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Abstract 

Breast cancer remains one of the leading causes of mortality among 

women globally, emphasizing the need for early and precise diagnostic 

systems. Traditional machine learning models, while effective, often 

function as black boxes, offering limited interpretability to healthcare 

professionals. Despite advancements in diagnostic tools, there remains 

a gap in delivering models that are both highly accurate and 

explainable. Existing models tend to prioritize predictive performance 

over transparency, making it difficult for clinicians to trust and adopt 

them in real-world scenarios. This work proposes a Fuzzy Rule-Based 

Modelling (FRBM) approach for breast cancer prediction that 

balances accuracy with interpretability. The proposed system translates 

numerical input data into linguistic fuzzy sets and derives inference 

rules using a Sugeno-type fuzzy inference system. Feature selection is 

carried out using a combination of correlation-based methods and 

expert knowledge to ensure only relevant diagnostic attributes are used. 

The model generates understandable IF-THEN rules, providing 

clinicians with clear decision logic. The dataset used is the Wisconsin 

Diagnostic Breast Cancer (WDBC) dataset from the UCI repository. 

The proposed fuzzy model achieved an accuracy of 97.6%, 

outperforming traditional models such as Support Vector Machines 

(SVM) and Decision Trees (DT), which achieved 94.8% and 93.5%, 

respectively. Additionally, the fuzzy system demonstrated a high F1-

score of 0.96 and excellent interpretability, enabling users to 

understand and validate predictions. 
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1. INTRODUCTION 

Breast cancer is one of the most prevalent and life-threatening 

diseases among women worldwide, accounting for a significant 

proportion of cancer-related deaths [1]. Early detection and timely 

diagnosis play a crucial role in improving survival rates and 

ensuring successful treatment [2]. Traditional diagnosis relies on 

imaging, histopathology, and clinical expertise, which often 

demand considerable time, effort, and subjective interpretation. 

With the growth of computational methods, machine learning 

(ML) and artificial intelligence (AI) techniques have emerged as 

powerful tools to enhance diagnostic accuracy [3]. 

Despite the availability of numerous ML algorithms, several 

challenges persist in their practical implementation in healthcare 

environments. One major limitation is the lack of interpretability 

in black-box models like deep learning, which hinders clinicians’ 

trust and acceptance of AI-driven decisions [4]. Moreover, the 

heterogeneity of breast cancer data, caused by variations in age, 

tumor types, and histological features, poses difficulties in 

achieving generalized prediction accuracy across populations [5]. 

Another concern is that many models are overfitted to small 

datasets or lack robustness during real-time deployment in clinical 

settings [6]. 

Given these challenges, there is a need to develop models that 

not only provide accurate predictions but also maintain 

explainability and clinical relevance. The existing models often 

struggle to balance precision with transparency, which creates a 

critical gap in medical decision-support systems [7]. Furthermore, 

data imbalance and noise in diagnostic datasets reduce the 

performance of conventional classifiers, increasing the rate of 

false positives and false negatives [8]. Additionally, reliance on a 

rigid threshold-based classification limits flexibility, failing to 

capture the nuanced progression of disease states in early 

detection scenarios [9]. 

The primary objective of this work is to design a fuzzy 

modeling framework that enhances breast cancer prediction 

accuracy while ensuring transparency through explainable rule-

based logic. The specific objectives are: 

• To integrate fuzzification with expert-driven rule generation 

for interpreTable.diagnosis. 

• To evaluate the fuzzy inference system using performance 

metrics like accuracy, precision, recall, and F1-score. 

• To compare the proposed model against conventional 

classifiers such as SVM and Random Forest. 

The novelty of this work lies in its hybrid design that bridges 

data-driven machine learning with human-centric fuzzy logic, 

enabling more accurate and comprehensible diagnostic outputs. 

Unlike black-box models, this approach transforms statistical 

features into linguistic variables and applies a rule-based system 

to reach a decision. It introduces a flexible inference process, 

capable of handling uncertainty and imprecision inherent in 

medical data. 

The main contributions of this study include: 

• A fuzzy logic-based prediction system tailored to the 

Wisconsin Diagnostic Breast Cancer (WDBC) dataset. 

• Integration of feature selection with expert-informed 

membership functions and inference rules. 

• Comprehensive evaluation and comparison with existing 

classifiers over 1000 training epochs. 

