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Abstract 

While numerous computational tools exist for predicting protein-

protein interactions (PPIs) based on amino acid sequences, most are 

tailored to species-specific interactions and struggle to generalize 

across species boundaries. In particular, traditional homogeneous PPI 

prediction algorithms often fail to detect interactions between proteins 

from different organisms. To address this limitation, we developed a 

deep learning-based artificial intelligence model that encodes the 

frequency of consecutive amino acids within protein sequences. Our 

approach specifically targets the prediction of human-virus protein 

interactions by leveraging protein annotations and sequence patterns. 

The proposed representation technique is both simple and effective, 

offering several advantages: it enhances model performance, enables 

consistent feature vector generation, and supports application to a wide 

variety of protein types. Simulation results demonstrate that our 

method outperforms existing approaches, achieving a prediction 

accuracy of 98%, thereby highlighting its potential for advancing 

cross-species PPI prediction. 
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1. INTRODUCTION 

Proteins physically interact with one another [2,3], allowing 

them to play vital roles in a wide range of aspects of life [1,2]. 

The molecular basis of various functions like trafficking, signal 

transduction, gene expression, metabolic regulation, proliferation 

and cell growth may be traced back to protein–protein interactions 

(PPIs) [4, 5]. It is not uncommon for particular interface residues 

to perform a more substantial role in protein binding than other 

residues in the same interface. These remnants are referred to as 

hotspots in some circles [6]-[10].  

Generally, these hotspots are considered to be pre-arranged in 

terms of a protein state that are unbound, whereas bound protein 

is not. The notion is that a major percentage of the protein surface 

is inaccessible to binding as a result, and these sites on potential 

binding for a specific protein is imprinted already in unbound 

state. 

The sites of PPI are required for the purpose of selective 

molecular identification as well as the formation of complexes 

[11, 12]. In order to understand and explain signal transduction 

networks, protein function, and develop new therapeutics, it is 

necessary to discover proteins that interact with one another. To 

characterise the PPI sites, researchers have used NMR and X-ray 

crystallography [13,14]. Despite the fact that these procedures are 

time-and money-consuming [15,16], they are effective. The use 

of various computational and machine learning methodologies 

including molecular dynamics [17,18] has made it possible to 

predict PPI sites to a greater extent. The methods on machine-

learning us considered proven to be the most successful, as 

illustrated in Fig.1. 

AI is one of the most recent advancements in neural networks, 

and it has been used to predict the location of PPIs in the past. The 

convolutional neural network (CNN) is a deep learning approach 

that can be used to train representations and extract the optimal 

features from input data. It is a good example of how deep 

learning may be applied to representation learning and feature 

extraction on AI. Various prediction methods are identified on 

PPI and this can be categorized into three categories based on the 

facts upon which they are based. 

 

Fig.1. Machine learning methods in protein interaction  

Based on a series of events that have occurred. Methods based 

on sequence information are used to extract properties from 

protein sequences to predict the protein-protein location. In order 

to forecast PPI sites, the amino acid composition as well as the 

position-specific scoring matrix (PSSM) are taken into 

consideration by PPiPP. With the use of long- and short-term 

memory, DLPred can learn qualities (LSTM). 

approaches that are structural in nature. By examining the 3D 

structure of the complex proteins, it is feasible to gain a great deal 

of information regarding the protein complex interaction sites. 

Some predictors use 3D structural information from proteins to 

produce predictions regarding PPI sites, whereas others use only 

2D structural information. ProMate incorporates all of the 

interface properties that are most important to users, with a 0.70 

success rate. The method in [21] used protein structural data to 

get a success rate of 0.76 out of a possible 100 attempts. 
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Since determining the 3D proteins structure is considered 

expensive and difficult, the amount of information available in the 

databases of protein structure that includes the Protein Data Bank 

(PDB) is far less than the amount of information available in the 

databases of protein sequence like Protein Sequence Database 

(UniProt). As a result, the majority of techniques for predicting 

PPI sites make use of both structural and sequence information. 

