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Abstract 

Food quality assessment is critical in ensuring safety, freshness, and 

nutritional value in the food supply chain. Traditional manual 

inspection methods are often subjective, time-consuming, and error-

prone, necessitating the development of automated, reliable systems. 

Existing image processing-based food quality systems lack accuracy, 

real-time operability, or efficient integration into embedded hardware. 

They also struggle with variable lighting conditions and different types 

of food textures, leading to inconsistent results. This study proposes a 

high-quality embedded system that uses histogram-based image 

analysis to assess food quality. The system integrates a Raspberry Pi 4 

with a high-resolution camera module to capture food images. The 

images undergo preprocessing steps including RGB to grayscale 

conversion, histogram equalization, and noise reduction. Feature 

extraction is then performed using histogram intensity distributions, 

which are analyzed for quality grading. The histogram data is classified 

using a trained SVM model implemented in Python and OpenCV. 

Experimental results show that the proposed system achieves 93.8% 

accuracy in food quality classification across diverse food items such 

as fruits and vegetables. Compared to existing methods, our approach 

demonstrated higher precision, better real-time performance, and 

lower hardware costs. The system is lightweight, scalable, and suitable 

for deployment in farms, markets, or homes. 
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1. INTRODUCTION 

The assessment of food quality has become a critical factor in 

ensuring food safety, sustainability, and consumer health. Food 

quality involves various factors such as freshness, ripeness, and 

contamination, all of which are crucial for determining the overall 

quality of food products. Traditional methods of food quality 

assessment, including sensory evaluation by humans and 

laboratory-based tests, are time-consuming, subjective, and 

costly. With the rise of advanced technologies, particularly 

machine learning and computer vision, automated food quality 

assessment systems have gained significant attention. These 

systems offer the potential to revolutionize the way food quality 

is assessed in various industries, from agriculture to food 

packaging [1]. Recent advancements in image processing, 

specifically through histograms and texture analysis, have paved 

the way for more accurate food quality monitoring [2]. 

Despite the advancements in automated food quality 

assessment, several challenges persist. First, variability in lighting 

conditions poses a significant challenge in acquiring consistent 

images for quality assessment. Variations in light intensity, color, 

and shadows can distort the image and affect the accuracy of 

subsequent analysis. Additionally, the complexity of food 

textures makes feature extraction a non-trivial task. Different food 

items often share similar textures, and distinguishing between 

fresh and spoiled food based purely on visual features is 

challenging. Furthermore, real-time processing remains a critical 

barrier. Many existing methods, such as deep convolutional 

neural networks (CNNs), require significant computational 

resources, making them unsuitable for deployment on low-cost 

embedded systems in real-time applications [3]. 

The main challenge in food quality assessment is the accurate 

and efficient classification of food items based on visual features. 

Current methods often rely on simplistic models that do not 

capture the complexity of food textures and colors, leading to poor 

accuracy in real-world settings. Additionally, existing systems are 

not always compatible with low-cost embedded hardware that can 

be deployed in practical environments, such as farms, markets, or 

grocery stores. Therefore, there is a need for a more robust, cost-

effective solution that can accurately assess food quality in real-

time without requiring high-end computational resources. 

The main objectives of this study are: 

• To develop an embedded system for real-time food quality 

assessment using image processing techniques. 

• To propose a novel feature extraction method based on 

histogram analysis combined with Support Vector Machine 

(SVM) classification for food quality assessment. 

• To ensure that the proposed system is lightweight and 

suitable for deployment on low-cost embedded hardware, 

such as the Raspberry Pi. 

• To compare the proposed method with existing food quality 

assessment techniques in terms of accuracy, precision, 

recall, and real-time performance. 

The novelty of this work lies in the integration of histogram-

based feature extraction with SVM classification for food quality 

assessment. This approach has not been widely explored in the 

literature, and it offers several advantages: 

• The proposed system is lightweight and computationally 

efficient, making it suitable for real-time applications on 

low-cost embedded systems. 

• By leveraging histograms to capture pixel intensity 

distributions, the system can more accurately assess the 

quality of food, especially in challenging scenarios with 

varying lighting conditions. 

• The proposed method operates effectively in practical 

environments, where conditions such as lighting and food 

texture can vary significantly. 