2. RELATED WORKS 

Numerous studies have explored AI-based systems for breast 

cancer prediction, with a focus on improving accuracy and 

processing efficiency. Traditional machine learning models like 

Decision Trees, Random Forests, Support Vector Machines 

(SVM), and k-Nearest Neighbors (k-NN) have been widely used 

for classification tasks on the WDBC dataset [7]. However, while 

these methods offer good accuracy, they often lack interpretability 
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and fail to provide the rationale behind their predictions, an 

essential requirement in medical applications. 

In [8], researchers proposed an ensemble-based SVM 

framework for breast cancer classification, which improved 

prediction accuracy but still lacked transparency. The model was 

dependent on parameter tuning, and while cross-validation helped 

improve performance, the outputs remained difficult for clinicians 

to interpret. Another study in [9] utilized a deep learning approach 

by employing Convolutional Neural Networks (CNNs) on 

digitized histopathological images. Although the model achieved 

high precision, it suffered from the typical black-box nature, 

limiting its clinical acceptance. 

Several attempts have been made to enhance model 

transparency using hybrid techniques. In [10], the authors 

developed a Neuro-Fuzzy Inference System (ANFIS) that 

combined the adaptive learning capabilities of neural networks 

with fuzzy logic reasoning. The system showed potential in 

handling ambiguous inputs and offered partial interpretability. 

However, ANFIS models often require large training datasets and 

computational resources, which limits their scalability. Similarly, 

[11] implemented a Fuzzy Decision Tree that provided rule-based 

outputs but was prone to overfitting, particularly with noisy data. 

A promising direction was presented in [12], where 

researchers introduced a fuzzy rule-based classification system 

tailored for imbalanced medical datasets. This approach improved 

sensitivity towards minority classes and reduced misclassification 

errors. However, the complexity of rule management and 

scalability to larger datasets remained a concern. The work in 

[13]-[19] further proposed a hierarchical fuzzy system, 

introducing multiple layers of fuzzy rules for multi-level 

classification. While the approach added depth to decision-

making, it also introduced latency in response time, which could 

be critical in time-sensitive diagnoses. 

Most existing approaches have failed to offer a complete 

trade-off between accuracy, transparency, and efficiency. 

Moreover, many models operate on fixed rule sets or require 

manual tuning of membership functions, which compromises 

adaptability. The lack of comprehensive evaluation over multiple 

epochs or performance curves limits their benchmarking 

reliability. Furthermore, few models account for the 

explainability needs of non-technical clinical staff, which restricts 

their deployment in real-world healthcare environments. 

The current study addresses these gaps by proposing a 

streamlined fuzzy modeling architecture that incorporates 

optimized feature selection, data preprocessing, and expert-based 

rule formulation. Unlike prior models, it uses trapezoidal and 

triangular membership functions calibrated from data statistics, 

providing both adaptability and precision. Additionally, the 

inference engine handles degrees of membership and outputs 

fuzzy sets, which are later defuzzified for crisp and actionable 

decisions. 

This work distinguishes itself from previous studies by 

maintaining a balance between model interpretability and 

prediction performance while supporting validation through 

epoch-wise training. The fuzzy framework can be expanded with 

additional layers of reasoning or hybridized with neuro-symbolic 

systems in future enhancements. 

 

3. PROPOSED METHOD  

The proposed method uses a Fuzzy Rule-Based Modelling 

(FRBM) approach designed to ensure both high accuracy and 

transparency in breast cancer diagnosis. First, the dataset is 

preprocessed to remove missing or irrelevant attributes, followed 

by normalization of numerical values. Feature selection is applied 

using a correlation-based filter to retain medically significant 

features. The fuzzy model begins by transforming selected 

features into fuzzy linguistic terms (e.g., low, medium, high). A 

Sugeno-type Fuzzy Inference System (FIS) is employed to model 

the relationship between inputs and diagnostic outcomes. Fuzzy 

rules are generated using expert-driven and data-driven 

approaches, forming interpretable IF-THEN rules like “IF Cell 

Size is High AND Cell Shape is Irregular THEN Class = 

Malignant (Weight = 0.9).” Each rule is weighted according to its 

significance based on training data. The system aggregates rule 

outputs through a weighted average defuzzification process to 

yield the final prediction. 

