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Abstract 

Magnetic Resonance Imaging (MRI) is a crucial tool in clinical 

diagnostics, with T1-weighted (T1) and T2-weighted (T2). Acquiring 

high-quality T2-weighted MRI, especially for infant brains, presents 

challenges due to lengthy acquisition times, motion artifacts, and 

scanner variability. This study introduces the Adaptive Dual Domain 

U-Net, a novel 3D U-Net architecture enhanced with dynamic channel 

alignment for synthesizing T2-weighted MRI from T1-weighted inputs. 

The proposed model addresses domain variability, integrates 

explainability tools using Captum, and employs patch-based training 

for efficient memory utilization and high-resolution reconstruction. 

Quantitative evaluations on the iSeg-2019 dataset demonstrate 

superior performance across key metrics such as Mean Squared Error 

(MSE), Structural Similarity Index (SSIM), and R² compared to 

baseline methods. Qualitative results highlight the model’s ability to 

generate structurally accurate and clinically interpretable synthetic T2-

weighted images, making it a robust tool for both clinical and research 

applications. 
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1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a non-invasive 

imaging technique widely used in clinical practice to capture 

detailed anatomical and physiological information. Among 

various modalities, T1-weighted (T1) and T2-weighted (T2) MRI 

scans are primarily used, with T1 highlighting structural details 

and T2 emphasizing fluid-filled regions, making them essential 

for diagnosing various conditions. Acquiring high-quality T2-

weighted images for infant brain MRI, is often challenging due to 

long acquisition times, increased motion artifacts, and scanner 

variability. 

In infant brain imaging, there are more challenges due to rapid 

developmental changes, limited annotated datasets, and ethical 

constraints on extensive data collection. Due to these factors, 

there is a need for robust methods to generate synthetic T2-

weighted images from readily available T1-weighted data. 

Synthetic MRI generation reduces acquisition time and costs and 

also enhances dataset diversity. Deep learning-based approaches, 

such as Convolutional Neural Networks (CNNs) [1] and 

Generative Adversarial Networks (GANs) [2], are used for 

medical image synthesis. However, existing methods has 

drawbacks such as limited adaptability across datasets, domain 

variability, and a lack of explainability, which are essential 

requirement for clinical adoption. Particularly in infant brain 

imaging, the high variability in brain morphology and scanner 

settings requires architectures that can address these issues. 

To address these challenges, we propose a novel approach for 

T2-weighted infant brain MRI synthesis using a dynamically 

aligned 3D U-Net [3]. Our architecture uses dynamic channel 

alignment in the decoder, ensuring seamless feature fusion 

between the encoder and decoder. This mechanism addresses 

domain variability, making the model adaptable to diverse 

imaging datasets. Additionally, our framework integrates patch-

based processing with dynamic patch size adjustment for efficient 

training and reconstruction of high-resolution 3D MRI volumes. 

By utilizing explainability tools such as Integrated Gradients and 

Noise Tunnel, our approach highlights the regions in T1-weighted 

images that contribute most significantly to the generation of 

corresponding T2-weighted features. This integration of 

explainability add trust and clinical relevance for the proposed 

method. 

Our contributions can be summarized as follows: 

• We introduce a novel dynamic channel-aligned 3D U-Net 

that addresses domain variability and enhances feature 

fusion in T2-weighted MRI synthesis. 

• We develop a patch-based processing framework with 

adaptive patch size and stride, allowing for memory-

efficient training and robust reconstruction of high-

resolution volumes. 

• We integrate explainability tools into the pipeline, providing 

insights into the model’s predictions and facilitating clinical 

trust. 

• We demonstrate the effectiveness of our method on the 

publicly available iSeg-2019 dataset, achieving superior 

performance in terms of quantitative metrics (MSE, R², 

MAE) and qualitative comparisons with baseline 

approaches. 

The remainder of this paper is organized as follows: Section 2 

reviews related work in MRI synthesis and explainable AI. 

Section 3 details the methodology, including dataset preparation, 

model architecture, and training pipeline. Section 4 presents 

experimental results, followed by a discussion of key findings and 

limitations in section 5. Section 6 concludes with potential future 

directions.   

2. RELATED WORK  

2.1 CROSS-MODALITY MRI SYNTHESIS 

Cross-modality MRI synthesis has become a prominent area 

of research in recent years, due to advancements in deep learning 

and generative modelling. Generating one MRI modality (e.g., 

T1-weighted) from another (e.g., T2-weighted) is helpful as it 

reduces scanning time, lower costs, and enhances diagnostic 

utility. Earlier methods for cross-modality MRI synthesis were 
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focused on atlas-based registration techniques and patch-based 

synthesis. For example, [4] proposed a patch-based approach that 

compared patches from the source modality to an atlas of paired 

modalities to generate the target modality. These methods could 

not generate complex anatomical variations and often required 

time-consuming preprocessing steps. 