• The method can be easily adapted to assess various types of 

food items, making it scalable for widespread deployment in 

food safety monitoring. 
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2. RELATED WORKS 

2.1 COLOR THRESHOLDING METHOD 

Color thresholding is a traditional image processing technique 

used in food quality assessment, where specific color ranges are 

used to classify food items as fresh or spoiled. This method relies 

on segmenting food images into different color channels and 

applying threshold values to classify the food. While simple and 

computationally inexpensive, color thresholding is limited by its 

sensitivity to lighting variations and its inability to capture 

complex texture and shape information [8]. As a result, it is 

typically not suitable for more intricate or subtle quality 

differences in food products. 

2.2 TEXTURE ANALYSIS WITH GLCM 

Gray Level Co-occurrence Matrix (GLCM) is a powerful tool 

used to analyze the spatial arrangement of pixel intensities in an 

image. It has been widely applied in the field of food quality 

assessment, especially for evaluating texture. GLCM measures 

various texture features such as contrast, correlation, and 

homogeneity, which are indicative of food properties like ripeness 

and spoilage. For example, GLCM-based methods have been 

successfully applied to detect the freshness of fruits and 

vegetables by capturing the texture variations associated with 

spoilage [9]. However, GLCM-based methods often require high 

computational resources and can be sensitive to noise, which 

limits their effectiveness in real-time embedded systems. 

2.3 DEEP CNN-BASED CLASSIFICATION 

Deep Convolutional Neural Networks (CNNs) have 

revolutionized the field of image classification, achieving state-

of-the-art performance across a wide range of domains, including 

food quality assessment. CNNs learn hierarchical feature 

representations from raw image data, making them highly 

effective at capturing complex texture and visual patterns. In food 

quality assessment, CNNs have been used to classify food into 

various quality categories such as fresh, semi-fresh, and spoiled 

[10]. However, the high computational demands of deep CNNs 

limit their applicability in real-time systems, especially those with 

limited hardware resources. Training deep models also requires 

large datasets, which may not always be available for all types of 

food. 

2.4 K-MEANS CLUSTERING ON COLOR 

FEATURES 

K-means clustering is an unsupervised machine learning 

algorithm used to group similar data points into clusters. In the 

context of food quality assessment, K-means clustering has been 

applied to group food images based on their color features [11]. 

This method allows for the classification of food into different 

quality categories without labeled data. However, K-means 

clustering is highly sensitive to the initial choice of centroids, and 

its performance can degrade with noisy or inconsistent data. 

Additionally, it may fail to account for the texture and fine-

grained quality differences that are crucial in assessing food 

quality. 

2.5 OTHER APPROACHES 

Several other approaches have also been explored for food 

quality assessment, including histogram-based methods and 

machine learning algorithms. Histogram-based methods analyze 

the distribution of pixel intensities in food images and extract 

statistical features such as mean, variance, and skewness [12]. 

These features are then used for classification tasks. While these 

methods are computationally efficient, they may not always 

capture the complex texture information necessary for 

distinguishing subtle quality differences. On the other hand, 

machine learning algorithms like Random Forests and K-Nearest 

Neighbors (KNN) have been used in combination with texture and 

color features to improve the accuracy of food quality 

classification [13]. However, these methods often struggle with 

high-dimensional data and may require feature engineering. 

Thus, while many methods have been proposed for food 

quality assessment, each has its limitations in terms of accuracy, 

real-time performance, and computational requirements. 

Traditional methods such as color thresholding and K-means 

clustering are limited by their inability to capture complex 

features, while methods like GLCM and deep CNNs offer high 

accuracy but suffer from high computational cost. This highlights 

the need for a more efficient and practical solution, which the 

proposed histogram-based feature extraction and SVM 

classification method aims to address. By combining the 

simplicity and efficiency of histograms with the power of machine 

learning, this method strikes a balance between performance and 

real-time processing, making it well-suited for embedded 

systems. 

3. PROPOSED METHOD  

The proposed method uses an embedded vision system for 

assessing food quality based on histogram image analysis. The 

process starts with image acquisition using a high-resolution 

camera attached to a Raspberry Pi. These images are first 

converted to grayscale to reduce computational complexity. Then, 

histogram equalization is applied to enhance contrast, followed by 

Gaussian filtering to reduce noise. Next, a histogram is generated 

from the intensity levels of the image. The histogram is analyzed 

to extract statistical features such as mean intensity, standard 

deviation, skewness, and kurtosis, which represent the texture and 

color distribution of the food item. These features are fed into a 

Support Vector Machine (SVM) classifier, trained on a labeled 

dataset of food images with quality annotations (fresh, semi-fresh, 

and spoiled). The classifier predicts the quality class in real time 

and displays the result via a GUI on the Raspberry Pi display. 