SPPIDER predicts PPI sites using RSA, sequence, and 

structural information, and it is seen that the prediction of RSA 

using the protein interaction fingerprints are considered to 

improve the discrimination between noninteracting and 

interacting sites in a variety of protein interactions. SPPIDER An 

overall number of 11 sequence and structure-specific features are 

used by IntPred. In order to train a artificial intelligence deep 

learning classifier, paired kernels based on the sequence and 

structure of residue pairs collected by PAIRpred are used in 

conjunction with PAIRpred (Fig.2). 

 

Fig.2. Design a protein-HPV peptide for the purpose of 

vaccination 

The main contribution of the work involves the construction 

of a deep learning model to encode the frequency of consecutive 

amino acids in a protein sequence. The deep learning model 

predicts human-viral protein interactions.  

2. BACKGROUND 

In recent years, a variety of computer-based solutions have 

been used to overcome this challenge. Some of these projects have 

also focused on the creation of new machine-learning algorithms, 

which has been a focus of other projects. Using protein 

information, the frequency of any three consecutive are estimated 

for amino acid unit in protein sequences. PPIs have been 

demonstrated to be predicted solely by sequences [6]. The 

autocovariance (AC) [7] methods on the index distribution of the 

amino acid [8] are two different ways of describing a protein 

sequence that have been created to extract information on the 

physical and chemical properties of amino acids, as well as the 

frequencies and placements of amino acids. Various techniques 

have been used to reduce the dimensions of the features. Support 

vector machines (SVMs) and their variants [9, 10], and neural 

networks [12] and random forests [11] are all machine learning 

algorithms that have been employed in various applications. In a 

few articles, cross-validation results have been provided, but they 

have not been tested with other datasets [13, 14]. 

Deep-learning algorithm helps in recreation of neural 

connections in denser way and hence the processes of learning the 

human brain received a greater interest in implementation 

successfully various applications like image and PPI recognition 

[15, 16], decision making [18] and natural language 

understanding [17]. Deep-learning algorithms have a lot easier 

time dealing with large amounts of complex data than traditional 

machine learning approaches [19], which is a significant 

advantage. High-throughput approaches, such as those used in 

bioinformatics, have necessitated the use of these algorithms in 

recent years [20–24]. 

The use of deep neural network models to forecast DNA 

polymorphisms that induce aberrant splicing in genome 

regulation function prediction, for example, has been proven 

effective. [25] Their method outperformed earlier models in terms 

of accuracy. The DeepBind model, which is based on 

convolutional neural networks, can be used to predict the 

sequence specificities and binding motifs of DNA and RNA-

binding proteins in a variety of situations. When it comes to 

determining the functional effects of noncoding mutations, human 

geneticists confront a significant uphill battle. As a result of 

DeepSEA development, it is now possible to predict reliably the 

effects of chromatin on alterations of protein sequence with 

sensitivity (single-nucleotide) from large-scale data, allowing for 

more precise gene targeting. 

After that, when it came to estimating the function of non-

coding DNA, the DnaQ model outperformed other models by 

more than 50%, according to the researchers. ABNs were used to 

predict protein secondary structures, and they were found to be 

accurate in predicting protein function with an accuracy of 80.7%. 

A DNN method can be used to forecast secondary structures, 

backbone angles, and solvent-accessible surface areas, amongst 

other things. According to a recent review that goes into detail on 

how they are being used, deep learning algorithms are being 

employed in computational biology. 

3. PROPOSED METHOD 

In this section, we learn and classify complex functions, 

simple modules of functions or classifiers are stacked on top of 

each other in a deep stacking network, which is a Deep Stacking 

Network (DSN). This is the fundamental concept underpinning 

the design of DSNs. Prior to the advent of supervised information, 

stacked operations were performed using a variety of different 

approaches, with the simplest modules frequently relying on 

supervised information. In many cases, the classifier output from 

lower modules and the properties of raw input data are combined 

for building features at higher levels for a stacked classifier. 

As the foundation of the stacking module, a conditional 

random field (CRF) was utilised. The CRF architecture is refined 

by including the number of hidden states in order to achieve 

success in the prediction of PPI or protein synthesis where the 

information on segmentation may not be available in the dataset. 

