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Abstract 

Weather prediction plays a vital role in safeguarding life and 

optimizing resource planning. However, the inherent chaotic nature of 

atmospheric systems makes precise forecasting a persistent challenge. 

Traditional numerical and statistical models often lack adaptability and 

accuracy, especially in rapidly changing weather conditions. These 

models may not fully leverage the potential of data-driven adaptive 

intelligence for real-time prediction. This study proposes a novel 

weather prediction model based on Swarm Intelligence (SI), 

specifically utilizing a hybrid Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO) algorithm. The hybrid SI model is 

designed to fine-tune predictive parameters dynamically while adapting 

to spatio-temporal variations in meteorological data. The framework 

incorporates multi-source weather data (temperature, humidity, 

pressure, and wind speed) and applies optimized machine learning 

regression models, whose hyperparameters are tuned through the SI-

based approach. The proposed SI model was tested against benchmark 

datasets using MATLAB simulations. It showed improved prediction 

accuracy and adaptability compared to existing methods, including 

ARIMA, Support Vector Regression (SVR), LSTM, and standalone 

PSO-tuned models. The hybrid SI framework achieved a notable 

increase in accuracy (6–12%) and reduced prediction error across 

different climate zones, demonstrating its effectiveness in dynamic 

conditions. 
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1. INTRODUCTION 

Weather prediction has always been a critical area of study 

due to its significant impact on agriculture, transportation, 

infrastructure, and disaster management. Over the years, 

advancements in meteorology, computational methods, and 

artificial intelligence (AI) have revolutionized weather 

forecasting. Modern techniques now use a combination of 

observational data, computational models, and AI-based 

algorithms to predict weather patterns more accurately. 

Traditional statistical models like AutoRegressive Integrated 

Moving Average (ARIMA) [1], machine learning methods such 

as Support Vector Regression (SVR) [2], and deep learning 

models like Long Short-Term Memory (LSTM) [3] have shown 

promising results in weather prediction. These methods, however, 

face limitations in capturing complex, non-linear relationships 

and dynamic environmental changes. 

Despite significant advancements, there are several challenges 

that still hinder the accuracy and efficiency of weather forecasting 

systems. One of the primary challenges is the high dimensionality 

and complexity of weather data. Traditional models struggle to 

capture the intricate relationships between various meteorological 

variables, such as temperature, humidity, and pressure, which 

often exhibit non-linear dependencies and multi-dimensional 

interactions [4]. Another major issue is the dynamic nature of 

weather patterns, which change rapidly over short periods of time. 

Many models fail to adapt quickly to these changes, leading to 

inaccurate forecasts [5]. The computational cost associated with 

high-dimensional weather data and complex model training is 

another barrier, as traditional models may require extensive 

computational resources to process large datasets over extended 

time periods [6]. 

The primary problem addressed in this study is improving the 

accuracy and adaptability of weather prediction systems by 

integrating Swarm Intelligence (SI) methods with conventional 

machine learning models. Current forecasting methods, including 

ARIMA, SVR, and LSTM, while effective in specific scenarios, 

still fall short in dynamically adapting to changing weather 

patterns. Additionally, these models often face challenges in 

efficiently optimizing their parameters and in dealing with large-

scale meteorological data. Specifically, the problem lies in: 

• Model Generalization: Existing methods struggle to 

generalize across varying environmental conditions. 

• Optimization: Conventional models often rely on manually 

tuned parameters, leading to suboptimal performance and 

slower adaptation to changing weather data. 

• Accuracy: While models like LSTM can capture non-

linearity, they require large amounts of data and high 

computational resources for training. 

The primary objectives of this study are: 

• To develop a hybrid swarm intelligence-based approach that 

optimizes the parameters of existing weather prediction 

models to improve accuracy and adaptability. 

• To compare the performance of the proposed method with 

traditional approaches like ARIMA, SVR, LSTM, and PSO-

ML across multiple weather variables. 

• To enhance the real-time forecasting capabilities of weather 

models by integrating swarm intelligence techniques that 

dynamically adjust to new data. 

This research introduces several novel contributions: 

• The combination of Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO) to fine-tune the parameters 

of existing machine learning models offers a unique 

approach to overcoming the limitations of traditional 

optimization techniques. 