1. Image Acquisition – Capture RGB images of food using 

the Pi Camera. 

2. Preprocessing – Convert RGB to grayscale, apply 

histogram equalization, and Gaussian filter. 

3. Feature Extraction – Generate histogram and compute 

features: mean, std dev, skewness, kurtosis. 

4. Classification – Feed features into a trained SVM 

classifier to predict quality. 

5. Output Display – Show results (quality level) on 

embedded display. 
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3.1 IMAGE ACQUISITION 

The first step in the proposed system is the image acquisition 

process. The food item is captured using a high-resolution Pi 

Camera (8MP) connected to a Raspberry Pi 4B. The camera is 

mounted at a fixed angle to ensure consistent image capture for 

all food items. Each image is acquired in RGB color space to 

preserve the color features of the food, which are crucial for 

quality assessment. The resolution of the images is set to 640 × 

480 pixels to balance the quality and processing speed. In the 

experimental setup, images are captured under controlled lighting 

conditions, using uniform white LED lights to eliminate shadows 

and reflections. This ensures that the images have consistent 

brightness, making it easier to perform preprocessing steps like 

histogram equalization and noise reduction. 

Table.1. Acquired Image Data 

Food Item Captured Image (Sample) Resolution 

Apple  640 x 480 

Tomato  640 x 480 

Banana  640 x 480 

The Table.1 shows acquired image data, showing food items 

with their corresponding captured images and resolution. 

3.2 PREPROCESSING 

Once the image is acquired, it undergoes a series of 

preprocessing steps to enhance quality and prepare it for further 

analysis. The preprocessing steps are critical to removing noise, 

improving contrast, and extracting features that can be used for 

classification. 

• Grayscale Conversion: The image is first converted from 

the RGB color space to grayscale. This is done to reduce 

computational complexity since color is not essential for the 

histogram-based analysis. The conversion to grayscale is 

done using the following formula for each pixel: 

Gray( , ) 0.2989 ( , ) 0.5870 ( , ) 0.1140 ( , )i j R i j G i j B i j=  +  +  () 

• Histogram Equalization: Next, histogram equalization is 

applied to enhance the contrast of the grayscale image. The 

purpose of this step is to distribute the intensity values more 

uniformly across the available grayscale range (0–255). It 

helps in better distinguishing subtle differences in food 

quality based on texture and color intensity. This technique 

redistributes the pixel intensities so that the histogram of 

pixel values is spread more evenly. 

• Gaussian Blurring: To further reduce noise in the image, a 

Gaussian blur is applied. This smoothing filter helps 

remove high-frequency noise that could interfere with 

accurate feature extraction, particularly for images that may 

contain graininess or slight imperfections. The Gaussian 

filter uses a convolutional kernel that blurs the image by 

averaging pixel values within a neighborhood defined by the 

kernel. 

These preprocessing steps are essential in reducing noise and 

enhancing image features that are important for subsequent 

classification using histogram-based analysis. After 

preprocessing, the image is ready for feature extraction and 

classification, ensuring that the system can accurately assess the 

quality of the food items. 

3.3 FEATURE EXTRACTION 

Once the image has been preprocessed, the next step is feature 

extraction. In the proposed system, the primary features are 

derived from the histogram of the processed grayscale image. The 

histogram captures the distribution of pixel intensities (brightness 

levels) within the image and serves as a representation of the 

texture and color features of the food. 

The histogram is computed by counting the number of pixels 

that fall into each intensity bin. The system uses 256 bins to 

capture the full range of grayscale intensities. From the histogram, 

we extract several statistical features, which are indicative of the 

food’s quality. These features include: 

• Mean Intensity: The average intensity value of the image, 

which provides an overall sense of brightness. 
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• Standard Deviation: Measures the spread of pixel 

intensities from the mean, indicating the contrast and texture 

roughness of the food. 

• Skewness: The asymmetry of the intensity distribution, 

which can indicate whether the food has a predominant light 

or dark region. 

• Kurtosis: Measures the peakedness of the histogram, which 

helps in determining the variation in texture quality. 

These statistical features are used to describe the underlying 

characteristics of the food item, such as whether it is fresh or 

spoiled based on the texture and color distribution. 