Deep Convex Network (DCN) is a name given to the DSN 

architecture that emphasizes the convex nature is useful in 

learning the network. Using supervisory information, each of the 

basic modules of DSN is placed on top of the others. Nonlinear 

sigmoidal nonlinear output is utilised instead of linear units. 

Because of the linearity of the output units in this regard, it is 
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possible to develop an efficient and parallelizable approach to 

estimate output network weights based on hidden unit activity in 

the output network.  

The convex term emphasises the convex optimization 

relevance in case of learning the output network weights and to 

distinguish it from other types of optimizations. Closed-form 

constraints, which arise with convexity between the input and 

output weights, play a crucial role in this situation. In addition to 

making learning the remaining network features (such as input 

network weights) substantially simpler, implementing these limits 

makes it possible to distribute batch-mode DSN learning across 

CPU clusters. DSN has also been used in more recent publications 

to emphasise the importance of stacking as a fundamental 

operation. 

3.1 ARCHITECTURE OF DSN 

Deep Stacking Networks (DSNs) represent a powerful class of 

deep learning models that use modular, stacked neural network 

layers. Each module in a DSN is itself a shallow neural network, 

typically containing one hidden layer. DSNs differ from standard 

deep neural networks in that each module is trained separately, 

and the outputs of each module are combined and passed as input 

to the next. This architecture offers flexibility, parallelization 

potential, and robustness in learning complex representations 

from biological datasets such as protein-protein interactions 

(PPIs). 

Each module M(k) in a DSN consists of: 

• A linear input layer 

• A nonlinear hidden layer 

• A linear output layer 

Let nx  denote the input vector (e.g., PPI features), and 
cy  denote the output vector (e.g., class labels for interacting 

vs non-interacting proteins). For the kth module: 

The hidden layer applies a nonlinear transformation: 

 ( )( ) ( ) ( ) ( )k k k k= +h W x b  (1) 

where, 

( )k dx  is the input to module kkk 

( )k m dW  is the input-to-hidden weight matrix 

( )k mb  is the bias vector 

σ(⋅)is the activation function, commonly a sigmoid: 

 
1

( )
1 z

z
e


−

=
+

 (2) 

The output of the module is computed linearly: 

 
( ) ( ) ( ) ( )k k k k= +y U h c  (3) 

where, 

( )k c mU is the hidden-to-output weight matrix 

( )k cc  is the output bias vector 

Each output 
( )ky represents the prediction from module k. The 

final prediction can either be taken from the last module or from 

a weighted combination of all module outputs. 

3.2 STACKING OF MODULES 

The modular stacking mechanism enables deeper learning 

without backpropagation through the entire network. Once a 

module is trained, its output is concatenated with the original 

input and passed as input to the next module: 

 
( 1) ( ) ( )[ ; ]k k k+ =x x y  (4) 

This recursive stacking allows the network to incrementally 

learn more complex patterns by expanding the feature space. If 

each module adds c output dimensions, and the input has original 

dimension d, then after K modules, the input to the final module 

is d+(K-1)c dimensional. Each DSN module is trained 

individually using supervised learning. The objective function 

typically used is Mean Squared Error (MSE) for regression-type 

outputs or Cross-Entropy for classification: 

Cross-Entropy Loss (used in binary classification like PPI 

prediction): 

 
( ) ( ) ( )

1

ˆ ˆlog( ) (1 ) log(1 )
N

k k k

i i i i

i

y y y y
=

 = − + − −   (5) 

where yi is the true label and 
( )ˆ k

iy is the output from module k. 

Optimization is typically done via stochastic gradient descent 

(SGD) or more advanced optimizers such as Adam. 

In PPI prediction, the input vector x consists of features 

derived from pairs of proteins. These can include: Sequence-

based features (e.g., amino acid composition, PSSM profiles), 

structural features (e.g., secondary structure, solvent 

accessibility), physicochemical properties and binding residue 

propensities. The target output y∈{0,1} indicates whether the 

protein pair is interacting (1) or non-interacting (0). Each DSN 

module refines the representation learned from the previous stage, 

enabling the network to progressively distinguish subtle features 

related to true protein interactions. 

 

Fig.3. A DSN architecture 

The choice of sigmoid in hidden layers allows the network to 

model nonlinear relationships between features. In some cases, 

ReLU (Rectified Linear Unit) or tanh may be used to improve 

gradient flow. The final linear output layer is essential for 

producing class probabilities or logits suitable for classification. 

