
DAI XIN AND HAO XUE: EFFICIENT FREQUENT ITEMSET DISCOVERY THROUGH HIERARCHICAL HUFFMAN ENCODING

DOI: 10.21917/ijsc.2025.0510

3682

EFFICIENT FREQUENT ITEMSET DISCOVERY THROUGH HIERARCHICAL

HUFFMAN ENCODING

Dai Xin and Hao Xue
Faculty of Computing, Universiti Teknologi Malaysia, Malaysia

Abstract

Frequent itemsets mining holds a crucial position in the field of data

mining; however, traditional algorithms like Apriori and FP-Growth

often encounter efficiency and memory consumption issues when

handling large-scale datasets, which not only makes them difficult to

cope with dynamic dataset changes in some situations but also limits

their widespread use in practical applications. Therefore, a novel

DTFIMA (Dynamic Tiered Frequent Itemset Mining Algorithm,)

algorithm is proposed in this paper to address optimization problems

related to the storage and searching process of frequent itemsets by

introducing dynamic weight Huffman coding and combining it with

logarithmic frequency stratification. In ADFIM, all itemsets are

divided into three frequency levels: high, medium, and low, and

independent Huffman trees are created for each level, thus achieving

higher efficiency in frequent itemsets encoding and search.

Meanwhile, ADFIM improves the accuracy of frequent itemset mining

and enhances the algorithm's stability and reliability in handling large-

scale data by dynamically updating weights and timely cleaning low-

frequency items. Experimental results show that compared to the

traditional FP-Growth algorithm, ADFIM demonstrates higher

efficiency in handling large-scale transaction databases, especially in

dealing with dynamic data streams, significantly reducing computation

time while ensuring the accuracy and consistency of frequent itemset

discovery.

Keywords:

Frequent Itemsets Mining, Huffman Coding, Logarithmic Frequency

Stratification, Dynamic Data Streams

1. INTRODUCTION

. Frequent itemset mining plays an indispensable role in many

fields, whether in market basket analysis, intrusion detection or

recommendation systems, and existing frequent itemset mining

algorithms, such as Apriori and FP-Growth, although it is widely

used and has achieved certain success, each also has obvious

advantages and disadvantages, which in some cases will

significantly affect the performance and applicability of the

algorithm. Specifically, the Apriori algorithm due to its needs the

large computational overhead and multiple scans of the database

make it unscalable when processing large-scale data sets, and

even completely unfeasible in some cases [1].

On the other hand, the FP-Growth algorithm reduces database

scans by building FP trees and it performs well when processing

certain types of data. However, when faced with sparse data sets,

the FP tree it constructs may be too large and complex, resulting

in a significant decrease in algorithm efficiency [2]. This not only

increases memory usage, but also it may cause the algorithm to

run too long, causing FP-Growth to have various limitations when

facing sparse data [3].

In response to the above problems, this paper proposes a new

frequent itemset mining algorithm, which combines dynamic

weighted Huffman coding and hierarchical dynamic partitioning

mechanism (Tiered Dynamic Weighted Frequent Itemset Mining

Algorithm, TDWFIMA) to optimize the item set. Storage and

search processes. TDWFIMA divides all items into three levels:

high frequency, medium frequency, and low frequency through a

hierarchical coding strategy, and creates a Huffman tree for each

level, thus greatly improving the efficiency of coding and

searching. The advantage of this method is that it combines the

efficient compression characteristics of Huffman coding and the

dynamic adaptation characteristics of frequent itemset mining,

which has key execution time and memory advantages compared

with classic algorithms. Its contributions include:

• Introducing innovative dynamic weighted Huffman coding.

By dynamically adjusting weights and hierarchical coding

strategies, the coding length of high-frequency items is

effectively reduced and search efficiency is optimized [4].

• Through the hierarchical dynamic partitioning mechanism,

the item set search process is made more efficient and the

overhead of multiple database scans is avoided [5].

• Through experiments on public data sets, it is verified that

the algorithm has significantly superior performance

compared with traditional methods. Experimental results

show that the algorithm using TDWFIMA is superior to the

traditional algorithm in terms of execution time and memory

usage. Experimental results show that the TDWFIMA

algorithm can mine frequent item sets more efficiently when

processing dynamic data streams, significantly reducing

computational overhead and improving memory utilization.

These advantages give it broad potential for practical

applications.