Table.2. Extracted Histogram Features for Food Items 

Food  

Item 

Mean  

Intensity 

Standard  

Deviation 
Skewness Kurtosis 

Apple 125.4 30.2 0.5 2.1 

Tomato 118.7 28.9 0.3 1.9 

Banana 135.2 35.1 0.7 2.5 

The Table.2 extracted histogram features for different food 

items. The values represent the statistical metrics derived from the 

intensity histogram, which provide insights into the quality of the 

food. 

3.4 CLASSIFICATION 

After feature extraction, the next step is classification. In this 

study, we use a Support Vector Machine (SVM) for the 

classification of food quality. The SVM is trained on a labeled 

dataset containing food images of varying quality levels (e.g., 

fresh, semi-fresh, and spoiled). The extracted features from the 

histogram serve as the input for the classifier. 

The SVM works by mapping the extracted feature vectors into 

a higher-dimensional space and finding the optimal hyperplane 

that best separates the different quality classes. The decision 

boundary is defined such that the margin (distance between the 

nearest points from each class) is maximized. Once trained, the 
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SVM can predict the quality of a new image by assigning it to one 

of the predefined classes based on the feature values. During the 

classification process, the SVM compares the feature vector of the 

input image with those in the training set to determine which class 

the image belongs to. 

Table.3. Classification Results for Different Food Items 

Food  

Item 

Predicted  

Quality 

Actual  

Quality 

Classification  

Result 

Apple Fresh Fresh Correct 

Tomato Semi-Fresh Semi-Fresh Correct 

Banana Spoiled Spoiled Correct 

The Table.3 shows the classification results showing the 

predicted and actual quality for different food items. The results 

indicate whether the system has correctly identified the quality 

level of the food. The SVM classifier used here is based on a radial 

basis function (RBF) kernel, which is effective in handling non-

linear data like food texture. The classifier is trained using cross-

validation to ensure that it generalizes well to new, unseen data. 

The final result is displayed on the Raspberry Pi’s GUI, where the 

user can see the predicted quality of the food item. The system 

can provide instant feedback, which is highly beneficial for real-

time applications in food quality monitoring. 

4. RESULTS AND DISCUSSION 

The system was tested using a Raspberry Pi 4B with 4GB 

RAM, a Pi Camera V2.1 (8MP), and Python 3.9 with OpenCV 

4.6. The experiment involved collecting 1,200 images of apples, 

tomatoes, and bananas in different quality conditions. Training 

and testing were conducted on the embedded device as well as on 

a PC with Intel i7 processor, 16GB RAM, and Ubuntu OS for 

comparison. 

Simulation and training were also cross-validated using scikit-

learn’s tools. The proposed method was compared against four 

existing techniques: 

• Color Thresholding Method – Lower accuracy and poor 

lighting adaptability. 

• Texture Analysis with GLCM – Better performance but 

computationally expensive. 

• Deep CNN-Based Classification – High accuracy but not 

embedded-friendly. 

• K-means Clustering on Color Features – Moderate 

accuracy, no feature learning. 

Our method outperformed others in terms of processing time, 

accuracy, and hardware efficiency, making it highly suitable for 

real-time embedded deployment. 

Table.4. Experimental Setup / Parameters 

Parameter Value 

Image resolution 640 × 480 

Number of images 1,200 

Preprocessing 

techniques 

Grayscale, Histogram Equalization, 

Gaussian Blur 

Histogram bins 256 

Classifier Support Vector Machine (SVM) 

Training/Test split 70% / 30% 

Embedded Hardware Raspberry Pi 4B, Pi Camera V2.1 

Software tools Python 3.9, OpenCV 4.6, scikit-learn 

Lighting condition 

control 
Uniform white LED lighting setup 

4.1 PERFORMANCE METRICS 

• Accuracy – Measures the proportion of correctly predicted 

quality classes out of all predictions. 

 (TP + TN) / (TP + TN + FP + FN) 

• Precision – Indicates how many of the predicted positive 

results were actually correct, reducing false positives. 

 TP / (TP + FP) 

• Recall (Sensitivity) – Represents how many actual positive 

instances were correctly identified, focusing on false 

negatives. 

 TP / (TP + FN) 

• F1 Score – Harmonic mean of precision and recall, useful 

for imbalanced datasets. 

 2 * (Precision * Recall) / (Precision + Recall) 

Table.5. Accuracy 

Method 
0-240  

Images 

240-480  

Images 

480-720  

Images 

720-960  

Images 

960-1200  

Images 

Color Thresholding 72% 74% 75% 74% 73% 

Texture Analysis  

with GLCM 
81% 83% 82% 81% 80% 

Deep CNN-Based  

Classification 
92% 93% 92% 91% 90% 

K-means Clustering  

on Color 
78% 80% 79% 78% 77% 

Proposed Method  

(Histogram + SVM) 
94% 95% 94% 93% 93.8% 

The proposed method outperforms all existing methods in 

terms of accuracy, achieving the highest accuracy across all steps. 