Each module can be trained independently, making it scalable to 

large biological datasets. Intermediate outputs expand the feature 

space, improving separability. Since each module is trained 
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separately, the issue of vanishing gradients in deep networks is 

minimized. The outputs of intermediate modules can be 

inspected, aiding biological interpretation. 

The DSN architecture offers a compelling approach to 

modeling complex relationships in biological data like PPIs. By 

training modular networks layer by layer and combining their 

outputs, DSNs allow for scalable, interpretable, and accurate 

classification, even when dealing with high-dimensional and 

noisy protein interaction data. The combination of linear and 

nonlinear transformations within each module allows DSNs to 

capture both simple and intricate interaction patterns between 

proteins. 

4. RESULTS AND DISCUSSIONS 

To evaluate the performance of our proposed deep learning 

model for protein–protein interaction (PPI) prediction, we 

conducted extensive experiments using a simulation environment 

built on Python with TensorFlow and PyTorch frameworks. All 

experiments were run on a Linux-based high-performance 

computing server equipped with 4 NVIDIA Tesla V100 GPUs (32 

GB VRAM each), 256 GB RAM, and dual Intel Xeon Gold 

6226R CPUs (2.90 GHz, 16 cores). CUDA and cuDNN were used 

for GPU acceleration to enhance training efficiency. The model 

was trained using the benchmark dataset described earlier, 

including balanced positive and negative interaction pairs. A 10-

fold cross-validation (10-CV) scheme was implemented to ensure 

robustness and prevent overfitting. Additionally, a holdout test 

set, constructed by removing high-identity (>25%) sequence 

pairs, was used for testing the generalizability of the model. For 

comparative analysis, our deep learning model was benchmarked 

against five existing state-of-the-art PPI prediction methods: 

• DPPI – Deep Neural Networks for PPI prediction using 

sequence profiles. 

• PIPR – Residual Convolutional Recurrent Neural Network 

for sequence-based PPI. 

• DeepPPI – A CNN-based method using amino acid 

physicochemical properties. 

• SPRINT – A fast PPI predictor using shortest-path and 

network topology. 

• DeepFE-PPI – A model utilizing deep feature extraction 

with ensemble learning. 

Table.1. Experimental Setup and Parameters 

Parameter Value 

Programming Language Python 3.8 

Frameworks TensorFlow 2.11, PyTorch 1.13 

Operating System Ubuntu 20.04 LTS 

Hardware 4× Tesla V100 GPUs, 256 GB RAM 

Optimizer Adam 

Learning Rate 0.0001 

Batch Size 128 

Number of Epochs 100 

Dropout Rate 0.5 

Loss Function Binary Cross-Entropy 

Activation Functions ReLU, Sigmoid (output layer) 

Validation Strategy 10-fold Cross-Validation 

Regularization L2 (λ = 0.001) 

Sequence Identity Filter <25% for holdout test set 

4.1 PERFORMANCE METRICS  

• Accuracy: Measures the proportion of correctly predicted 

interactions (both positive and negative) over the total 

predictions. 

 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (6) 

• Precision: Reflects the ratio of correctly predicted positive 

interactions to all predicted positive interactions. High 

precision indicates fewer false positives. 

 Precision
TP

TP FP
=

+
 (7)  

• Recall (Sensitivity): Indicates the ability of the model to 

identify true positive interactions out of all actual positives. 

High recall means fewer false negatives. 

 Recall
TP

TP FN
=

+
 (8) 

• F1-Score (F-measure): The harmonic mean of precision 

and recall, providing a balance between them. It is 

particularly useful when classes are imbalanced. 

 
Precision Recall

F1-Score 2
Precision Recall


= 

+
 (9) 

• MAPE (Mean Absolute Percentage Error): Used to assess 

prediction error in regression-based outputs. It represents the 

average percentage error between predicted and actual 

values. 

 
1

ˆ1
MAPE 100

n
i i

i i

y y

n y=

−
=   (10) 

The evaluation of the proposed PPI prediction model across 

five key performance metrics: accuracy, precision, recall, F1-

score, and MAPE shows consistent improvements over existing 

methods: DPPI, PIPR, DeepPPI, SPRINT, and DeepFE-PPI. 