In cross-modality synthesis deep learning methods like 

convolutional neural networks (CNNs) and generative adversarial 

networks (GANs) were used earlier. [5] introduced a 3D CNN for 

synthesizing computed tomography (CT) scan from T1-weighted 

images. GAN-based approaches, such as [6], further enhanced 

synthesis quality by adversarial training to produce sharper and 

more realistic MRI. Cycle-consistent GANs (CycleGANs) have 

also been used for this task extensively. These methods use cycle-

consistency loss, to ensure the synthesized image closely 

resembles the original input. [7] demonstrated the utility of 

CycleGANs for multi-site, cross-protocol MRI synthesis, 

achieving robust results across varied datasets. 

Recent studies have extended cross-modality synthesis to 

multi-modal and multi-domain settings. [8] proposed a unified 

framework that simultaneously synthesizes multiple modalities 

using a shared latent space representation. These approaches 

address inter-modality dependencies more effectively but often 

require extensive training data to generalize well across different 

scanners and acquisition protocols. More recently, transformer-

based architectures are used for cross-modality synthesis to 

capture long-range dependencies. For example, [9] introduced a 

vision transformer (ViT)-based approach that outperformed 

traditional CNNs and GANs in generating anatomically 

consistent images. 

There are certain challenges in this field. First, existing models 

often require large datasets, that are scarce in medical imaging. 

Second, domain variability such as differences in scanner types, 

acquisition settings, and patient demographics adversely impacts 

the generalizability of these models. Third, most deep learning 

models operate as black boxes, providing limited interpretability, 

which is crucial for clinical adoption. In this study, we address 

these gaps by proposing a robust, explainable cross-modality 

synthesis framework. Our method leverages domain adaptation 

techniques to enhance generalizability across varied acquisition 

protocols. Additionally, we incorporate explainability measures 

to ensure transparency so, clinicians can better trust and interpret 

the synthesized images. Our work aims to bridge the gap between 

technical advancements and practical clinical applications in MRI 

synthesis.  

2.2 EXPLAINABILITY IN DEEP LEARNING FOR 

MEDICAL IMAGING 

Explainability in deep learning for medical imaging has 

become an increasingly important area of research, particularly in 

applications such as disease diagnosis, treatment planning, and 

outcome prediction. As deep learning models becomes more 

complex, the lack of transparency in their decision-making 

processes create a significant challenge for clinical adoption. 

Explainability methods in medical imaging can be broadly 

categorized into post hoc and intrinsic techniques. Post hoc 

methods are applied after model training to interpret predictions, 

such as saliency maps, Grad-CAM [10], and SHAP [11], which 

highlight regions in medical images that contribute most to the 

model’s predictions. For example, Grad-CAM has been used 

extensively to visualize tumour regions in MRI scans, providing 

clinicians with insights into the model’s focus during 

classification or segmentation tasks. Intrinsic explainability 

involves designing models with built-in interpretability features. 

This includes attention mechanisms, self-explanatory networks, 

and interpretable feature embeddings. Attention-based models 

[12] enhance model performance and provide spatial and 

temporal context about how predictions are made. Another area 

of interest is model disentanglement [13], that is used to separate 

high-level features such as anatomical structures from domain-

specific variations like imaging noise or scanner bias. This 

disentanglement enhances interpretability and robustness for 

clinicians to better understand model behaviour under different 

conditions. 

However, Saliency methods often lack consistency and are 

sensitive to noise, while attention mechanisms can sometimes 

introduce biases or fail to capture subtle variations in medical 

images. Furthermore, achieving a balance between model 

performance and interpretability continues to be a critical area of 

exploration. In this work, we incorporate explainability measures 

into our cross-modality MRI synthesis framework to ensure 

transparency and trustworthiness.  

3. METHODOLOGY 

The Proposed approach synthesize T2-weighted infant brain 

MRI from T1-weighted inputs using the Adaptive-Dual-Domain 

U-Net. 

3.1 DATA PREPROCESSING  

The iSeg-2019 dataset [14] contains paired T1- and T2-

weighted MRI scans and it was used for training and validation. 

Each 3D MRI volume was pre-processed to ensure consistency. 

