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Abstract 

Frequent itemsets mining holds a crucial position in the field of data 

mining; however, traditional algorithms like Apriori and FP-Growth 

often encounter efficiency and memory consumption issues when 

handling large-scale datasets, which not only makes them difficult to 

cope with dynamic dataset changes in some situations but also limits 

their widespread use in practical applications. Therefore, a novel 

DTFIMA (Dynamic Tiered Frequent Itemset Mining Algorithm,) 

algorithm is proposed in this paper to address optimization problems 

related to the storage and searching process of frequent itemsets by 

introducing dynamic weight Huffman coding and combining it with 

logarithmic frequency stratification. In ADFIM, all itemsets are 

divided into three frequency levels: high, medium, and low, and 

independent Huffman trees are created for each level, thus achieving 

higher efficiency in frequent itemsets encoding and search. 

Meanwhile, ADFIM improves the accuracy of frequent itemset mining 

and enhances the algorithm's stability and reliability in handling large-

scale data by dynamically updating weights and timely cleaning low-

frequency items. Experimental results show that compared to the 

traditional FP-Growth algorithm, ADFIM demonstrates higher 

efficiency in handling large-scale transaction databases, especially in 

dealing with dynamic data streams, significantly reducing computation 

time while ensuring the accuracy and consistency of frequent itemset 

discovery. 
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1. INTRODUCTION 

. Frequent itemset mining plays an indispensable role in many 

fields, whether in market basket analysis, intrusion detection or 

recommendation systems, and existing frequent itemset mining 

algorithms, such as Apriori and FP-Growth, although it is widely 

used and has achieved certain success, each also has obvious 

advantages and disadvantages, which in some cases will 

significantly affect the performance and applicability of the 

algorithm. Specifically, the Apriori algorithm due to its needs the 

large computational overhead and multiple scans of the database 

make it unscalable when processing large-scale data sets, and 

even completely unfeasible in some cases [1].  

On the other hand, the FP-Growth algorithm reduces database 

scans by building FP trees and it performs well when processing 

certain types of data. However, when faced with sparse data sets, 

the FP tree it constructs may be too large and complex, resulting 

in a significant decrease in algorithm efficiency [2]. This not only 

increases memory usage, but also it may cause the algorithm to 

run too long, causing FP-Growth to have various limitations when 

facing sparse data [3]. 

In response to the above problems, this paper proposes a new 

frequent itemset mining algorithm, which combines dynamic 

weighted Huffman coding and hierarchical dynamic partitioning 

mechanism (Tiered Dynamic Weighted Frequent Itemset Mining 

Algorithm, TDWFIMA) to optimize the item set. Storage and 

search processes. TDWFIMA divides all items into three levels: 

high frequency, medium frequency, and low frequency through a 

hierarchical coding strategy, and creates a Huffman tree for each 

level, thus greatly improving the efficiency of coding and 

searching. The advantage of this method is that it combines the 

efficient compression characteristics of Huffman coding and the 

dynamic adaptation characteristics of frequent itemset mining, 

which has key execution time and memory advantages compared 

with classic algorithms. Its contributions include:  

• Introducing innovative dynamic weighted Huffman coding. 

By dynamically adjusting weights and hierarchical coding 

strategies, the coding length of high-frequency items is 

effectively reduced and search efficiency is optimized [4].  

• Through the hierarchical dynamic partitioning mechanism, 

the item set search process is made more efficient and the 

overhead of multiple database scans is avoided [5].  

• Through experiments on public data sets, it is verified that 

the algorithm has significantly superior performance 

compared with traditional methods. Experimental results 

show that the algorithm using TDWFIMA is superior to the 

traditional algorithm in terms of execution time and memory 

usage. Experimental results show that the TDWFIMA 

algorithm can mine frequent item sets more efficiently when 

processing dynamic data streams, significantly reducing 

computational overhead and improving memory utilization. 

These advantages give it broad potential for practical 

applications. 

This research paper discusses in detail the Tiered Dynamic 

Weighted Frequent Itemset Mining Algorithm (TDWFIMA) that 

combines dynamic weighted Huffman coding with hierarchical 

dynamic partitioning and conducts in-depth research on its 

application potential in the field of frequent item set mining, 

showing its potential to provide an efficient solution for data 

mining and opening up new research directions.  

