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Abstract 

Many deep learning-based solutions proposed to automate the analysis 

of camera-trap images for animal counting and behaviour detection 

deployed image classifiers that produce image-level labels, tackle 

animal counting as a classification task, and use images with one 

animal or attribute. They also used large image datasets which are 

costly, time-consuming and laborious to collect and annotate, not 

feasible for rare/elusive species and resource-constrained projects and 

did not explain the generalization of the models on images with 

untrained image backgrounds. This study developed animal counting 

and behaviour detection models for wild animals using You-Only-

Look-Once (YOLO) and small-sized datasets with 20,110 camera-trap 

images. The study results show that using appropriate technologies 

including transfer learning, data augmentation and efficient data 

splitting methods, it is feasible to develop high-accurate and location-

invariant object detection models using small-sized image datasets. 

Despite high performance, the animal counting model did not perform 

well on crowding/interacting animals including Guineafowl, Elephant, 

Lion, Zebra, Wildebeest, Baboon and Giraffe and it misclassified a 

significant number of Wildebeest as Buffalo and Zebra, but few 

Buffalo and Zebra were misclassified as Wildebeest. The behaviour 

detection model performed well on all behaviours except interacting. 

Model’s poor performance on interacting is ascribed to its messy and 

small training set compared to other behaviour classes. The selection 

of an optimal confidence threshold appropriate for a particular dataset 

and increasing data diversity of the training set can significantly 

improve recall while reducing false positives. 
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1. INTRODUCTION 

Increased activities and phenomena including environmental 

degradation, decline of biodiversity, poaching, over-harvesting, 

wildlife diseases, rapid loss of habitat, changing patterns of land 

use, and climate change have led to various adverse consequences 

on wildlife. These include the decline of wildlife populations, 

increase of human-wildlife conflicts and even extinction of some 

wildlife animal species [1]–[4]. These consequences have 

necessitated frequent studies on wildlife populations, abundances, 

density, habitat use, intra-community interactions and structure, 

animal distribution, ecosystems, population dynamics, 

monitoring, and behaviours [5]–[7] using various wildlife data 

collected via different methods. Camera-trapping is a commonly 

used method for collecting imagery data for many such studies 

owing to its benefits which include inexpensiveness, ease of 

deployment and maintenance, non-obtrusiveness to animals and 

safety to both animals and project staff. Its other benefits include 

minimal human involvement, producing high-quality and 

permanent records, operating well in hard-to-access areas, 

dangerous areas, day and night, and for long durations as battery 

and memory can permit [1], [7]–[12].  

Because of its massive use, camera-trapping generates a 

copious number of camera-trap images. For instance, operating in 

Serengeti National Park (SNP) in Tanzania, the Snapshot 

Serengeti (SS) Project and Serengeti Biodiversity Program (SBP) 

generated about 7.1 million and 1 million camera-trap images, 

respectively [13], [14]. To reduce time, labour, cost, and reliance 

on domain expertise inherent in the manual analysis of collected 

camera-trap images, many wildlife studies have automated the 

analysis by deploying machine learning/deep learning (ML/DL) 

methods. However, despite this great success, the use of image 

classifiers such as ResNet, VGG etc. by many proposed 

automated solutions including Yousif et al., (2019), Chen et al., 

(2015), Norouzzadeh et al., (2018),  Tabak et al., (2019) led to 

several limitations. First, image classifiers produce image-level 

labels regardless of the number of animals or attributes the image 

contains. Second, image classifiers tackle animal counting as a 

classification task [7], and many solutions use animal images with 

one animal or attribute (behaviour) [1], [7], [10]. This leads to 

inaccurate results specifically when analysing images with 

multiple animals (attributes). Third, many solutions such 

solutions use large datasets with hundreds of thousands or 

millions of camera-trap images [7], [10], [12], [15]. Such large 

datasets are costly, laborious, time-consuming and 

computationally expensive to collect, annotate and develop DL 

models. It is also challenging to collect large datasets for rare and 

elusive animal species or resource-constrained projects. Fourth, 

many such studies estimate the performance of the developed 

models on trained image backgrounds [1], [7] i.e., did not estimate 

models’ performance on images with untrained backgrounds. 