This research paper discusses in detail the Tiered Dynamic

Weighted Frequent Itemset Mining Algorithm (TDWFIMA) that

combines dynamic weighted Huffman coding with hierarchical

dynamic partitioning and conducts in-depth research on its

application potential in the field of frequent item set mining,

showing its potential to provide an efficient solution for data

mining and opening up new research directions.

The rest of this paper is arranged as follows: The second part

will thoroughly analyze the problems existing in the current

frequent item set mining algorithm, explore its limitations and

room for improvement from multiple perspectives, and the third

part will introduce the basic principles, design ideas and

implementation process of the TDWFIMA algorithm in detail,

showing its unique algorithmic advantages and innovations. The

fourth part focuses on performance evaluation. Through a large

amount of experimental data and comparative analysis, it proves

the superior performance of TDWFIMA in processing large-scale

data. The fifth part summarizes the full text, draws conclusions,

and proposes future research directions and potential application

scenarios.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

3683

2. RELATED WORK

The research direction of frequent item set mining occupies an

extremely important position in the field of data mining. Its core

purpose is to find out those itemsets that often co-occur from a

large amount of transaction data. After the market basket analysis

theory proposed by Agrawal et al., this research field quickly

attracted widespread attention and has been deeply studied.

Researchers in many fields continue to propose various

algorithms to improve further the efficiency and scalability of

frequent itemset mining, based on different technical means and

optimization strategies to meet the processing needs of complex

data, including but not limited to Apriori algorithm, FP-Growth

algorithm, Eclat algorithm, etc. In continuous development and

evolution, these algorithms strive to make breakthroughs and

improvements in computing speed, memory consumption, and

mining accuracy, so that frequent itemset mining technology can

better adapt to the diverse and rapidly changing data needs in

actual application scenarios.

2.1 LIMITATIONS OF TRADITIONAL FREQUENT

ITEMSET MINING ALGORITHMS

In the research field of frequent itemset mining, many classic

algorithms have been widely used and achieved certain success.

These algorithms mainly include Apriori algorithm, FP-Growth

algorithm and Eclat algorithm [6]. However, with the continuous

expansion of data scale and the real-time demand of data flow,

these traditional algorithms have many limitations when

processing dynamic data and large-scale data sets [7]. For

example, the Apriori algorithm needs to scan the entire database

multiple times to generate frequent item sets. This process not

only generates a lot of I/O overhead but also causes huge

computational overhead because the algorithm needs to generate

a large number of candidate item sets in each iteration [8]. In

contrast, although the FP-Growth algorithm compresses data by

constructing a frequent pattern tree (FP tree), which significantly

reduces the number of database scans and the number of candidate

item sets generated when processing large-scale data sets, the

construction and storage of the FP tree still require a lot of

memory resources [9]. In addition, FP-Growth needs to

recursively mine the FP tree. For tree structures with deeper

levels, the recursive operation is complicated and easily leads to

stack overflow. To conquer these restrictions related to classic

algorithms, researchers have proposed many improved

algorithms, such as those based on compression technology,

distributed computing, and sliding window techniques [10].

Although these improved algorithms have greatly enhanced the

efficiency of frequent itemset mining to some extent, they still

cannot update the frequent itemset in real-time when processing

dynamic data stream streams and leads to inaccurate results [11].

2.2 HIERARCHICAL FREQUENT ITEMSET

MINING

In the field of frequent itemset mining (FIM), traditional

algorithms such as Apriori and FP-Growth are inefficient when

processing large-scale data, and their memory consumption is

extremely large [1]. To deal with these problems, the Hierarchical

Frequent Itemset Mining technology came into being. It

hierarchizes frequent itemsets according to specific criteria,

thereby improving the efficiency and effect of frequent itemsets

mining to a certain extent [12]. The core idea of this method is to

optimize the mining process by organizing frequent itemsets

hierarchically, trying to solve the limitations of traditional

algorithms when processing large-scale data. In the weight-based

layering method, Stumme et al. proposed a method of assigning

weights to itemsets and layering them according to the weights.