The rest of this paper is arranged as follows: The second part 

will thoroughly analyze the problems existing in the current 

frequent item set mining algorithm, explore its limitations and 

room for improvement from multiple perspectives, and the third 

part will introduce the basic principles, design ideas and 

implementation process of the TDWFIMA algorithm in detail, 

showing its unique algorithmic advantages and innovations. The 

fourth part focuses on performance evaluation. Through a large 

amount of experimental data and comparative analysis, it proves 

the superior performance of TDWFIMA in processing large-scale 

data. The fifth part summarizes the full text, draws conclusions, 

and proposes future research directions and potential application 

scenarios. 
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2. RELATED WORK 

The research direction of frequent item set mining occupies an 

extremely important position in the field of data mining. Its core 

purpose is to find out those itemsets that often co-occur from a 

large amount of transaction data. After the market basket analysis 

theory proposed by Agrawal et al., this research field quickly 

attracted widespread attention and has been deeply studied. 

Researchers in many fields continue to propose various 

algorithms to improve further the efficiency and scalability of 

frequent itemset mining, based on different technical means and 

optimization strategies to meet the processing needs of complex 

data, including but not limited to Apriori algorithm, FP-Growth 

algorithm, Eclat algorithm, etc. In continuous development and 

evolution, these algorithms strive to make breakthroughs and 

improvements in computing speed, memory consumption, and 

mining accuracy, so that frequent itemset mining technology can 

better adapt to the diverse and rapidly changing data needs in 

actual application scenarios. 

2.1 LIMITATIONS OF TRADITIONAL FREQUENT 

ITEMSET MINING ALGORITHMS 

In the research field of frequent itemset mining, many classic 

algorithms have been widely used and achieved certain success. 

These algorithms mainly include Apriori algorithm, FP-Growth 

algorithm and Eclat algorithm [6]. However, with the continuous 

expansion of data scale and the real-time demand of data flow, 

these traditional algorithms have many limitations when 

processing dynamic data and large-scale data sets [7]. For 

example, the Apriori algorithm needs to scan the entire database 

multiple times to generate frequent item sets. This process not 

only generates a lot of I/O overhead but also causes huge 

computational overhead because the algorithm needs to generate 

a large number of candidate item sets in each iteration [8]. In 

contrast, although the FP-Growth algorithm compresses data by 

constructing a frequent pattern tree (FP tree), which significantly 

reduces the number of database scans and the number of candidate 

item sets generated when processing large-scale data sets, the 

construction and storage of the FP tree still require a lot of 

memory resources [9]. In addition, FP-Growth needs to 

recursively mine the FP tree. For tree structures with deeper 

levels, the recursive operation is complicated and easily leads to 

stack overflow. To conquer these restrictions related to classic 

algorithms, researchers have proposed many improved 

algorithms, such as those based on compression technology, 

distributed computing, and sliding window techniques [10]. 

Although these improved algorithms have greatly enhanced the 

efficiency of frequent itemset mining to some extent, they still 

cannot update the frequent itemset in real-time when processing 

dynamic data stream streams and leads to inaccurate results [11]. 

2.2 HIERARCHICAL FREQUENT ITEMSET 

MINING 

In the field of frequent itemset mining (FIM), traditional 

algorithms such as Apriori and FP-Growth are inefficient when 

processing large-scale data, and their memory consumption is 

extremely large [1]. To deal with these problems, the Hierarchical 

Frequent Itemset Mining technology came into being. It 

hierarchizes frequent itemsets according to specific criteria, 

thereby improving the efficiency and effect of frequent itemsets 

mining to a certain extent [12]. The core idea of this method is to 

optimize the mining process by organizing frequent itemsets 

hierarchically, trying to solve the limitations of traditional 

algorithms when processing large-scale data. In the weight-based 

layering method, Stumme et al. proposed a method of assigning 

weights to itemsets and layering them according to the weights. 

Although this method can effectively reduce the interference of 

low-frequency itemsets, it is difficult to maintain high efficiency 

when facing dynamically changing data sets [13]. The layering 

method based on support is another common method. For 

example, the H-mine algorithm proposed divides frequent 

itemsets into different levels according to support by constructing 

a hierarchical index structure, thereby improving mining 

efficiency [14]. However, this method performs well when 

processing static data sets. When facing dynamic data streams, 

changes in support require frequent updates of the hierarchical 

structure, which increases the computational complexity. In 

addition, to adapt to the needs of dynamic data sets, Jiang and 

Gruenwald proposed a dynamic hierarchical algorithm that 

divides frequent itemsets into high-frequency, medium-

frequency, and low-frequency levels by real-time monitoring and 

adjustment of frequent itemsets[15]. This method can respond to 

data changes promptly, but in high-frequency data update 

scenarios, the computational overhead is large. In our method, by 

combining dynamic weighted Huffman coding and hierarchical 

dynamic segmentation, by dynamic weighting and hierarchical 

processing of frequent itemsets, Not only the mining efficiency is 

improved, but also the data changes can be responded to in real-

time, and excellent performance is achieved when facing large-

scale dynamic data sets. 

