, and the output layer employs softmax activation for 

multi-class classification. The model is optimized using the Adam 

optimizer with a low learning rate and categorical crossentropy 

loss with label smoothing for stable learning. To further enhance 

training, early stopping and dynamic learning rate reduction 
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callbacks are applied to prevent overfitting and adapt the learning 

rate based on validation performance. 

4. EXPERIMENTAL RESULTS 

In this subsection, we present an extensive examination of the 

results from the proposed approach for the ongoing simulations. 

The dataset used for these simulations was obtained from the 

Brain CT Haemorrhage Dataset [17]. The data processing 

techniques outlined above were applied to the dataset used for this 

analysis in the study  

 

Fig.4. Deep Learning-Based Classification of Brain 

Haemorrhage from CT Images 

This Fig.4 displays a series of brain CT scan slices arranged 

in a grid format, each annotated with the output of a deep learning 

model designed to classify brain haemorrhages. Every image tile 

represents a unique axial view, labelled as either ‘PREDICTION: 

likely normal’ or ‘Prediction: indicative of haemorrhage.’ The 

model differentiates between normal and abnormal regions by 

analyzing variations in tissue density and structural irregularities. 

Such AI-driven classification tools play a vital role in emergency 

radiology, supporting rapid patient triage and assisting healthcare 

professionals in the early detection and treatment of intracranial 

bleeding. 

 

Fig.5. Epoch-wise Training and Validation Performance Metrics 

The Fig.5 illustrates the deep learning model’s training and 

validation performance across 16 epochs, highlighting both 

accuracy and loss trends. In the left plot, training accuracy 

steadily improves, approaching near-perfect levels, whereas 

validation accuracy shows noticeable fluctuations—pointing to 

potential overfitting or instability. The right plot reveals a smooth 

decline in training loss, indicating effective learning, while the 

validation loss varies significantly, and reinforcing concerns 

about generalization. The gap between training and validation 

results suggests a need for regularization strategies such as 

dropout, data augmentation, or early stopping to improve the 

model’s robustness. 

 

Fig.6. Epoch-wise Comparison of Training and Validation 

Accuracy 

The Fig.6 displays the difference in accuracy between the 

training and validation stages over 17 epochs. This accuracy gap 

is calculated by subtracting the validation accuracy from the 

training accuracy at each epoch and serves as a measure of 

potential overfitting. The consistently large differences—often 

exceeding 0.4—indicate that the model is significantly 

overperforming on the training data compared to validation. 

Although the gap momentarily narrows during epochs 11, 12, 15, 

and 16, the overall pattern of sharp variations suggests unstable 

generalization. These observations highlight the need for 

improved regularization methods, refined validation practices, or 

the implementation of cross-validation techniques to promote 

better model generalization on unseen data. 

 

Fig.7. Scatter Plot of Loss vs Accuracy for Training and 

Validation 

The Fig.7 displays a scatter plot illustrating the correlation 

between loss and accuracy for both training and validation 

datasets across epochs. Each point corresponds to the model’s 

performance at a specific epoch. The blue markers, representing 

training data, reveal a clear inverse trend—lower loss values are 

associated with higher accuracy, reflecting effective learning. In 

contrast, the green markers, corresponding to the validation set, 

exhibit a more irregular distribution, with no consistent pattern 

and several instances of high loss coupled with low accuracy. This 

irregularity indicates the model’s difficulty in generalizing 

beyond the training data, pointing to potential overfitting. The 

visible separation between training and validation points further 
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emphasizes the performance gap previously observed in earlier 

evaluations. 

 

Fig.8. Smoothed Accuracy Curve across Epochs 

The Fig.8 illustrates smoothed accuracy trends for both 

training and validation sets across 17 epochs. A smoothing 

technique is applied to minimize fluctuations and better reveal 

overall learning behavior. The dark blue line, representing the 

training accuracy, shows a consistent upward trend, indicating 

effective learning and improved model performance on the 

training data. Meanwhile, the teal line for validation accuracy 

shows a more gradual and erratic progression, with occasional 

declines pointing to difficulties in generalization. The increasing 

separation between the two curves signals overfitting, where the 

model adapts too closely to the training data while 

underperforming on new examples. This pattern underscores the 

necessity of strategies like early stopping and regularization to 

enhance generalization. 