1. Data Acquisition:  Use the WDBC dataset with 569 

records and 30 features. 

2. Preprocessing:  Handle missing values, normalize data, 

and encode categorical labels. 

3. Feature Selection:  Apply Pearson correlation and expert 

knowledge to select 10 features. 

4. Fuzzification:  Convert numerical inputs into fuzzy 

linguistic terms using membership functions. 

5. Rule Generation:  Generate interpreTable.fuzzy IF-

THEN rules using Sugeno FIS. 

6. Inference:  Apply fuzzy rules to input data and aggregate 

outputs. 

7. Defuzzification:  Compute crisp class label (benign or 

malignant) using weighted average. 

8. Validation:  Perform 10-fold cross-validation to assess 

performance. 

3.1 DATA ACQUISITION 

The proposed system utilizes the Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset, which is publicly available from the 

UCI Machine Learning Repository. This dataset contains 569 

patient records, each representing various features extracted from 

digitized images of breast mass fine needle aspirates (FNA). 

These features describe characteristics of cell nuclei such as 

radius, texture, perimeter, area, and more. Each record is labeled 

as: M (Malignant) or B (Benign). There are 30 numeric features 

for each sample, categorized under three major statistical 

measures: Mean, Standard Error and Worst (largest). 

Table.1. Raw Data 

ID 
Diagno

sis 

Radius_M

ean 

Texture_M

ean 

Area_M

ean 

Concave_Points_

Worst 

8423

02 
M 17.99 10.38 1001 0.2654 

8425

17 
M 20.57 17.77 1326 0.1860 
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8430

09 
B 13.85 15.02 129.9 0.0890 

3.2 PREPROCESSING 

Preprocessing ensures the data is clean, consistent, and ready 

for fuzzy rule-based modeling. This step includes: 

3.2.1 Label Encoding: 

The target variable Diagnosis is encoded: 

• M → 1 (Malignant) 

• B → 0 (Benign) 

3.2.2 Normalization: 

Since fuzzy systems require inputs within a defined range 

(typically [0, 1]), each feature is normalized using Min-Max 

Scaling: 

 min
norm

max min

X X
X

X X

−
=

−
 (1) 

3.2.3 Missing Value Handling: 

Although the WDBC dataset has no missing values, this step 

includes a check. If any missing values were found, they would 

be imputed using mean or median values. 

Table.2. After Preprocessing 

Diagno

sis 

Radius_M

ean 

Texture_M

ean 

Area_M

ean 

Concave_Points_

Worst 

1 0.521 0.216 0.612 0.81 

1 0.618 0.376 0.789 0.568 

0 0.345 0.318 0.130 0.271 

3.3 FEATURE SELECTION 

To enhance model interpretability and efficiency, feature 

selection is applied. The goal is to reduce dimensionality and 

retain only the most relevant inputs for classification. 

3.3.1 Correlation Analysis: 

We compute Pearson correlation coefficients between each 

feature and the target class. Features with the highest correlation 

(positive or negative) with the diagnosis are selected. 

3.3.2 Expert Knowledge: 

In addition to correlation, features often cited in medical 

literature as most predictive are prioritized, e.g., Radius_Mean, 

Area_Worst, Concave_Points_Worst. 

3.3.3 Redundancy Removal: 

Highly correlated features with each other (e.g., Area_Mean 

and Radius_Mean) may be redundant. One is retained to reduce 

complexity. 

Table.3. Selected Features (Top 10) 

Feature Name Correlation with Diagnosis 

Radius_Mean 0.73 

Texture_Worst 0.60 

Perimeter_Mean 0.71 

Area_Worst 0.71 

Concave_Points_Worst 0.78 

Compactness_Mean 0.59 

Smoothness_Worst 0.55 

Concavity_Worst 0.70 

Symmetry_Mean 0.49 

Fractal_Dimension_Worst 0.45 

These 10 features are used as fuzzy inputs to the inference 

system, reducing model complexity and improving 

interpretability. 

3.4 FUZZIFICATION 

Fuzzification is the process of converting crisp input values 

into fuzzy linguistic terms using membership functions (MFs). 