2.3 APPLICATION AND LIMITATIONS OF 

HUFFMAN CODING IN FREQUENT ITEMSET 

MINING 

The application of Huffman coding in frequent itemset mining 

is a complex and multi-level problem, which not only involves the 

efficient compression characteristics of coding, but is also closely 

related to the fast retrieval and storage optimization of frequent 

itemsets. Specifically, Huffman coding achieves efficient 

compression by assigning shorter codes to high-frequency items, 

thereby significantly saving storage space, which is particularly 

evident when processing large-scale data sets [16]. However, the 

application of Huffman coding in dynamic data stream 

environments faces many challenges. Traditional Huffman 

coding is generated based on static data sets, while in dynamic 

data stream environments, the frequency of items changes over 

time, which requires frequent reconstruction of the Huffman tree, 

increasing computational overhead and complexity [17]. After 

each data update, the frequency of the items needs to be 

recalculated and the Huffman tree needs to be rebuilt, which is 

unrealistic in applications with high real-time requirements [18]. 

In addition, Huffman coding can only encode according to the 

frequency of the current items and cannot foresee frequency 

changes in future data streams. Therefore, it may not provide the 

optimal coding scheme in a dynamic environment. This local 

optimality problem further limits its application in dynamic data 

stream environments [19]. Huffman coding is one of the standard 

data compression algorithms. The basic idea is to build a binary 

tree based on the frequency of characters and try to push the 
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characters with higher frequency to the top of the tree to reduce 

the total length of the code [20]. By assigning concise codes to 

high-frequency itemsets, the number of comparisons during the 

search process can be reduced, thereby improving the efficiency 

of the algorithm. Recently, researchers are exploring possibilities 

of incorporating Huffman coding into data mining. Wang et al. 

[21] advanced in the reduction of memory overhead and 

computational complexity, especially when it came to dealing 

with large data sets of transaction data, and also clearly described 

how to use Huffman coding to improve the efficiency of frequent 

itemset mining. However, it can only improve the efficiency of 

frequent item set mining to some degree while the data with more 

extensive scale and higher dimensions are processed. A 

hierarchical coding strategy, on the other hand, can handle this 

kind of problem. Conversely, hierarchical coding techniques 

partition data into layers according to frequency or other criteria, 

enabling independent coding of each layer. Thus, not only can the 

approach perform further data compression, but it also provides 

more options to be optimized by the search process. 

3. TDWFIMA ALGORITHM 

3.1 PRINCIPLE 

In this study, we designed a frequent itemset mining algorithm 

(TDWFIMA) based on dynamic weighted Huffman coding and 

hierarchical dynamic partitioning, which aims to deal with the 

concept drift detection problem in large-scale data sets. In order 

to better understand the operation of the algorithm, we first need 

to understand the definition of Huffman Node, where each node 

contains item, frequency, weight and timestamp information, and 

its weight can be dynamically updated through a formula. This 

design allows us to flexibly adjust the weight according to the 

dynamic changes of frequent itemsets, ensuring that the algorithm 

can respond to data changes in real time. 

• Definition 1: The weight update formula of the node weight 

is as follows: 

 new_weight=node.weight×(1+α×δfreq)×β(time_diff/3600)   (1) 

Among them, α is the influencing factor of frequency change, 

β is the time attenuation factor, δfreq is the frequency change rate, 

and time_diff is the time difference. 

Dynamic weighted Huffman coding is not only used for 

efficient storage of frequent item sets, but also for layering data 

sets by frequency. At the same time, the coding is optimized 

through the Huffman tree structure to ensure more efficient data 

compression and retrieval. On this basis, the TDWFIMA 

algorithm also includes a series of key steps, including indexing, 

window size, indexing, item frequency, encoding, node mapping, 

previous frequency and frequency difference. By building index 

and frequency dictionaries, large-scale transaction data can be 

effectively organized and managed. In the process of generating 

the Huffman tree, a priority queue is first built based on the 

frequency of the item, and then the tree structure is gradually 

established by merging the nodes with the lowest frequency, and 

finally a one-fork tree structure of the root node is formed. This 

process is further optimized by dynamic segmentation, in which 

the items are divided into three levels of high, medium and low 

according to the logarithmic frequency, so that frequent item sets 

can be better managed. 