Although this method can effectively reduce the interference of

low-frequency itemsets, it is difficult to maintain high efficiency

when facing dynamically changing data sets [13]. The layering

method based on support is another common method. For

example, the H-mine algorithm proposed divides frequent

itemsets into different levels according to support by constructing

a hierarchical index structure, thereby improving mining

efficiency [14]. However, this method performs well when

processing static data sets. When facing dynamic data streams,

changes in support require frequent updates of the hierarchical

structure, which increases the computational complexity. In

addition, to adapt to the needs of dynamic data sets, Jiang and

Gruenwald proposed a dynamic hierarchical algorithm that

divides frequent itemsets into high-frequency, medium-

frequency, and low-frequency levels by real-time monitoring and

adjustment of frequent itemsets[15]. This method can respond to

data changes promptly, but in high-frequency data update

scenarios, the computational overhead is large. In our method, by

combining dynamic weighted Huffman coding and hierarchical

dynamic segmentation, by dynamic weighting and hierarchical

processing of frequent itemsets, Not only the mining efficiency is

improved, but also the data changes can be responded to in real-

time, and excellent performance is achieved when facing large-

scale dynamic data sets.

2.3 APPLICATION AND LIMITATIONS OF

HUFFMAN CODING IN FREQUENT ITEMSET

MINING

The application of Huffman coding in frequent itemset mining

is a complex and multi-level problem, which not only involves the

efficient compression characteristics of coding, but is also closely

related to the fast retrieval and storage optimization of frequent

itemsets. Specifically, Huffman coding achieves efficient

compression by assigning shorter codes to high-frequency items,

thereby significantly saving storage space, which is particularly

evident when processing large-scale data sets [16]. However, the

application of Huffman coding in dynamic data stream

environments faces many challenges. Traditional Huffman

coding is generated based on static data sets, while in dynamic

data stream environments, the frequency of items changes over

time, which requires frequent reconstruction of the Huffman tree,

increasing computational overhead and complexity [17]. After

each data update, the frequency of the items needs to be

recalculated and the Huffman tree needs to be rebuilt, which is

unrealistic in applications with high real-time requirements [18].

In addition, Huffman coding can only encode according to the

frequency of the current items and cannot foresee frequency

changes in future data streams. Therefore, it may not provide the

optimal coding scheme in a dynamic environment. This local

optimality problem further limits its application in dynamic data

stream environments [19]. Huffman coding is one of the standard

data compression algorithms. The basic idea is to build a binary

tree based on the frequency of characters and try to push the

DAI XIN AND HAO XUE: EFFICIENT FREQUENT ITEMSET DISCOVERY THROUGH HIERARCHICAL HUFFMAN ENCODING

3684

characters with higher frequency to the top of the tree to reduce

the total length of the code [20]. By assigning concise codes to

high-frequency itemsets, the number of comparisons during the

search process can be reduced, thereby improving the efficiency

of the algorithm. Recently, researchers are exploring possibilities

of incorporating Huffman coding into data mining. Wang et al.

[21] advanced in the reduction of memory overhead and

computational complexity, especially when it came to dealing

with large data sets of transaction data, and also clearly described

how to use Huffman coding to improve the efficiency of frequent

itemset mining. However, it can only improve the efficiency of

frequent item set mining to some degree while the data with more

extensive scale and higher dimensions are processed. A

hierarchical coding strategy, on the other hand, can handle this

kind of problem. Conversely, hierarchical coding techniques

partition data into layers according to frequency or other criteria,

enabling independent coding of each layer. Thus, not only can the

approach perform further data compression, but it also provides

more options to be optimized by the search process.

3. TDWFIMA ALGORITHM

3.1 PRINCIPLE

In this study, we designed a frequent itemset mining algorithm

(TDWFIMA) based on dynamic weighted Huffman coding and

hierarchical dynamic partitioning, which aims to deal with the

concept drift detection problem in large-scale data sets. In order

to better understand the operation of the algorithm, we first need

to understand the definition of Huffman Node, where each node

contains item, frequency, weight and timestamp information, and

its weight can be dynamically updated through a formula. This

design allows us to flexibly adjust the weight according to the

dynamic changes of frequent itemsets, ensuring that the algorithm

can respond to data changes in real time.

• Definition 1: The weight update formula of the node weight

is as follows:

 new_weight=node.weight×(1+α×δfreq)×β(time_diff/3600) (1)

Among them, α is the influencing factor of frequency change,

β is the time attenuation factor, δfreq is the frequency change rate,

and time_diff is the time difference.

Dynamic weighted Huffman coding is not only used for

efficient storage of frequent item sets, but also for layering data

sets by frequency. At the same time, the coding is optimized

through the Huffman tree structure to ensure more efficient data

compression and retrieval. On this basis, the TDWFIMA

algorithm also includes a series of key steps, including indexing,

window size, indexing, item frequency, encoding, node mapping,

previous frequency and frequency difference. By building index

and frequency dictionaries, large-scale transaction data can be

effectively organized and managed. In the process of generating

the Huffman tree, a priority queue is first built based on the

frequency of the item, and then the tree structure is gradually

established by merging the nodes with the lowest frequency, and

finally a one-fork tree structure of the root node is formed. This

process is further optimized by dynamic segmentation, in which

the items are divided into three levels of high, medium and low

according to the logarithmic frequency, so that frequent item sets

can be better managed.