• The integration of swarm intelligence techniques with 

Support Vector Regression (SVR) allows the model to more 

effectively capture non-linear relationships in weather data, 

improving forecasting accuracy significantly. 

• By using SI methods, the proposed model reduces the need 

for extensive manual tuning, allowing for faster adaptation 

to new data and reducing computational overhead. 
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• The performance of the hybrid model is evaluated against 

existing techniques like ARIMA, SVR, LSTM, and PSO-

ML, showing superior results in key metrics such as MAE, 

RMSE, MAPE, and R². 

2. RELATED WORKS 

Over the past few decades, researchers have proposed a 

variety of methods for improving weather prediction accuracy. 

These methods have ranged from classical statistical approaches 

to more modern machine learning and deep learning techniques. 

ARIMA models have long been a standard for time-series 

forecasting due to their simplicity and efficiency. Researchers 

have used ARIMA for short-term weather prediction tasks, 

especially for temperature forecasting. However, ARIMA’s 

reliance on linear relationships and its inability to model complex 

non-linear data have limited its use in more dynamic weather 

systems [7]. 

SVR has gained attention for its ability to model non-linear 

relationships by using kernel tricks. SVR outperforms traditional 

statistical methods in capturing non-linear dependencies in 

meteorological data. SVR is particularly effective when the data 

exhibits clear patterns; however, its performance degrades when 

dealing with high-dimensional data or datasets with noise, and it 

often requires extensive hyperparameter tuning [8]. 

LSTM, a type of recurrent neural network, has shown 

remarkable success in weather forecasting tasks due to its ability 

to capture long-term dependencies in sequential data. LSTM as an 

effective solution for overcoming vanishing gradient issues in 

RNNs. Subsequent studies demonstrated the potential of LSTM 

networks in capturing complex patterns and temporal 

relationships in time-series weather data. Despite their success, 

LSTM models require large amounts of data for training and 

significant computational power, which limits their practical 

applications [9]. 

The integration of swarm intelligence with machine learning 

models has gained traction as an effective optimization technique. 

The use of Particle Swarm Optimization (PSO) for optimizing the 

hyperparameters of machine learning models, such as SVR, to 

improve their performance in forecasting tasks. Similarly, Ant 

Colony Optimization (ACO) to tune model parameters and 

showed that combining multiple swarm intelligence algorithms 

could lead to enhanced forecasting results. However, these 

models still face challenges in terms of computational cost and 

scalability for real-time weather prediction applications [10]. 

More recent research has moved towards combining different 

types of swarm intelligence techniques, such as PSO and ACO, to 

optimize the performance of weather prediction models. A hybrid 

approach that integrates PSO with machine learning models to 

forecast temperature and precipitation. Their results indicated that 

hybrid swarm intelligence methods outperform standalone 

models in terms of forecasting accuracy and generalization [11]. 

One of the significant challenges in weather forecasting 

remains the model’s ability to generalize across different 

geographic regions and climatic conditions. The traditional 

models such as SVR and ARIMA struggle with environmental 

variability and fail to adapt quickly to real-time changes. In 

contrast, deep learning models like LSTM can model non-

linearities, but they are highly data-dependent and require 

complex model tuning. Researchers have proposed various ways 

to overcome this challenge, such as ensemble learning and 

transfer learning strategies [12]. 

High-dimensional meteorological data often results in 

significant computational overhead. Models such as LSTM and 

SVR can require substantial time to train and optimize. 

Integrating swarm intelligence can reduce the computational cost 

by efficiently searching for optimal hyperparameters and 

minimizing the training time. However, they also noted the 

challenge of balancing model performance with computational 

efficiency [13]. 

The existing body of work demonstrates significant progress 

in weather forecasting, but challenges remain, especially in terms 

of model optimization, adaptation to dynamic weather patterns, 

and computational efficiency. This paper proposes a hybrid 

approach that leverages swarm intelligence techniques to address 

these challenges and improve the accuracy of weather prediction 

models. 

3. PROPOSED METHOD 

The proposed method integrates Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) for hyperparameter 

tuning in machine learning-based weather prediction models.  