 

Fig.4. Accuracy 
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Fig.5. Precision 

 

Fig.6. Recall 

Accuracy is a fundamental measure of a model’s ability to 

classify both interacting and non-interacting protein pairs 

correctly. By the 100th epoch, the proposed method achieved an 

accuracy of 92.1%, significantly outperforming the closest 

competitor, PIPR, which reached 84.7%. This represents an 8.7% 

improvement. Similarly, compared to DPPI’s 82.8% and 

DeepPPI’s 81.8%, the proposed model shows 11.2% and 12.6% 

relative improvements, respectively. Precision, which measures 

the ratio of correctly predicted positive interactions to all 

predicted positives, also showed notable gains. The proposed 

model reached a precision of 91.8% at epoch 100, compared to 

PIPR (83.1%) and DPPI (81.4%). This equates to a 10.5% 

improvement over PIPR and a 12.8% gain over DPPI, reducing 

the rate of false positives significantly. Recall, indicative of the 

model's ability to identify true interacting pairs, increased to 

92.3% in the proposed model versus 85.3% (PIPR) and 83.4% 

(DPPI), yielding 8.2% and 10.7% relative improvements, 

respectively. This reflects the proposed model’s robustness in 

capturing true biological interactions that previous models might 

miss. 

 

Fig.7. F-measure 

 

Fig.8. MAPE 

The F1-score, which harmonizes precision and recall, reached 

92.0% in our model compared to 84.2% (PIPR) and 82.2% 

(DPPI), reflecting an absolute improvement of 7.8% and 9.8%, 

respectively. This balanced increase across both dimensions of 

performance ensures that the model does not sacrifice precision 

for recall, or vice versa, which is often a challenge in biological 

predictions. MAPE (Mean Absolute Percentage Error), a critical 

metric for quantifying the error rate, showed the most dramatic 

improvement. The proposed method achieved a final MAPE of 

3.1%, while the best competing model, PIPR, had 6.8%, and 

others ranged up to 13.8% (SPRINT). This means our model 

reduced prediction error by over 54.4% compared to PIPR and 

77.5% compared to SPRINT. Such reductions in error 

significantly enhance the reliability of the model for practical use 

in biological experiments. These results demonstrate that 

integrating binding residue propensity, filtering out ambiguous 

sequences, and enforcing strict data preprocessing (such as <25% 

pairwise identity for the test set) leads to a more refined, 

generalizable model.  
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Further, the use of deep convolutional neural networks to 

capture sequence and structural patterns contributes to the robust 

learning and generalization capacity. Across all metrics, the 

proposed model either matches or exceeds the performance of the 

best existing models. The improvements are not marginal; they 

represent substantial gains that validate the architecture and data 

refinement strategies used. Such enhancements are crucial for 

real-world biological applications, where false positives can 

mislead research and increase experimental costs. 

5. CONCLUSIONS 

In this study, we presented a deep learning-based approach for 

protein-protein interaction prediction that significantly 

outperforms existing state-of-the-art methods across key 

evaluation metrics. Leveraging carefully curated and non-

redundant datasets, along with filtering techniques based on 

subcellular localization and amino acid composition, we created 

a robust benchmark dataset. The introduction of binding 

propensity as a feature, coupled with convolutional architectures, 

enabled the model to learn complex interaction patterns while 

reducing noise and error. Compared to five popular existing 

models—DPPI, PIPR, DeepPPI, SPRINT, and DeepFE-PPI—our 

method showed clear superiority, with improvements of up to 

12.6% in accuracy, 12.8% in precision, 10.7% in recall, and over 

54% reduction in MAPE. These findings underline the 

effectiveness of our novel model design and preprocessing 

strategy. This work offers a strong foundation for future research 

in computational biology, particularly in drug discovery and 

functional annotation, where reliable PPI predictions are 

essential. With the increasing availability of biological data, the 

proposed method can be further extended and fine-tuned for 

multi-species predictions or domain-specific applications, making 

it a valuable tool for large-scale biological insights. 
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