Last, owing to insufficient literature, further research is to be done 

provide insight into the performance of object detection models 

on behaviour detection in camera-trap images.  

This study used a YOLOv4 object detector and 20,110 

camera-trap images to develop an animal counting model for 11 

wild animal species (Table 1), and a behaviour detection model 

for five animal behaviours (Table 2). This study offers several 

contributions including the use of small-sized datasets (which 

reduce cost, time, labour and computational power required to 

collect, annotate and develop models). The use of small-sized 

datasets promotes the development of effective DL solutions for 

resource (images) constrained wildlife studies. The validation of 

trained models on images with untrained image backgrounds 

provides insight into the generalization of object detection models 

on untrained image backgrounds in comparison with their 

generalization on trained image backgrounds. To further describe 

and understand the model’s performance on individual and 

overall classes, this study deployed several performance metrics. 
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Lastly, since collecting and annotating images for object detection 

tasks is costly, laborious and time-consuming, the study 

contributes two labelled datasets for animal detection and 

behaviour detection which can be used by other researchers for 

similar studies.   

2. OBJECT DETECTION AND YOLOV4  

Object detection is the task that involves locating and 

classifying objects of interest within an image or video [16], [17]. 

According to Gündüz & Işık, (2023), object detection comprises 

object localization; a process of predicting the location of an 

object in an image and drawing a bounding box around it; and 

object classification, which is the process of predicting the class 

to which the predicted object belongs. Two major categories of 

convolutional neural network-based object detection algorithms 

are one-stage object detection algorithms and two-stage-object 

detection algorithms [17], [18]. Three sequential operations 

(steps) of two-stage object detection algorithms involve 

generating bounding box candidates, object localization and 

object classification. On another hand, one-stage object detection 

algorithms perform object localization and object classification 

for the complete image simultaneously, making them generally 

faster, but less accurate than two-stage object detection algorithms 

[3], [16], [17]. Examples of one-stage object detection algorithms 

are Single Shot MultiBox Detector (SSD), RetinaNet, Fully 

Convolutional One-Stage (FCOS), and You-Only-Look-Once 

(YOLO) series algorithms (including YOLOv4). Popular 

examples of two-stage object detection algorithms are Region 

with Convolutional Neural Network (R-CNN), Fast R-CNN, 

Faster R-CNN, Region-based Fully Convolutional Network (R-

FCN) and Libra R-CNN object detectors [3], [16].  

 

Fig.1. The architecture of YOLOv4 (Source: [20]) 

YOLOv4 is the fourth version in the family of YOLO object 

detection algorithms which was first proposed by Alexey 

Bochkovskiy and published in April 2020 [16], [19] after being 

tested extensively on MS COCO dataset. YOLOv4 offers 

significant improvement in inference time (speed) over YOLOv3. 

It is also implemented on an open-source, flexible and high-

performance framework called Darknet, capable of being easily 

implemented on both a central processing unit (CPU) and a 

graphics processing unit (GPU). Because of its high processing 

speed and comparatively good detection performance, YOLO is a 

preferred choice among a stack of deep learning object detection 

algorithms for real-time object detection tasks including self-

driving cars, traffic surveillance systems, and smart self-

governance [19]–[21]. To localize and classify objects in an 

image, YOLOv4 divides an image into several grids, with the 

bounding box and confidence score for each grid being predicted. 