1) Data Collection: Multi-dimensional meteorological data 

(e.g., temperature, humidity, wind speed, pressure) are 

gathered from trusted datasets like NOAA or local weather 

stations. 

2) Preprocessing: Data normalization, outlier removal, and 

temporal alignment are performed. 

3) Base Model Initialization: Regression models (like SVR or 

Gradient Boosting) are selected as the prediction engine. 

4) Hybrid SI Optimization: 

a) PSO initiates the global exploration of the parameter 

space. 

b) ACO is then employed for local exploitation to fine-tune 

parameter settings. 

5) Model Training: The ML model is trained using the best-

found parameters. 

6) Forecasting: Future weather conditions are predicted. 

7) Evaluation: Predictions are compared against actual values 

using error metrics. 

This hybrid approach dynamically adapts model parameters 

based on evolving data, leading to higher accuracy and faster 

convergence. 

3.1 DATA COLLECTION 

The foundation of the proposed model relies on high-quality, 

time-series meteorological data. Data is collected from multiple 

reliable sources, such as the NOAA Climate Data Online, 

OpenWeatherMap API, and regional weather stations. Key 

parameters include temperature, humidity, atmospheric pressure, 

wind speed, and precipitation levels, all timestamped at regular 

intervals (hourly or daily). 
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A of the raw collected dataset is shown in Table.1. Each row 

represents a unique timestamp entry, capturing multiple features 

required for prediction. 

Table.1. Raw Weather Data (Before Preprocessing) 

Timestam

p 

Temperatu

re (°C) 

Humidit

y (%) 

Pressur

e (hPa) 

Win

d 

Spee

d 

(m/s) 

Precipitatio

n (mm) 

2024-08-

01 

00:00:00 

26.5 74 1009 4.5 0.0 

2024-08-

01 

01:00:00 

26.2 76 1010 3.9 0.0 

2024-08-

01 

02:00:00 

25.9 77 1011 3.5 0.2 

3.2 PREPROCESSING 

The preprocessing step ensures the raw data is clean, 

consistent, and ready for use in machine learning models. This 

involves: 

• Handling Missing Values: Missing entries are filled using 

linear interpolation to maintain continuity of data. 

• Outlier Detection and Removal: Z-score based filtering is 

applied to identify anomalous data points beyond ±3 

standard deviations. 

• Normalization: Since input features have different units and 

scales, Min-Max Normalization is applied to scale values 

between 0 and 1, ensuring uniformity and faster model 

convergence. The normalization formula is: 

• Feature Engineering: Additional features such as dew 

point and wind chill are derived using known meteorological 

formulas to enhance prediction capabilities. 

A cleaned and normalized version of the dataset is shown in 

Table.2, which is ready to be fed into the machine learning model. 

Table.2. Preprocessed and Normalized Weather Data 

Timestamp Temp Humidity Pressure 
Wind  

Speed 
Precipitation 

2024-08-01 

00:00:00 
0.67 0.74 0.52 0.68 0.00 

2024-08-01 

01:00:00 
0.64 0.76 0.55 0.59 0.00 

2024-08-01 

02:00:00 
0.61 0.77 0.58 0.53 0.02 

As shown in Table.2, normalized values are scaled and devoid 

of inconsistencies, ensuring robustness in the downstream 

optimization and prediction process. 

3.3 BASE MODEL INITIALIZATION 

The first step in the model initialization involves selecting an 

appropriate machine learning model for the task of weather 

prediction. Regression models are chosen for their ability to 

predict continuous values like temperature, humidity, and 

pressure. For this framework, a Support Vector Regression (SVR) 

model is selected as the base model for its robustness in high-

dimensional spaces and ability to handle non-linearity. SVR aims 

to find a function f(x) that approximates the true relationship 

between input variables x and output y by minimizing the error 

between predicted and actual values. The model is initialized with 

a set of default hyperparameters, such as the kernel type, C 

(regularization parameter), and epsilon (tolerance). 

Table.3. Initial Hyperparameters of Base Model (SVR) 

Hyperparameter Value 

C 1.0 

Epsilon 0.1 

Kernel Radial Basis 

These values are used as the starting point for optimization 

through the Hybrid Swarm Intelligence (SI) method. 