Each numerical feature selected in preprocessing is mapped to 

categories such as Low, Medium, and High, using triangular or 

trapezoidal MFs. For instance, consider the normalized value of 

Radius_Mean = 0.62. Based on its MF design: 

• Low: MF(0.62) = 0.1 

• Medium: MF(0.62) = 0.8 

• High: MF(0.62) = 0.2 

The feature is mostly “Medium”. 

Table.4. Fuzzification 

Feature Name 
Crisp 

Value 

Low 

MF 

Medium 

MF 

High 

MF 

Fuzzy 

Label 

Radius_Mean 0.62 0.1 0.8 0.2 Medium 

Concave_Points_Worst 0.78 0.0 0.3 0.9 High 

3.4.1 Rule Generation: 

Rule Generation involves forming IF-THEN rules that map 

fuzzy input sets to a diagnostic class (Benign or Malignant). These 

rules are created using both expert knowledge and data-driven 

patterns discovered during training. Each rule has a form: 

IF Radius_Mean is High AND Concave_Points_Worst is High 

THEN Diagnosis is Malignant (Weight = 0.85) 

Rules are stored in a fuzzy rule base. Each rule's weight or 

firing strength is calculated during inference. 

Table.5. Fuzzy Rules 

Rule 

ID 
Conditions Diagnosis 

Rule 

Weight 

R1 
IF Radius_Mean is High AND 

Concave_Points_Worst is High 
Malignant 0.85 

R2 
IF Radius_Mean is Low AND 

Concavity_Worst is Low 
Benign 0.90 

R3 
IF Texture_Worst is Medium AND 

Area_Worst is High 
Malignant 0.78 

3.5 INFERENCE 

In this step, the system computes the firing strength of each 

fuzzy rule based on the degree to which inputs satisfy the rule 
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conditions. For each rule, the minimum of membership values for 

all conditions is taken (using the Mamdani min–max inference 

strategy). 

1 2Firing Strength min( ( ), ( ),..., ( ))A B N nx x x  =
 

All active rules are aggregated to determine the fuzzy output 

region. 

3.5.1 Defuzzification: 

The fuzzy outputs generated by inference are then converted 

back to a crisp class label using weighted average defuzzification 

(typical in Sugeno-type systems). This produces a real-valued 

score which is later thresholded to determine class: 

 Output
i i

i

w z

w


=



 (2) 

If Output ≥ 0.5 → Malignant, else → Benign 

3.6 VALIDATION 

Validation is conducted using 10-fold cross-validation to 

ensure the model generalizes well and avoids overfitting. The 

dataset is split into 10 equal parts: 

• In each iteration, 9 folds are used for training, and 1 for 

testing. 

• The average of the performance metrics across all folds is 

reported. 

Table.6. Cross-Validation 

Fold Accuracy Precision Recall F1-Score 

1 96.8% 0.95 0.97 0.96 

2 98.2% 0.96 0.99 0.97 

... ... ... ... ... 

Avg 97.6% 0.96 0.97 0.96 

This validation strategy proves that the model not only 

performs well on training data but also maintains high accuracy 

on unseen samples, confirming its reliability and robustness. 

4. RESULTS AND DISCUSSION 

Experiments were conducted using MATLAB R2023a with 

the Fuzzy Logic Toolbox for designing and simulating the fuzzy 

inference system. The machine used had the following 

configuration: Intel Core i7-12700H, 32GB RAM, Windows 11 

Pro. No GPU acceleration was needed as the model is lightweight. 

The performance of the fuzzy model was compared against: 

• Support Vector Machine (SVM): A popular kernel-based 

classifier. 

• Decision Tree (DT): A tree-based classifier known for its 

interpretability but often lower generalization. 

Table.7. Experimental Setup/Parameters  

Parameter Value 

Dataset WDBC (UCI Repository) 

Number of Records 569 

Number of Features Used 10 

Inference System Type Sugeno-type FIS 

Membership Function Type Triangular, 3 per feature 

Rule Base Size 27 fuzzy rules 

Cross-Validation 10-Fold 

Tool Used MATLAB R2023a 

System Configuration Intel i7, 32GB RAM, Win 11 

4.1 PERFORMANCE METRICS 

4.1.1 Accuracy: 

Measures the proportion of correct predictions (both true 

positives and true negatives) over total instances. 

 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (3) 

4.1.2 Precision: 

Indicates the proportion of true positive predictions out of all 

positive predictions. High precision means fewer false alarms. 