Finally, the class for each detected object is predicted based on 

the highest confidence score [16]. YOLOv4 architecture consists 

of three major components namely backbone, detection neck, and 

detection head [16], [17]. It also uses Cross Stage Partial 

Darknet53 (CSPDarknet53) which is a convolutional neural 

network (CNN) for the backbone, Spatial Pyramid Pooling (SPP) 

Block and Path Aggregation Network (PANet) for the detection 

neck and three YOLOv3 heads with sizes   [17] for detection head 

[16], [17], [20]. 

3. MATERIALS AND METHODS 

3.1 DATA ACQUISITION AND SPLITTING 

This study used 20,110 camera-trap images from the SS 

project and SBP. 13,693 images were used for animal counting 

task, while 6417 images for behaviour detection task. 13,170 

images of the animal counting task were from the SS dataset, 

while 523 images were from SBP. This dataset was split under a 

single holdout cross-validation method with stratified random 

sampling technique into 8815 images (64%), 2204 images (16%) 

and 2674 images (20%) for training set, validation set and test set 

respectively.  The test set was further split into two distinct 

subsets which are the trained test (1338 images), and the untrained 

test set (1336 images). Training set shared image background 

domain with the trained test set. However, this background 

domain was different from that of untrained test set images. 

Table.1. Dataset split for animal counting task 

Species 
Training 

set 

Validation  

set 

Trained 

set 

Untrained  

set 
Total 

Buffalo 642 160 101 101 1004 

Elephant 744 186 110 111 1151 

Giraffe 920 230 146 144 1440 

Guineafowl 931 233 140 139 1443 

Hyena 1081 270 155 158 1664 

Lion 862 215 125 125 1327 

Hartebeest 479 120 75 74 748 

Warthog 979 246 146 144 1515 

Wildebeest 575 144 95 94 908 

Zebra 1351 338 200 200 2089 

Baboon 251 62 45 46 404 

The development of the behaviour detection model utilized a 

dataset comprising 6417 images representing five animal 

behaviours: feeding, moving, resting, standing and interacting. 

The dataset was split using a single holdout cross-validation 

method with stratified random sampling technique into 4604 

images (72%), 1151 images (18%) and 662 images (10%) for 

training set, validation set and test set, respectively. The 

breakdown of this dataset is shown in Table 2. All images for 

animal counting and behaviour detection tasks were hand-labelled 

(annotated) into YOLO format (.txt) using a labelling software 

called labeling. 
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Table.2. Single holdout cross validation scheme for behaviour 

detection 

Behaviour class 
Training 

set 

Validation 

Set 

Test 

set 
Total 

FEEDING 920 230 144 1294 

MOVING 1312 328 182 1822 

RESTING 872 218 122 1212 

STANDING 1104 276 157 1537 

interacting 396 99 57 552 

TOTAL 4604 1151 662 6417 

3.2 ENVIRONMENT SETUP 

All animal counting and behaviour detection models were 

developed on Google Colab Pro Tesla T4 GPU with 15 GB of 

RAM in the darknet framework. All training and validation 

images were automatically resized into 416x416 pixels (width x 

height). The study deployed transfer learning by using models 

pre-trained on the Microsoft Common Object in Context (MS 

COCO) dataset and data augmentation techniques. The two 

techniques are commonly deployed in developing ML/DL models 

in situations with less training data and imbalanced classes to 

enhance fast convergence, improve models’ performance and 

generalization and reduce overfitting,  training time and 

computational power [9], [22]–[24].  Although MS COCO has 

fewer images and object categories than the ImageNet dataset, it 

is more appropriate for transfer learning for this study than 

ImageNet because it contains fewer iconic objects, more object 

categories and object instances per image, fewer images with one 

object category and several classes [25]–[27].    

3.3 EVALUATION METRICS 

To assess the performance of the developed models, we used 

eight different evaluation metrics namely true positive (TP), false 

positive (FP), false negative (FN), recall, precision, F1-score, 

average precision (AP), and mean average precision (mAP). A 

true positive refers to the detection of a positive ground-truth 

bounding (box) sample [28], [29]. A false positive is defined as 

an incorrect detection of a non-existent object or misclassification 

of an existing object in an image [28], [29]. A false negative is 

defined as an undetected ground-truth bounding box (sample) 

[28], [29], or a detected but misclassified ground-truth sample.  