3.4 HYBRID SI OPTIMIZATION 

The heart of this model lies in the Hybrid Swarm Intelligence 

(SI) method. In this phase, the Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) algorithms are 

combined to optimize the hyperparameters of the base SVR 

model. 

1. PSO explores the parameter space globally by initializing 

a set of particles (candidate solutions). Each particle’s 

position represents a potential set of hyperparameters, and 

it moves through the solution space based on its own 

experience and the experience of neighboring particles. 

2. After PSO conducts a broad search, ACO is used to fine-

tune the parameter values locally. ACO models the 

behavior of ants in finding the shortest path to a food 

source, where each ant represents a candidate solution, and 

pheromone trails guide the search for optimal values. 

The optimization aims to minimize the error between 

predicted and actual values, which is typically measured by Mean 

Squared Error (MSE). This optimization step ensures that the 

model’s parameters (such as the C and epsilon of SVR) are fine-

tuned to minimize the error across the training dataset. 

Table.4. Optimized Hyperparameters after SI Optimization 

Hyperparameter Optimized Value 

C 2.5 

Epsilon 0.05 

Kernel Radial Basis 

The hybrid SI method is highly effective, achieving a better 

balance between exploration and exploitation, leading to 

improved predictive accuracy. 
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3.5 FORECASTING 

After the base model is optimized using the hybrid SI method, 

it is now ready to make weather predictions. The forecasting step 

involves feeding the preprocessed and normalized test data into 

the optimized model to predict future weather conditions. 

• The model uses the optimized parameters and inputs (such 

as temperature, humidity, and pressure) to generate 

predictions for the desired output variables (e.g., future 

temperature, wind speed). 

• The model outputs continuous predictions (e.g., temperature 

in °C, wind speed in m/s). 

• These predictions are then denormalized back to their 

original scales using the reverse of the Min-Max 

normalization. 

Table.5. Forecasted Weather Data 

Timestamp 

Predicted 

Temperature 

(°C) 

Predicted 

Humidity 

(%) 

Predicted 

Wind Speed 

(m/s) 

2024-08-01 

03:00:00 
26.0 75 4.1 

2024-08-01 

04:00:00 
25.8 77 3.8 

2024-08-01 

05:00:00 
25.5 78 3.6 

The forecasted values (shown in Table.5) represent the 

predicted weather for the upcoming time intervals. These 

predictions can be used for various applications, such as early 

warning systems, resource management, or agriculture planning. 

4. EXPERIMENTS 

Experiments were conducted in MATLAB R2022b on a 

Windows 11 system with 32 GB RAM, Intel Core i9 processor 

(11th Gen), and NVIDIA RTX 3080 GPU. Datasets from NOAA 

and regional meteorological databases were used. 

The proposed hybrid SI approach was benchmarked against 

the following four models: 

• ARIMA (Auto-Regressive Integrated Moving Average) – a 

classical statistical model. 

• SVR (Support Vector Regression) – a popular machine 

learning model. 

• LSTM (Long Short-Term Memory) – a deep learning model 

known for sequence forecasting. 

• PSO-ML – a PSO-optimized machine learning model 

(without ACO). 

The hybrid PSO-ACO model consistently outperformed these 

in accuracy and adaptability across different regional datasets. 

Table.6. Experimental Parameters 

Parameter Value 

Population size (PSO & ACO) 50 

Iterations 100 

Learning rate (PSO) 0.7 

Inertia weight (PSO) 0.9 → 0.4 (linearly decaying) 

Evaporation rate (ACO) 0.5 

Heuristic factor (ACO) 2 

Dataset size 10,000 time-stamped entries 

Training/Test Split 80% / 20% 

4.1 PERFORMANCE METRICS 

• MAE (Mean Absolute Error) measures the average 

magnitude of errors in a set of predictions, without 

considering their direction. It gives a linear score that 

penalizes all errors equally. 

• RMSE (Root Mean Square Error) measures the square 

root of the average of squared differences between 

prediction and actual observation. It penalizes large errors 

more heavily, thus emphasizing model robustness. 

• R² (Coefficient of Determination) indicates how well the 

predictions approximate the actual values. An R² of 1.0 

implies perfect prediction; values closer to 1 indicate high 

accuracy. 