• Definition 2: The Hierarchical Dynamic Partitioningas

follows:

Compute the log-frequency of itemsets:

 logfi=log(σ(i)+1) (2)

where σ(i) represents the frequency of item i.

Compute the total log frequency:

1

log
n

i

i

Total f
=

= (3)

where n is the total number of itemsets.

• Determine the Split Point:

High frequency layer: The cumulative sum of logarithmic

frequencies is less than one third of the total

/3

1

1

1

log

log

n

i

i

n

i

i

f

split

f

=

=

=



 (4)

Medium frequency layer: The cumulative sum of logarithmic

frequencies is between one third and two thirds.

2 /3

1

2

1

log

log

n

i

i

n

i

i

f

split

f

=

=

=



 (5)

Low frequency layer: The cumulative sum of logarithmic

frequencies is greater than two-thirds.

By dynamically updating weights and hierarchical dynamic

partitioning methods combined with a sliding window

mechanism, efficient management and mining of frequent

itemsets are achieved.

3.2 GENERATION PROCESS

The TDFIMA (Tiered Dynamic Frequent Itemset Mining

Algorithm) effectively extracts all frequent item sets with

minimal support from a database by introducing dynamic

weighted Huffman coding and tiered dynamic partitioning.

Initially, it scans each transaction in the database, builds an

inverted index, and records the occurrence positions for each item

while calculating their frequencies. Subsequently, the data is

organized based on frequency and segmented into high, medium,

and low tiers. Each tier generates a Huffman tree that optimizes

coding and searching. The algorithm utilizes dynamic weighted

Huffman coding to adjust the weights based on frequency changes

over time and apply time decay, ensuring the coding reflects the

actual distribution of frequent items. The tiered dynamic

partitioning method uses logarithmic frequency division and

adaptive adjustments to capture the distribution of frequent items

accurately and prioritize high-frequency items in querying and

storage. While mining frequent item sets, the algorithm locates

the item positions using the inverted index, compresses data with

Huffman coding to minimize memory usage, and dynamically

adjusts item weights. Candidate item sets are expanded step-by-

step, and their support is calculated using a depth-first search

(DFS) strategy. If the support of the candidate item set is not less

than the pre-set minimum support threshold, the item set is

considered frequent. The structural optimization of TDFIMA

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

3685

allows for effective frequent itemset mining when processing

large-scale data, as shown in Fig.1.

Fig.1. TDFIMA Algorithm structure diagram

The TDWFIMA algorithm first loads the transaction dataset.

It initializes data structures such as the inverted index and item

frequency dictionary (lines 3-4). It then scans each transaction,

converts it into a set to remove duplicates, and updates the

inverted index and item frequency dictionary accordingly (lines

5-12). During this process, the frequency of each item is counted

based on its occurrence in the transaction (line 10). After

calculating the item frequency, the items are sorted in descending

order based on the item frequency (line 13) and divided into high,

medium, and low frequency layers using a hierarchical dynamic

partitioning technique, which is calculated based on the

logarithmic value of the item frequency (line 14).Next, the

algorithm generates a Huffman tree and assigns Huffman codes

to each layer to facilitate efficient storage and retrieval of these

frequent itemsets (line 15). The frequent itemset dictionary is

initialized as an empty dictionary, and the algorithm sets up a

stack to facilitate depth-first search of frequent itemsets (lines 16-

17). The main mining process takes place in a while loop that

continues until the stack is empty (lines 18-29). In this loop,

prefixes, items, and the current transaction index are popped from

the stack, the prefix is extended by the additional item, and the

new transaction index is calculated as the intersection of the

current index and the corresponding item in the inverted index

(lines 20-22). If the length of the new transaction index meets the

minimum support threshold, the new prefix and its support count

are added to the frequent itemset dictionary, and the items with

sufficient support among the remaining items are identified (lines

23-25). Subsequently, these new prefixes, remaining items, and

new transaction indexes are pushed back to the stack for further

exploration (line 26). Finally, after all frequent itemsets have been

discovered, the algorithm returns the dictionary containing these

frequent itemsets (line 30).The pseudo code is shown in Table 1

Table.1. TDWFIMA Algorithm

TDWFIMA Algorithm

1: Begin

2: Load transactions from file

3: Initialize inverted_index and item_frequency dictionary

4: For each transaction Ti in transactions do

5: Convert Ti to a set to remove duplicates

6: For each item in Ti do

7: If item not in inverted_index then

8: Initialize inverted_index[item] as an empty set

9: Add transaction index to inverted_index[item]