The Deep CNN-Based Classification also yields high accuracy 

but struggles with real-time deployment and computational cost. 

The Color Thresholding Method and K-means Clustering show 

lower accuracy compared to other methods. 

Table.6. Precision 

Method 
0-240  

Images 

240-480  

Images 

480-720  

Images 

720-960  

Images 

960-1200  

Images 

Color Thresholding 0.68 0.71 0.70 0.69 0.67 

Texture Analysis  

with GLCM 
0.81 0.83 0.82 0.80 0.79 

Deep CNN-Based  

Classification 
0.90 0.91 0.90 0.89 0.88 

K-means Clustering  

on Color 
0.75 0.77 0.76 0.75 0.74 
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Proposed Method  

(Histogram + SVM) 
0.93 0.94 0.93 0.92 0.91 

The proposed method achieves the highest precision, 

consistently predicting food quality with fewer false positives. 

Deep CNN-Based Classification follows closely, but its higher 

computational cost limits its deployment in real-time scenarios. 

Methods like Color Thresholding and K-means Clustering show 

lower precision due to inadequate feature extraction. 

Table.7. Recall 

Method 
0-240  

Images 

240-480  

Images 

480-720  

Images 

720-960  

Images 

960-1200  

Images 

Color Thresholding 0.71 0.73 0.74 0.72 0.70 

Texture Analysis  

with GLCM 
0.79 0.81 0.80 0.79 0.78 

Deep CNN-Based  

Classification 
0.87 0.89 0.88 0.87 0.86 

K-means Clustering  

on Color 
0.72 0.75 0.74 0.73 0.71 

Proposed Method  

(Histogram + SVM) 
0.95 0.96 0.95 0.94 0.93 

The proposed method achieves the highest recall, correctly 

identifying most of the positive instances (e.g., spoiled food). 

Deep CNN-Based Classification has a high recall, but it lags 

slightly behind the proposed method in correctly identifying all 

relevant quality classes, especially in real-time scenarios. 

Table.8. F1 Score 

Method 
0-240  

Images 

240-480  

Images 

480-720  

Images 

720-960  

Images 

960-1200  

Images 

Color Thresholding 0.70 0.72 0.72 0.71 0.69 

Texture Analysis  

with GLCM 
0.80 0.82 0.81 0.79 0.78 

Deep CNN-Based  

Classification 
0.89 0.90 0.89 0.88 0.87 

K-means Clustering  

on Color 
0.74 0.76 0.75 0.74 0.73 

Proposed Method  

(Histogram + SVM) 
0.94 0.95 0.94 0.93 0.92 

The proposed method demonstrates the highest F1 score, 

combining precision and recall effectively. The Deep CNN-Based 

Classification follows closely, but its computational intensity 

limits its real-time use. The K-means Clustering and Color 

Thresholding methods show lower F1 scores due to poorer 

performance in both precision and recall. 

5. CONCLUSION 

The proposed embedded system based on histogram analysis 

and SVM classification significantly outperforms existing food 

quality assessment methods in terms of accuracy, precision, 

recall, and F1 score. Over 1,200 images tested in steps of 240 

demonstrated consistent improvements across all evaluation 

metrics. The Deep CNN-Based Classification method, while 

offering high accuracy, suffers from high computational 

requirements, making it less suitable for real-time embedded 

systems. K-means Clustering and Color Thresholding, while 

simple, yield subpar results due to their inability to fully capture 

the intricate texture and color features necessary for food quality 

assessment. The proposed method, leveraging histogram-based 

features and the SVM classifier, offers a highly accurate, efficient, 

and cost-effective solution for embedded food quality assessment 

systems. It demonstrates consistent results across various food 

types and quality levels, achieving 93.8% accuracy, 91% 

precision, 93% recall, and 92% F1 score. Furthermore, the 

proposed system is capable of operating in real-time on low-cost 

embedded hardware (Raspberry Pi), making it highly feasible for 

deployment in environments such as farms, markets, and homes. 

Its ability to accurately assess food quality with minimal resources 

highlights its potential for broader adoption in sustainable 

agriculture and food safety monitoring. 
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