Recall is the ability of the object detector to identify all 

relevant samples of the ground truth [28], [29]. It is expressed as 

a proportion of true positives over all ground-truth samples, i.e., 

TPs

TPs FNs+
. Precision is defined as the ability of an object 

detector to detect only relevant samples among positive detections 

[28], [29]. It is expressed as the proportion of true positive overall 

positive detections made by an object detector, i.e., 
TPs

TPs FPs+
. 

F1-score is defined as a harmonic mean of precision and recall 

[22], [29] expressed as 
Precision x Recall

2 x
Precision Recall+

.  

According to Schneider et al., (2020), an F1-score of at least 

0.7 indicates that the model attained better recall and precision 

values. Average precision is an evaluation metric which expresses 

the percentage of correct predictions of a particular class in the 

dataset obtained by computing an area under curve (AUC) of 

precision x recall curve and averaging precision across all recall 

values between 0 and 1 at one or various intersection over union 

(IoU) values [28]. The mAP is an evaluation metric which 

expresses the model’s accuracy over all classes in the dataset, 

computed by averaging average precisions of all classes in a 

dataset into a single numerical performance [28], [29]. 

4. RESULTS 

4.1 ANIMAL COUNTING 

Before estimating the model’s accuracy on animal counting, it 

is important to estimate its accuracy in detecting and classifying 

animals in the given test set. The Table.3 presents the model’s 

accuracy in AP and mAP on the detection and classification of 

animals on trained and untrained test sets. The accuracy results 

show a slight difference of 2.18% in mAP of the model’s accuracy 

between trained and untrained test sets. Results further show that 

the model performed well in all animal classes on both test sets, 

except on Baboon, Wildebeest and Buffalo. They also show that 

the animal counting model performed better on the trained test set 

than on the untrained test set on all animal classes except on 

Buffalo, Guineafowl, Hartebeest and Baboon and that there exists 

a small performance difference in AP between the two test sets on 

all classes except Giraffe (7.59%) and Lion (12.48%). To further 

describe its performance, the model’s accuracy in counting 

detected animals in terms of true positives (TPs), false positives 

(FPs), recall, precision, F1-score was estimated using an untrained 

test set with 3718 ground-truth (GT) samples. The results from 

this estimation are presented in Table 4 and Table 5.  

Table.3. Model’s detection and classification accuracy on trained 

and untrained test sets 

Animal  

Class 

AP on trained 

Test set (%) 

AP on untrained  

Test set (%) 

Buffalo 69.81 70.10 

Elephant 82.59 81.87 

Giraffe 96.13 88.54 

Guineafowl 90.52 91.40 

Hyena 98.17 95.71 

Lion 92.86 80.38 

Hartebeest 82.90 86.22 

Warthog 95.82 91.93 

Wildebeest 71.97 71.85 

Zebra 79.12 71.01 

Baboon 71.63 72.36 

mAP (%) 84.68 82.50 
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Table.4. Model’s accuracy on counting detected animals on 

untrained test set 

Animal class GT TPs FPs FNs 
Recall 

(%) 

Precision 

(%) 

Total 

Counts 

Buffalo 449 315 92 134 70.16 77.40 407 

Elephant 300 242 11 58 80.67 95.65 253 

Giraffe 205 175 1 30 85.37 99.43 176 

Guineafowl 510 427 3 83 83.73 99.30 430 

Hyena 164 150 1 14 91.46 99.34 151 

Lion 205 157 9 48 76.59 94.58 166 

Hartebeest 126 110 9 16 87.30 92.44 119 

Warthog 193 176 6 17 91.19 96.70 182 

Wildebeest 655 407 7 248 62.14 98.31 414 

Zebra 829 620 25 209 74.79 96.12 645 

Baboon 82 56 3 26 68.29 94.92 59 

Total/average 3718 2835 167 883 79.24 94.93 3002 

The model attained the mean (average) F1-score of 86.10%. 