Table.1. Classification Report 

 Precision Recall F1-Score 

Haemorrhage 1.00 0.98 0.99 

Normal 0.98 1.00 0.99 

Accuracy 0.99 

 

Fig.9. Confusion Matrix 

The Table.1 summarizes the model’s classification 

performance in distinguishing between brain haemorrhage and 

normal cases. The results indicate outstanding precision and recall 

across both classes, with precision scores of 1.00 for haemorrhage 

and 0.98 for normal, and recall values of 0.98 and 1.00, 

respectively. These metrics yield an F1-score of 0.99 for each 

class, reflecting an excellent balance between precision and recall. 

The model achieves an overall accuracy of 99%, highlighting its 

effectiveness in accurately classifying most input images with 

minimal errors. These performance indicators suggest the model 

is highly dependable and well-suited for deployment in sensitive 

medical diagnostic scenarios. 

The Fig.9 displays the confusion matrix for a binary 

classification model tasked with differentiating between 

Haemorrhage and Normal cases. According to the matrix, the 

model correctly classified 266 out of 270 Haemorrhage cases, 

with only 4 incorrectly labeled as Normal. For the Normal class, 

407 out of 408 instances were accurately identified, with just one 

false positive. These results highlight the model’s excellent 

classification ability, marked by very few misclassifications and 

demonstrating both high sensitivity and specificity. The 

prominent diagonal values confirm the model’s reliability and 

effectiveness in accurately distinguishing brain haemorrhage 

cases from normal scans. 

Table.2. Comparative Analysis 

Methods Accuracy 

VGG16 [17] 70% 

ResNet50 [18] 81.58% 

AlexNet [19] 84.33% 

DenseNet [20] 88.01% 

VGG19 [21] 91.56% 

MobileNet [22] 93.79% 

Proposed Model (hybridmodel) 98.03 

The Table.2 provides a comparison of different deep learning 

models evaluated by their classification accuracy. Among the 

evaluated baseline models, VGG16 and ResNet50 achieved 

relatively lower accuracies of 70% and 81.58% respectively, 

while AlexNet and DenseNet performed better with accuracies of 

84.33% and 88.01%. VGG19 and MobileNet demonstrated 

further improvement, reaching 91.56% and 93.79% respectively. 

Notably, the proposed hybrid model outperformed all existing 

architectures with a significant accuracy of 98.03%, indicating its 

superior feature extraction and classification capabilities. This 

highlights the effectiveness of integrating CNN-based feature 

extraction with sequence modeling components, offering a robust 

solution for the target task. 

5. CONCLUSION 

This research introduces and validates an innovative hybrid 

deep learning framework aimed at the automated detection and 

classification of brain haemorrhages using CT scan data. The 

model integrates EfficientNetB0 for extracting high-level spatial 

features, a Bidirectional Long Short-Term Memory (BiLSTM) 

layer for modeling temporal dependencies, and a Multi-Head 

Attention mechanism to emphasize the most relevant feature 

sequences. This combination equips the network to effectively 

recognize complex haemorrhagic patterns, which may vary in 

shape, intensity, and anatomical location. To enhance model 

generalization and stability, the architecture incorporates residual 

connections, dropout for regularization, label smoothing, and 

adaptive learning techniques such as the Adam optimizer and 

early stopping. Evaluation results show the model achieving a 

high classification accuracy of 98.03% and an F1-score of 0.99, 

surpassing several established architectures including VGG16, 

ResNet50, and MobileNet. The confusion matrix confirms 

minimal false predictions, demonstrating strong performance in 

distinguishing haemorrhagic from normal cases. These findings 
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highlight the model’s potential as a precise, interpretable, and 

scalable solution for clinical applications—particularly in urgent 

or low-resource environments. By integrating convolutional, 

recurrent, and attention-based learning strategies, this study 

makes a notable contribution to AI-driven neuroimaging and 

paves the way for further advancements in automated medical 

diagnosis systems. 
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