Voxel intensities were normalized to the range [0,1] using: 

             
( )

( ) ( )

min

max min
norm

X X
X

X X

−
=

−
 (1) 

where, X represents the raw voxel intensities. Rigid registration 

was applied to align the spatial coordinates of T1 and T2 volumes. 

All images were resampled to an isotropic resolution of 1 mm3. 

To handle the large 3D volumes, each MRI was divided into 

overlapping patches of size 64×64×64, with a stride of 32×32×32. 

Dynamic adjustments to the patch size ensured that smaller 

volumes were fully covered. These patches served as inputs to the 

network during training and validation. 

3.2 ADAPTIVE DUAL DOMAIN U-NET 

ARCHITECTURE 

The Adaptive Dual Domain U-Net network consists of three 

main components: an encoder, a bottleneck, and a decoder, 

connected through skip connections. A novel feature of the 

network is the dynamic channel alignment layer, which addresses 

channel mismatches between the encoder and decoder. The 

encoder processes the input T1-weighted MRI, progressively 

reducing spatial dimensions while increasing feature depth. Each 

encoder block comprises two 3D convolutional layers with ReLU 

activation, followed by batch normalization. Down sampling is 
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achieved through max-pooling. The output of the encoder at layer 

l is represented as: 

 ( )1 0,l

L enc LE f E E X−= =  (2) 

where, El is the output of the lth encoder block, and l

encf denotes 

its operations. The encoder outputs have progressively smaller 

spatial dimensions, culminating in a size of 16×16×16 with 128 

channels. The bottleneck lies at the centre of the network and 

operates at the smallest spatial scale. It captures high-level 

contextual features through additional 3D convolutional layers: 

 ( )bottle LB f E=  (3) 

where, L denotes the number of encoder layers, and B has 

dimensions 8×8×8 with 256 channels. The decoder reconstructs 

the spatial dimensions and synthesizes the T2-weighted image 

from the bottleneck features. Each decoder block includes an up-

sampling operation followed by two 3D convolutional layers with 

ReLU activation. Skip connections between corresponding 

encoder and decoder layers preserve spatial details lost during 

down-sampling. Due to mismatched feature dimensions, dynamic 

channel alignment layers are applied before concatenation. These 

alignment layers use 1×1×1 convolutions to harmonize the feature 

dimensions: 

 ( )( )1 1 1

l l

dec alignD f f U E= +   (4) 

where, Ul+1  is the up-sampled output from the previous decoder 

layer, El is the encoder output at layer l, and l

alignf represents the 

alignment operation. The final output is generated using a 1×1×1 

convolution: 

 ( )1outY f D=  (5) 

where, Y is the synthesized T2-weighted MRI. 

The Adaptive Dual Domain U-Net architecture is visualized 

in the Fig.1, which highlights the encoder, bottleneck, and 

decoder components, as well as the skip connections that link 

corresponding layers. The encoder is represented on the left, the 

decoder on the right, and the bottleneck at the centre, with clearly 

separated sections to emphasize their distinct roles. 

3.3 PATCH-BASED TRAINING AND 

RECONSTRUCTION 

Training involves feeding patches of T1-weighted MRI into 

the network to predict the corresponding patches of T2-weighted 

MRI. The network is trained to minimize voxel-wise intensity 

differences between the ground truth and predicted T2-weighted 

patches, using the Mean Squared Error (MSE) loss: 

 ( )
1

1 N

MSE i i

i

L Y Y
N =

= +  (6) 

In Eq.(6), N is the total number of voxels in a patch, Yi is the 

ground truth intensity, and 
iY  is the predicted intensity. 

During validation, the full 3D T2-weighted MRI is 

reconstructed by combining the predicted patches. Overlapping 

regions are averaged to ensure smooth transitions, using: 

 ( ): , : , :d h w tY Z Z p y y p X X p p+ + + + =  (7) 

 ( )
( )
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In Eq.(7) and Eq.(8), pi is the predicted patch, and count(z,y,x) 

tracks the number of overlapping patches contributing to each 

voxel. 

 

Fig.1 Adaptive Dual Domain U-Net architecture 

3.4 EXPLAINABILITY INTEGRATION 

Explainability tools were integrated into the framework to 

provide voxel-wise attributions, identifying regions in the input 

T1-weighted MRI that are most important for the predicted T2-

weighted output. Using Integrated Gradients from the Captum 

library, the attribution for each voxel iii is computed as: 

   ( )
( )0 0

1

0,

0
d

i i i

X X X

y
Attr X X

x
  = + +


= −


 (9) 

where, X0 is a baseline input, such as a zero-filled image, and X is 

the input T1-weighted MRI. These attributions highlight the 

regions in the input that are most critical for generating the T2-

weighted output, enhancing the interpretability of the network.  