Table 4 and Table 5 show that the animal counting model made a 

total of 3002 animal counts, of which 2835 were TP counts and 

167 FP counts, therefore attaining an average recall of 79.24%, 

average precision of 94.93% and average F1-score of 86.10%. 

Table 5 and S1 (Supplemental materials) show that of the 167 FP 

counts, 111 were trained animals, 12 were untrained objects (rock, 

tree, wall, untrained animals and log) and 44 (of which 36 were 

false positive Buffalo) were a result of double detections. Double 

detections involve multiple detections of the same object in an 

image. When this occurs, the detection with the highest 

confidence score is compared against an object’s ground-truth 

bounding box to determine whether it is a TP or not, while  the  

other detections  with lower confidence scores are  considered FP  

[30]. 

Table.5. Breakdown of false positive and false negative 

detections 

Animal  

class 

False Positive  

Detections 

False Negative  

Detections 

T
ra

in
ed

  

a
n

im
a

ls
 

U
n

tr
a

in
ed

  

A
n

im
a

ls
 

D
o

u
b

le
  

D
et

ec
ti

o
n

s 

T
o

ta
l 

F
P

 

M
is

cl
a

ss
if

ie
d

 

D
et

ec
ti

o
n

s 

U
n

d
et

ec
te

d
  

D
et

ec
ti

o
n

s 

T
o

ta
l 

F
N

s 

Buffalo 55 1 36 92 15 119 134 

Elephant 10 0 1 11 2 56 58 

Giraffe 0 1 0 1 0 30 30 

Guineafowl 0 3 0 3 0 83 83 

Hyena 1 0 0 1 8 6 14 

Lion 8 1 0 9 8 40 48 

Hartebeest 8 1 0 9 3 13 16 

Warthog 4 0 2 6 7 10 17 

Wildebeest 4 2 1 7 64 184 248 

Zebra 19 3 3 25 3 206 209 

Baboon 2 0 1 3 1 25 26 

Total 111 12 44 167 111 772 883 

The Table.4 further shows that there are 883 false negatives 

(23.75% of the GT samples), of which 772 were unidentified GT 

samples while 111 were identified but misclassified GT samples. 

Results further show that Buffalo (92 FPs), Zebra (25 FPs) and 

Elephant (11 FPs) accounted for 76.65%) of all 167 FP detections, 

while Wildebeest (184), Zebra (206), Buffalo (119), Guineafowl 

(83), Elephant (56), and Lion (40) accounted for about 89.12% of 

all 772 unidentified GT samples. Table 5 shows that Wildebeest 

accounted for 64 detections (57.66%) of all 111 identified but 

misclassified GT samples.  

4.2 BEHAVIOUR DETECTION 

The Table.6 presents the accuracy (in APs and mAPs) of the 

best-performing behaviour detection model on the test set. The 

Table shows that the model attained mAP of 69.55% and that it 

performed well on feeding, moving and standing, fairly on 

standing, and poorly on interacting.  