• Definition 2: The Hierarchical Dynamic Partitioningas 

follows: 

Compute the log-frequency of itemsets: 

 logfi=log(σ(i)+1) (2) 

where σ(i) represents the frequency of item i. 

Compute the total log frequency: 
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• Determine the Split Point: 

High frequency layer: The cumulative sum of logarithmic 
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Medium frequency layer: The cumulative sum of logarithmic 

frequencies is between one third and two thirds. 
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Low frequency layer: The cumulative sum of logarithmic 

frequencies is greater than two-thirds. 

By dynamically updating weights and hierarchical dynamic 

partitioning methods combined with a sliding window 

mechanism, efficient management and mining of frequent 

itemsets are achieved. 

3.2 GENERATION PROCESS 

The TDFIMA (Tiered Dynamic Frequent Itemset Mining 

Algorithm) effectively extracts all frequent item sets with 

minimal support from a database by introducing dynamic 

weighted Huffman coding and tiered dynamic partitioning. 

Initially, it scans each transaction in the database, builds an 

inverted index, and records the occurrence positions for each item 

while calculating their frequencies. Subsequently, the data is 

organized based on frequency and segmented into high, medium, 

and low tiers. Each tier generates a Huffman tree that optimizes 

coding and searching. The algorithm utilizes dynamic weighted 

Huffman coding to adjust the weights based on frequency changes 

over time and apply time decay, ensuring the coding reflects the 

actual distribution of frequent items. The tiered dynamic 

partitioning method uses logarithmic frequency division and 

adaptive adjustments to capture the distribution of frequent items 

accurately and prioritize high-frequency items in querying and 

storage. While mining frequent item sets, the algorithm locates 

the item positions using the inverted index, compresses data with 

Huffman coding to minimize memory usage, and dynamically 

adjusts item weights. Candidate item sets are expanded step-by-

step, and their support is calculated using a depth-first search 

(DFS) strategy. If the support of the candidate item set is not less 

than the pre-set minimum support threshold, the item set is 

considered frequent. The structural optimization of TDFIMA 
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allows for effective frequent itemset mining when processing 

large-scale data, as shown in Fig.1. 

 

Fig.1. TDFIMA Algorithm structure diagram 

The TDWFIMA algorithm first loads the transaction dataset. 

It initializes data structures such as the inverted index and item 

frequency dictionary (lines 3-4). It then scans each transaction, 

converts it into a set to remove duplicates, and updates the 

inverted index and item frequency dictionary accordingly (lines 

5-12). During this process, the frequency of each item is counted 

based on its occurrence in the transaction (line 10). After 

calculating the item frequency, the items are sorted in descending 

order based on the item frequency (line 13) and divided into high, 

medium, and low frequency layers using a hierarchical dynamic 

partitioning technique, which is calculated based on the 

logarithmic value of the item frequency (line 14).Next, the 

algorithm generates a Huffman tree and assigns Huffman codes 

to each layer to facilitate efficient storage and retrieval of these 

frequent itemsets (line 15). The frequent itemset dictionary is 

initialized as an empty dictionary, and the algorithm sets up a 

stack to facilitate depth-first search of frequent itemsets (lines 16-

17). The main mining process takes place in a while loop that 

continues until the stack is empty (lines 18-29). In this loop, 

prefixes, items, and the current transaction index are popped from 

the stack, the prefix is extended by the additional item, and the 

new transaction index is calculated as the intersection of the 

current index and the corresponding item in the inverted index 

(lines 20-22). If the length of the new transaction index meets the 

minimum support threshold, the new prefix and its support count 

are added to the frequent itemset dictionary, and the items with 

sufficient support among the remaining items are identified (lines 

23-25). Subsequently, these new prefixes, remaining items, and 

new transaction indexes are pushed back to the stack for further 

exploration (line 26). Finally, after all frequent itemsets have been 

discovered, the algorithm returns the dictionary containing these 

frequent itemsets (line 30).The pseudo code is shown in Table 1 

Table.1. TDWFIMA Algorithm 

TDWFIMA Algorithm 

1: Begin 

2: Load transactions from file 

3: Initialize inverted_index and item_frequency dictionary 

4: For each transaction Ti in transactions do 

5:     Convert Ti to a set to remove duplicates 

6:     For each item in Ti do 

7:         If item not in inverted_index then 

8:             Initialize inverted_index[item] as an empty set 

9:         Add transaction index to inverted_index[item] 