4. EXPERIMENTS AND RESULTS 

4.1 EXPERIMENTAL SETUP 

The experiments were conducted on a system with an 

NVIDIA Tesla V100 GPU with 32GB of memory, 128GB of 

system RAM, and an Intel Xeon processor. The training and 

inference pipelines were implemented in PyTorch. The network 

was trained with a batch size of 10 and an initial learning rate of 

0.001, optimized using the Adam optimizer. The learning rate was 

reduced using a scheduler based on validation loss. Training was 

conducted for 60 epochs. Validation was performed after every 

epoch to monitor model performance, using key metrics such as 

Loss, Mean Squared Error (MSE), R² Score, and Mean Absolute 

Error (MAE). 
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Fig.2. Evaluation of Loss and Error Metrics Across Epochs 

The Fig.2 show the model’s performance for 60 epochs with 

metrics like Loss, Mean Squared Error (MSE), R² Score, and 

Mean Absolute Error (MAE).  

4.2 QUANTITATIVE RESULTS 

The performance of the Adaptive Dual Domain U-Net was 

evaluated against certain baseline mode as given in table.1for 

image synthesis. To assess the model performance Structural 

Similarity Index (SSIM)[15] for structural similarity between 

synthesized and ground truth images assessment and Peak Signal-

to-Noise Ratio (PSNR)[16 to evaluates image quality  was used. 

The Table.1 below summarizes the results across these metrics 

for the test set: 

Table.1 Model Performance comparison with state-of-art 

models. 

Model SSIM (↑) PSNR (↑) 

cGAN [17] 0.861 27.535 

pix2pix [18] 0.821 26.155 

MedGAN [19] 0.805 25.616 

pGAN [20] 0.846 27.396 

Our Model 0.873 28.557 

The Adaptive Dual Domain U-Net consistently outperformed 

the baselines across all metrics, demonstrating its ability to 

synthesize high-quality T2-weighted MRI with minimal intensity 

and structural errors. 

4.3 QUALITATIVE RESULTS 

Visual comparisons between synthesized T2-weighted images 

and ground truth T2-weighted MRI highlight the effectiveness of 

the proposed model. As shown in the Fig.3, the Adaptive Dual 

Domain U-Net produces outputs that closely match the ground 

truth in terms of structural integrity and intensity distribution. As 

shown in Fig.3 certain synthetic MRI provides the structure well 

but lacks the intensity correction compared to ground truth, in 

future we will try to work on this. 

 

Fig.3. Synthetic MRI with Less accuracy 

Additionally, the integration of explainability techniques 

provides insights into the model’s decision-making process. 

Heatmaps generated using Integrated Gradients reveal regions in 

the input T1-weighted MRI that are most influential in 

synthesizing the T2-weighted output. These visualizations 

demonstrate the network’s ability to focus on anatomically 

relevant regions, such as ventricles and cortical areas. 

4.4 ABLATION STUDIES 

To understand the contribution of key components in the 

Adaptive Dual Domain U-Net, ablation studies were conducted. 

The effect of dynamic channel alignment was analysed by 

removing the alignment layers and comparing the performance. 

Without alignment, MSE increased from 0.014 to 0.020, and 

SSIM dropped from 0.87 to 0.82, highlighting the importance of 

this component in ensuring smooth feature integration between 

encoder and decoder. The impact of patch size and stride was 

studied by varying the patch size and stride during training. 

Smaller patch sizes (32×32×32) improved local structural details 

but caused artifacts in reconstructed images due to reduced 

context. Larger patch sizes (128×128×128) provided global 

context but resulted in memory constraints and slower 

convergence. The default patch size of 64×64×64 achieved the 

best balance between quality and efficiency. The integration of 

explainability tools was also evaluated. While it does not directly 

impact synthesis performance, the interpretability provided by 

heatmaps enhances the usability of the model in clinical and 

research contexts. 

5. CONCLUSION  

This work provides an Adaptive Dual Domain U-Net, 

explainable deep learning framework for synthesizing T2-

weighted MRI from T1-weighted inputs. The proposed model 

effectively addresses challenges associated with domain 

variability and high-resolution image synthesis by incorporating 

dynamic channel alignment and patch-based training. Results 

validate its performance compared to baseline models with SSIM 

score of 0.873 and PSNR value of 28.557dB. Despite its strengths, 

limitations such as performance under severe motion artifacts or 

low-contrast inputs indicate there is a need for future research on 

domain adaptation and dataset diversity. 
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