Table.6. Accuracy 

 
Behaviour class mAP 

(%) A B C D E 

AP (%) 72.51 77.83 76.22 65.37 55.84 69.55 

Key: A = feeding, B = moving, C = resting, D = standing, E= 

interacting 

5. DISCUSSION 

Owing to the high accuracy attained, this study demonstrates 

the feasibility of developing accurate object detection solutions 

for wild animal counting and behaviour detection using small-

sized datasets in combination with techniques including data 

augmentation, transfer learning, efficient data splitting, 

hyperparameter tuning etc. This advantage renders an opportunity 

for resource-constrained or rare animal projects which cannot 

collect large camera-trap image datasets to also significantly 

benefit from deep learning methods. The use of smaller datasets 

reduces the amount of time, money, labour and computational 

power required to collect and annotate large datasets and develop 

object detection models. Results also show that object detection 

solutions can generalize well to new images with untrained 

backgrounds and are therefore appropriate for the development of 

location-invariant detection models for animal counting and 

behaviour detection. Like the use of small-sized datasets, 

location-invariant object detection models will render the re-use 

(redeployment) of existing object detection solutions and 

therefore save money, time, labour and computational power 

spent on developing camera-trap location variant (specific) 

solutions.  The model’s performance results show that animal 

counting accuracy is inextricably tied to its ability to identify 

relevant animals from the ground-truth samples (recall) and 

classify positive detections as true positives (precision). As 

indicated in Table 5, although the animal counting model attained 

high recall (79.24%), still it did not identify 772 samples (20.76%) 

of ground-truth samples, which is numerically large compared to 
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111 ground-truth samples which were identified but misclassified. 

Results from Table 5 and further observation of the detection 

outputs show that a large number of unidentified ground-truth 

samples (by the proportion of unidentified samples to ground-

truth samples for each animal class) were from Giraffe (14.6%), 

Guineafowl (16.3%), Elephant (18.7%), Lion (19.5%), Zebra 

(24.8%), Buffalo (26.5%), Wildebeest (28.1%) and Baboon 

(30.5%). Most of these species have the tendency to live in crowds 

(concentrated groups) or interact physically, making it harder for 

the model to easily detect them individually. In addition, the 

animal counting model identified a significant number of 

Baboons carrying young Baboons or two Giraffes moving or 

standing close to each other (playing or fighting) as one animal. 

Similarly, observations on unidentified samples revealed that the 

animal counting model did not identify flying or wing-stretching 

Guineafowl samples as well as Baboons sitting on trees, which 

may be ascribed to a lack of images with such features in the 

training set. These observations suggest that adding images with 

such features in the training set can significantly improve the 

model’s recall. From literature, much of the emphasis is put on 

the use of large training sets rather than wider feature diversity. 

However, it is possible to use large training sets with less (similar) 

feature diversity and therefore attain low recall. This may occur 

when a resource-constrained project, owing to the high cost 

associated with the labelling of images and developing the model, 

decides to use few of the available images. 

Further, results (supplemental material S1) have shown that 

the animal counting model misclassified Wildebeest as Buffalo 

and Zebra more than Buffalo and Zebra misclassified as 

Wildebeest. While resemblance (skin colour, shape, horns etc.) 

between Wildebeest and Buffalo may be ascribed to these 

misclassifications, it does not explain why there are few 

misclassifications of Buffalo as Wildebeests. Similarly, less 

resemblance between Wildebeest and Zebra creates questions for 

factors leading to many misclassifications of Wildebeests as 

Zebra but zero misclassified Zebra as Wildebeest (supplemental 

material S1). Poor performance of the behaviour detection model 

on interacting behaviour may be ascribed to messy and small-size 

training data of the interacting behaviour class. The class 

contained the smallest proportion (8.6%) of the behaviour 

detection dataset, which is 2.2 and 3.3 times smaller than 

RESTING (second smallest behaviour class) and MOVING 

(largest behaviour class). It also contained messy data, largely 

composed of crowded animals including Lions, Zebra, Elephants, 

Wildebeest and Baboons. Similarly, the animal counting model 

produced a significant number of unidentified ground-truth 

samples (false negatives) from these species owing to their 

crowdy nature in many images.  

Additionally, it was observed that a significant number of 

instances of interacting images were not as conspicuous as of 

other behaviours including resting, standing, feeding and moving. 

A combination of these factors made it more challenging for the 

behaviour detection model to identify instances of interacting 

behaviour than it was with other behaviours.  We also observed 

that the selection of an optimal confidence threshold may 

significantly improve the model’s recall by reducing the number 

of unidentified ground-truth samples (false negatives) from 

images.  