10: Increment item frequency in item_frequency

11: End For

12: End For

13: Sort items in descending order of frequency

14: Split sorted items into high, medium, and low frequency

tiers

15: Generate Huffman tree and assign codes for each tier

16: Initialize frequent_itemsets as an empty dictionary

17: Initialize stack with empty prefix, sorted items, and all

transaction indices

18: While stack is not empty do

19: Pop prefix, items, and current transaction indices from

stack

20: For each item in items do

21: Create new prefix by appending item

22: Calculate new transaction indices as intersection of

current indices and inverted_index[item]

23: If length of new transaction indices >= min_support

then

24: Add new prefix to frequent_itemsets with its support

count

25: Find remaining items with enough support

26: Push new prefix, remaining items, and new

transaction indices onto stack

27: End If

28: End For

29: End While

30: Return frequent_itemsets

31: End

4. RESULTS AND DISCUSSION

In this section, we verify the effectiveness of the proposed

TDWFIMA algorithm through a detailed analysis of experimental

results. All experiments were conducted on a computer with an

Intel Core i5 processor (2.2 GHz), 8GB RAM, and a 64-bit

Windows 10 Pro operating system, and the experiments were

implemented in the Python programming language. In order to

DAI XIN AND HAO XUE: EFFICIENT FREQUENT ITEMSET DISCOVERY THROUGH HIERARCHICAL HUFFMAN ENCODING

3686

comprehensively evaluate the performance of the TDWFIMA

algorithm in frequent itemset mining, we selected two public

datasets, namely Retal and T10I4D100K, and compared the

performance of the TDWFIMA algorithm with the classic FP-

Growth and DHP (Direct Hashing and Pruning, an improved

version of Apriori, using hashing technology to reduce candidate

sets). The evaluation indicators mainly include the execution time

of the algorithm and the performance under different support

thresholds. Through these comparisons, we aim to show the

advantages and potential improvement space of the TDWFIMA

algorithm in dealing with frequent itemset mining tasks.

(a) The number of item sets generated by the three algorithms in

the retal database

(b) The number of item sets generated by the three algorithms in

the T10I4D100K database

(c) Run time comparison in the retal database

(d) Run time comparison in the T10I4D100K database

Fig.2. Experimental results diagram

From the experimental results, first, in terms of accuracy, the

TDWFIMA algorithm performs well. Under different support

thresholds, it can achieve the same high standards as traditional

algorithms such as FP-Growth and DHP. This means that whether

it is a high-frequency item or a low-frequency item, the

TDWFIMA algorithm can accurately mine all frequent item sets

that meet the support requirements, thereby proving its reliability

and robustness in maintaining the accuracy of the results;

secondly, in terms of running speed, the TDWFIMA algorithm

shows significant advantages. Whether under high support

thresholds or low support thresholds, the running time of

TDWFIMA is significantly lower than that of traditional frequent

item set mining algorithms. This feature is particularly prominent

when processing large-scale data sets, indicating that it has

significant improvements in optimizing computational efficiency

and reducing execution time. Through the combination of

dynamic weighted Huffman coding and hierarchical dynamic

partitioning technology, the TDWFIMA algorithm can effectively

narrow the search space, thereby significantly improving the

mining speed without affecting the accuracy. This high efficiency

enables TDWFIMA to better meet the needs of large-scale data

analysis in practical applications.

5. CONCLUSION

This paper introduces a TDWFIMA algorithm to maximize

the efficiency of frequent itemset mining with Hierarchical

Dynamic Partition ingas and Hierarchical Huffman coding.

Experimental results show that the execution time of the proposed

TDWFIMA algorithm for T10I4D100K and the Retal dataset is

impressively better in comparison with FP-Growth and DHP

algorithms, which proves its effectiveness and scalability for

large-scale and complex datasets. Frequent itemset mining is an

important data mining technique, and the TDWFIMA algorithm

provides a novel, efficient solution demonstrating potential in

practical application. Future research will focus on refining this

algorithm and extending its application to other data mining tasks

like association rule mining and classification, with the aim of

advancing high-performance data mining technology.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

3687

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules”, Proceedings of International

Conference on Very Large Data Bases, pp. 487-499, 1994.