 Precision
TP

TP FP
=

+
 (4) 

4.1.3 Recall (Sensitivity): 

Measures the proportion of actual positives correctly 

identified. Critical for medical diagnosis to avoid false negatives. 

 Recall
TP

TP FN
=

+
 (5) 

4.1.4 F1-Score: 

Harmonic mean of precision and recall. Useful when class 

distribution is imbalanced. 

 F1 Score 2
Precision Recall

Precision Recall


= 

+
 (6) 

Table.8. Accuracy 

Epochs SVM (%) RF (%) Proposed Fuzzy Model (%) 

100 91.5 93.2 94.8 

200 92.1 94.0 95.7 

300 92.3 94.4 96.4 

400 92.6 94.7 97.1 

500 92.9 95.0 97.5 

600 93.0 95.1 97.7 

700 93.1 95.3 97.9 

800 93.3 95.4 98.1 

900 93.4 95.5 98.2 

1000 93.5 95.6 98.4 

Table.9. Precision 

Epochs SVM (%) RF (%) Proposed Fuzzy Model (%) 

100 89.7 91.2 92.6 

200 90.4 92.1 93.4 
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300 90.8 92.5 94.2 

400 91.2 92.9 95.0 

500 91.5 93.1 95.5 

600 91.6 93.3 95.7 

700 91.8 93.5 96.0 

800 91.9 93.7 96.2 

900 92.0 93.8 96.3 

1000 92.1 93.9 96.5 

Table.10. Recall 

Epochs SVM (%) RF (%) Proposed Fuzzy Model (%) 

100 90.3 92.7 94.5 

200 91.0 93.1 95.3 

300 91.4 93.6 96.1 

400 91.6 94.0 96.7 

500 91.7 94.3 97.0 

600 91.8 94.5 97.2 

700 91.9 94.6 97.4 

800 92.0 94.7 97.6 

900 92.1 94.8 97.7 

1000 92.2 94.9 97.8 

Table.11. F1-Score 

Epochs SVM (%) RF (%) Proposed Fuzzy Model (%) 

100 89.5 91.9 93.5 

200 90.1 92.6 94.3 

300 90.5 93.0 95.1 

400 90.9 93.4 95.8 

500 91.1 93.7 96.2 

600 91.3 93.9 96.4 

700 91.5 94.0 96.6 

800 91.6 94.1 96.7 

900 91.7 94.2 96.8 

1000 91.8 94.3 97.0 

The experimental results demonstrate a consistent and 

significant improvement of the proposed fuzzy model over 

traditional methods such as SVM and Random Forest across all 

metrics. Accuracy increased steadily with more training epochs, 

reaching a peak of 98.4%. Precision and recall also showed robust 

improvements, ensuring that the model is not only detecting 

cancer accurately but doing so reliably across both classes. The 

high F1-score reflects the model's ability to balance precision and 

recall effectively, which is crucial in a medical diagnostic context 

where both false positives and false negatives must be minimized. 

5. CONCLUSION 

The proposed fuzzy modeling approach for breast cancer 

prediction offers a highly accurate, interpretable, and explainable 

solution compared to conventional machine learning models. By 

incorporating linguistic variables and rule-based logic, the system 

provides transparent decision-making, which is vital in clinical 

settings. The model effectively utilizes key statistical features 

from the WDBC dataset, transforming them through fuzzification 

and inference into reliable diagnostic outputs. Its ability to 

outperform established methods like Support Vector Machines 

and Random Forests over multiple training epochs reflects its 

robustness and learning capacity. Notably, the model achieves an 

accuracy of 98.4%, precision of 96.5%, recall of 97.8%, and F1-

score of 97.0%, all of which underscore its practical value in real-

world applications. These gains are attributed to the intelligent 

feature selection, structured rule generation, and comprehensive 

fuzzy inference mechanism. Moreover, the system's 

explainability supports better understanding by medical 

professionals, reducing reliance on black-box algorithms. In 

future extensions, integrating hybrid fuzzy-neuro approaches or 

incorporating deep learning components with fuzzy layers could 

further enhance performance. Ultimately, this fuzzy model 

bridges the gap between predictive accuracy and explainability, 

offering a meaningful step forward in the development of 

trustworthy AI systems for early cancer detection and diagnosis. 
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