Our study demonstrates that a confidence threshold of 0.5 (or 

above) is too restrictive and produces many unidentified false 

negatives. It also demonstrates that a confidence threshold value 

below 0.4 though significantly reduces unidentified false negative 

samples, also significantly increases the number of positively 

detected but misclassified samples and double detections. We 

established that an optimal confidence threshold lies between 0.4 

and 0.5.  

6. CONCLUSION AND AREAS FOR FURTHER 

STUDIES 

This study used a YOLOv4 object detector and small-sized 

camera-trap image datasets to develop accurate detection models 

for wild animal counting and behaviour detection in combination 

with techniques including transfer learning, data augmentation 

and efficient data splitting. Study results further demonstrate that 

object detection models can generalize well on untrained image 

backgrounds and therefore used to develop location-invariant 

object detection models. This advantage is useful for resource-

constrained wildlife projects which cannot collect large camera-

trap datasets or studies for rare or elusive species which 

commonly have few camera-trap images. Development of 

location-invariant object detection models using small-sized 

image datasets saves time, money, effort and computational 

power commonly spent on developing location-variant object 

detection solutions using large datasets.  

Our study observed that the animal counting model 

misclassified more Wildebeests as Buffalo and Zebra than 

misclassified Buffalo and Zebra as Wildebeests, combined and 

that the model did not perform well on crowded animal species 

including Zebra, Wildebeest, Guineafowl, Elephant and Buffalo.   

We also found that double detections and false positives from 

untrained animals have insignificant effects on animal detection 

and counting. However, the study results postulate that a small 

training set and messy data are ascribed to poor performance of 

behaviour detection model for interacting behaviour. Given more 

images and of high quality, the model would perform better.  

Our study results show that improving feature diversity in the 

training set may significantly improve the recall of the detection 

models. We recommend further research on the factors 

influencing the misclassification of more wildebeest as buffalo 

and zebra, compared to buffalo and zebra being misclassified as 

wildebeest, methods to improve detection of crowded 

(concentrated) animals including Lions, Zebra, Elephants, 

Wildebeest and Baboons. Crowded species have the largest 

proportion of unidentified GT samples, and therefore high FNs. 

Further model training on dataset with increased size and quality 

of interacting images, and with flying birds may significantly 

improve models’ recall. We also recommend the use of untrained 

images (images with new backgrounds) from geographically 

different camera-trap locations as test set to further study the 

generalization of the object detection models on untrained image 

backgrounds.  
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SUPPLEMENTAL MATERIAL 

Table.7. Confusion matrix of the test set 
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Warthog 3     3     1 7 

Wildebeest 45      4   15  64 

Zebra 3           3 

Baboon        1    1 

Subtotal from GT 55 10 0 0 1 8 8 4 4 19 2 111 

Animal Class FPs from double detections 

G
ro

u
n

d
 T

r
u

th
s 

Buffalo         1   1 

Elephant 2           2 

Giraffe             

Guineafowl             

Hyena        2   1 3 

Lion  1          1 

Hartebeest             

Warthog 10           10 

Wildebeest 24         3  27 

Zebra             

Baboon             

Subtotal FPs  

from double  

detections 

36 1 0 0 0 0 0 2 1 3 1 44 

Untrained objects FPs from untrained objects 

U
n

tr
a

in
e
d

 

o
b

je
c
ts

 

Rock    3     2   5 

Tree 1  1       2  4 

Wall       1     1 

Untrained animals          1  1 

Log      1      1 

Subtotal FPs  

from untrained 
1 0 1 3 0 1 1 0 2 3 0 12 

Total FPs  

(FPs from GT + FPs from double detections + FPs from untrained objects) 

Total detections 92 11 1 3 1 9 9 6 7 25 3 167 
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