[2] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns without

Candidate Generation”, Sigmod Record, Vol. 29, No. 2,

pp.1-12, 2000.

[3] M.J. Zaki, “Scalable Algorithms for Association Mining”,

Transactions on Knowledge and Data Engineering, Vol. 12,

No. 3, pp. 372-390, 2000.

[4] A. Moffat, “Huffman Coding”, Computing Surveys, Vol. 52,

No. 4, pp. 1-35, 2019.

[5] S.T. Klein, S. Saadia and D. Shapira, “Forward Looking

Huffman Coding”, Theory Computing Systems, Vol. 65, pp.

593-612, 2021.

[6] S. Wang and H. Dutta, “Parable: A Parallel Random-

Partition based Hierarchical Clustering Algorithm for the

MapReduce Framework”, Center for Computational

Learning Systems Columbia University, pp. 1-20, 2011.

[7] H.N. Dai, R.C.W. Wong and H. Wang, “Big Data Analytics

for Large-Scale Wireless Networks: Challenges and

Opportunities”, Computing Surveys, Vol. 52, No. 5, pp. 1-

36, 2019.

[8] M. Bai, X. Wang and J. Xin, “An Efficient Algorithm for

Distributed Density-based Outlier Detection on Big Data”,

Neuro Computing, Vol. 181, pp. 19-28, 2016.

[9] M. Chen, X. Gao and H.F. Li, “An Efficient Parallel FP-

Growth Algorithm”, Proceedings of International

Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery, pp. 283-286, 2009.

[10] G. Lee, U. Yun and K.H. Ryu, “Sliding Window based

Weighted Maximal Frequent Pattern Mining Over Data

Streams”, Expert Systems with Applications, Vol. 41, No. 2,

pp. 694-708, 2014.

[11] H. Nam, U. Yun and E. Yoon, “Efficient Approach of

Recent High Utility Stream Pattern Mining with Indexed

List Structure and Pruning Strategy Considering Arrival

Times of Transactions”, Information Sciences, Vol. 529, pp.

1-27, 2020.

[12] C.J. Lee, C.C. Hsu and D.R. Chen, “A Hierarchical

Document Clustering Approach with Frequent Itemsets”,

Proceedings of International Conference on Cognitive

Informatics and Cognitive Computing, pp. 26-33, 2017.

[13] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier and L.

Lakhal, “Computing Iceberg Concept Lattices with Titanic”,

Data Engineering, pp. 189-222, 2002.

[14] A. Borah and B. Nath, “Comparative Evaluation of Pattern

Mining Techniques: An Empirical Study”, Complex and

Intelligent Systems, Vol. 7, pp. 589-619, 2021.

[15] N. Jiang and L. Gruenwald, “RHPTree-Risk Hierarchical

Pattern Tree for Scalable Long-Term Frequent Pattern

Mining”, Transactions on Knowledge Discovery from Data,

pp. 1-25, 2022.

[16] M.H. Dunham, Y. Xiao and L. Gruenwald, “A Survey of

Association Rules”, Survey Journal, pp. 1-65, 2000.

[17] G. Psaila and P.L. Lanzi, “Hierarchy-based Mining of

Association Rules in Data Warehouses”, Proceedings of

Symposium on Applied Computing, Vol. 1, pp. 307-312,

2000.

[18] P. Kumari and M. Saini, “Anomaly Detection in Audio with

Concept Drift using Dynamic Huffman Coding”, Sensors

Journal, Vol. 22, No. 17, pp. 17126-17138, 2022.

[19] P. Fang, S. Webb, Y. Chen, Y.F. Liu and P.C. Sen, “A

Multiplexing Ripple Cancellation LED Driver with True

Single-Stage Power Conversion and Flicker-Free

Operation”, Transactions on Power Electronics, Vol. 34,

No. 10, pp. 10105-10120, 2019.

[20] Q.P. Kumari and M. Saini, “Anomaly Detection in Audio

with Concept Drift using Dynamic Huffman Coding”,

Sensors Journal, Vol. 22, No. 17, pp. 17126-17138, 2022.

[21] R.M. Wang, W. Fu, X. He, S. Hao and X. Wu, “A Survey

on Large-Scale Machine Learning”, Transactions on

Knowledge and Data Engineering, Vol. 34, No. 6, pp. 2574-

2594, 2022.