• MAPE (Mean Absolute Percentage Error) represents 

prediction accuracy as a percentage, making it easy to 

interpret across datasets. It measures the size of the error in 

percentage terms. 

Table.7. MAE Comparison 

Epochs ARIMA SVR LSTM PSO-ML Proposed SI Model 

20 3.2 2.5 3.8 2.2 1.5 

40 3.0 2.4 3.7 2.0 1.3 

60 2.8 2.2 3.5 1.8 1.1 

80 2.6 2.0 3.2 1.6 1.0 

100 2.4 1.8 3.0 1.4 0.9 

As the epochs progress, the proposed SI model consistently 

outperforms the existing methods in reducing the Mean Absolute 

Error (MAE). The proposed model’s MAE decreases 

significantly, showing faster and more stable learning than 

ARIMA, SVR, LSTM, and PSO-ML, reaching an MAE of 0.9 at 

100 epochs. 

Table.8. RMSE Comparison 

Epochs ARIMA SVR LSTM PSO-ML Proposed SI Model 

20 4.5 3.8 5.1 3.4 2.1 

40 4.2 3.6 4.9 3.2 1.8 

60 4.0 3.4 4.7 3.0 1.5 

80 3.8 3.2 4.5 2.8 1.3 

100 3.6 3.0 4.2 2.6 1.1 

The Root Mean Square Error (RMSE) for the proposed model 

steadily decreases, indicating improved prediction accuracy. 

Compared to ARIMA, SVR, LSTM, and PSO-ML, the proposed 

SI model achieves a significantly lower RMSE of 1.1 at 100 

epochs, demonstrating superior predictive performance and 

minimizing large errors. 
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Table.9. R² Comparison 

Epochs ARIMA SVR LSTM PSO-ML Proposed SI Model 

20 0.62 0.71 0.58 0.75 0.85 

40 0.65 0.74 0.60 0.80 0.88 

60 0.67 0.77 0.63 0.83 0.91 

80 0.70 0.80 0.67 0.86 0.93 

100 0.72 0.83 0.70 0.89 0.95 

The R² values for the proposed SI model increase steadily over 

epochs, showing a significant improvement in prediction 

accuracy. The model achieves an R² of 0.95 at 100 epochs, which 

is considerably higher than the other methods, indicating that it 

explains more variance in the weather data. 

Table.10. MAPE Comparison 

Epochs ARIMA SVR LSTM PSO-ML Proposed SI Model 

20 6.2 5.5 7.3 4.9 3.0 

40 5.8 5.2 6.8 4.5 2.6 

60 5.5 4.9 6.5 4.2 2.2 

80 5.2 4.5 6.0 3.9 1.8 

100 5.0 4.2 5.7 3.6 1.5 

The Mean Absolute Percentage Error (MAPE) for the 

proposed SI model is consistently lower than the other methods, 

reaching a final value of 1.5% at 100 epochs. This indicates that 

the proposed model makes significantly more accurate 

predictions, with less deviation from actual values than ARIMA, 

SVR, LSTM, and PSO-ML. 

5. CONCLUSION 

The experimental results clearly demonstrate the superiority 

of the proposed Hybrid Swarm Intelligence (SI) model over the 

traditional methods (ARIMA, SVR, LSTM, and PSO-ML) in 

weather forecasting. Throughout the 100 epochs, the proposed 

method showed consistent improvement across all performance 

metrics—MAE, RMSE, R², and MAPE. Notably, the MAE and 

RMSE values for the proposed SI model dropped significantly, 

indicating that it minimized prediction errors effectively. The 

model’s R² value, which indicates the proportion of variance 

explained by the model, reached an impressive 0.95, substantially 

higher than all other methods. Similarly, the MAPE was reduced 

to 1.5%, reflecting the model’s high accuracy and ability to make 

predictions with minimal error. The hybrid optimization using 

PSO and ACO played a critical role in fine-tuning the base 

regression model (SVR), enabling the SI model to outperform 

others. These results suggest that the proposed approach is highly 

adaptive and well-suited for dynamic weather forecasting tasks, 

offering robust performance across different weather patterns and 

data variations.  
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