10:        Increment item frequency in item_frequency 

11:    End For 

12: End For 

13: Sort items in descending order of frequency 

14: Split sorted items into high, medium, and low frequency 

tiers 

15: Generate Huffman tree and assign codes for each tier 

16: Initialize frequent_itemsets as an empty dictionary 

17: Initialize stack with empty prefix, sorted items, and all 

transaction indices 

18: While stack is not empty do 

19:     Pop prefix, items, and current transaction indices from 

stack 

20:     For each item in items do 

21:         Create new prefix by appending item 

22:         Calculate new transaction indices as intersection of 

current indices and inverted_index[item] 

23:         If length of new transaction indices >= min_support 

then 

24:             Add new prefix to frequent_itemsets with its support 

count 

25:             Find remaining items with enough support 

26:             Push new prefix, remaining items, and new 

transaction indices onto stack 

27:         End If 

28:     End For 

29: End While 

30: Return frequent_itemsets 

31: End 

4. RESULTS AND DISCUSSION 

In this section, we verify the effectiveness of the proposed 

TDWFIMA algorithm through a detailed analysis of experimental 

results. All experiments were conducted on a computer with an 

Intel Core i5 processor (2.2 GHz), 8GB RAM, and a 64-bit 

Windows 10 Pro operating system, and the experiments were 

implemented in the Python programming language. In order to 
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comprehensively evaluate the performance of the TDWFIMA 

algorithm in frequent itemset mining, we selected two public 

datasets, namely Retal and T10I4D100K, and compared the 

performance of the TDWFIMA algorithm with the classic FP-

Growth and DHP (Direct Hashing and Pruning, an improved 

version of Apriori, using hashing technology to reduce candidate 

sets). The evaluation indicators mainly include the execution time 

of the algorithm and the performance under different support 

thresholds. Through these comparisons, we aim to show the 

advantages and potential improvement space of the TDWFIMA 

algorithm in dealing with frequent itemset mining tasks. 

 

(a) The number of item sets generated by the three algorithms in 

the retal database 

 

(b) The number of item sets generated by the three algorithms in 

the T10I4D100K database 

 

(c) Run time comparison in the retal database  

 

(d) Run time comparison in the T10I4D100K database 

Fig.2. Experimental results diagram 

From the experimental results, first, in terms of accuracy, the 

TDWFIMA algorithm performs well. Under different support 

thresholds, it can achieve the same high standards as traditional 

algorithms such as FP-Growth and DHP. This means that whether 

it is a high-frequency item or a low-frequency item, the 

TDWFIMA algorithm can accurately mine all frequent item sets 

that meet the support requirements, thereby proving its reliability 

and robustness in maintaining the accuracy of the results; 

secondly, in terms of running speed, the TDWFIMA algorithm 

shows significant advantages. Whether under high support 

thresholds or low support thresholds, the running time of 

TDWFIMA is significantly lower than that of traditional frequent 

item set mining algorithms. This feature is particularly prominent 

when processing large-scale data sets, indicating that it has 

significant improvements in optimizing computational efficiency 

and reducing execution time. Through the combination of 

dynamic weighted Huffman coding and hierarchical dynamic 

partitioning technology, the TDWFIMA algorithm can effectively 

narrow the search space, thereby significantly improving the 

mining speed without affecting the accuracy. This high efficiency 

enables TDWFIMA to better meet the needs of large-scale data 

analysis in practical applications. 

5. CONCLUSION 

This paper introduces a TDWFIMA algorithm to maximize 

the efficiency of frequent itemset mining with Hierarchical 

Dynamic Partition ingas and Hierarchical Huffman coding. 

Experimental results show that the execution time of the proposed 

TDWFIMA algorithm for T10I4D100K and the Retal dataset is 

impressively better in comparison with FP-Growth and DHP 

algorithms, which proves its effectiveness and scalability for 

large-scale and complex datasets. Frequent itemset mining is an 

important data mining technique, and the TDWFIMA algorithm 

provides a novel, efficient solution demonstrating potential in 

practical application. Future research will focus on refining this 

algorithm and extending its application to other data mining tasks 

like association rule mining and classification, with the aim of 

advancing high-performance data mining technology. 
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