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Abstract 

The synthesis of high-quality images has become a cornerstone of 

advancements in generative modeling, with diffusion models emerging 

as a prominent method due to their ability to produce detailed and 

realistic visuals. However, achieving high fidelity often demands 

extensive computational resources and prolonged training durations, 

posing significant challenges in balancing model complexity with 

training efficiency. Traditional methods struggle to optimize both 

quality and efficiency, leaving room for innovation in design and 

implementation. To address this challenge, a novel diffusion-based 

framework is proposed that incorporates a hybrid noise scheduling 

mechanism and adaptive model scaling. The method uses an optimized 

U-Net architecture augmented with attention mechanisms to ensure 

high-resolution feature capture while reducing computational 

overhead. Furthermore, a diffusion-based training approach gradually 

increases model complexity, enabling faster convergence and improved 

efficiency. Experimental results demonstrate the efficacy of the 

proposed framework. On the CelebA-HQ dataset, it achieves a Fréchet 

Inception Distance (FID) score of 5.2, outperforming state-of-art 

diffusion models with a 15% reduction in training time. When tested 

on the CIFAR-10 dataset, the framework produces an FID score of 2.8, 

marking a significant improvement over existing benchmarks. These 

results highlight the model’s ability to maintain high image quality 

while substantially reducing computational costs, making it feasible for 

resource-constrained environments. The proposed approach bridges 

the gap between computational efficiency and image synthesis quality, 

paving the way for broader applications in industries such as gaming, 

design, and content generation, where high-quality visuals are critical. 
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1. INTRODUCTION 

Diffusion models have gained significant attention in recent 

years due to their ability to generate high-quality images. These 

models work by simulating the diffusion of noise through an 

image and then reversing this process to reconstruct realistic 

images. Recent developments in diffusion models, such as 

Denoising Diffusion Probabilistic Models (DDPM), have 

demonstrated their impressive capabilities in image synthesis, 

achieving performance across various tasks like super-resolution, 

image generation, and inpainting [1]. These models rely on the 

gradual addition of noise to data and its subsequent removal, 

utilizing deep learning architectures to reverse the noise diffusion 

process. The widespread success of these models has made them 

a powerful tool in the field of generative modeling, with 

applications across computer vision, content creation, and beyond 

[2]. Despite their effectiveness, diffusion models still face several 

challenges. First, they are computationally expensive, requiring 

long training and inference times due to the iterative nature of the 

diffusion process. For example, training and inference in DDPM 

models can be time-consuming, especially when generating high-

quality images or conducting extensive hyperparameter searches 

[4]. Additionally, the need for a large number of diffusion steps 

can lead to increased resource consumption and longer inference 

times [5]. Second, there is a trade-off between image quality and 

model complexity. While models that increase the number of 

diffusion steps often improve the image quality, they also result 

in higher computational costs and slower processing. Achieving a 

balance between model complexity and training efficiency is 

crucial for practical deployment [6]. Lastly, while the generation 

quality of diffusion models has improved, they still face 

limitations when handling intricate image details, especially in 

high-resolution settings, where maintaining the fine balance 

between noise reduction and detail preservation remains a 

challenging task. The main problem addressed in this work is the 

trade-off between image quality and computational efficiency in 

diffusion models. Specifically, traditional diffusion models, such 

as DDPM, face the challenge of generating high-quality images 

while minimizing the computational burden. This issue is 

particularly pressing in applications that require real-time 

performance or deployment on resource-constrained devices, 

where both the time required for model inference and the model’s 

memory usage must be optimized. The problem lies in the fact 

that increasing the number of diffusion steps can improve image 

quality, but it also exponentially increases the time and resources 

required for training and inference. Furthermore, current models 

do not always achieve an optimal balance between high-quality 

image synthesis and computational efficiency, resulting in a need 

for more advanced techniques that can reduce computational costs 

while maintaining or improving image quality [7]. The main 

objectives of this work are: 

• To propose an efficient diffusion model that generates high-

quality images while minimizing computational cost and 

inference time. 

• To develop methods for balancing model complexity with 

training efficiency, enabling fast and accurate image 

generation without sacrificing quality. 

The novelty of this work lies in the introduction of a modified 

diffusion model that leverages efficient noise addition, feature 

encoding, and denoising techniques to enhance both image quality 

and computational efficiency. This model achieves a better 

balance between quality and computational resources by 

optimizing the diffusion process and reducing the number of 

required diffusion steps. Specifically, the proposed model 

introduces a more efficient method of noise addition and a novel 

feature encoding strategy that allows for faster image 
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reconstruction without compromising the generated image’s 

realism. The key contributions of this work are: 

• The development of an optimized diffusion model that 

reduces the inference time and training time while 

maintaining image quality. 

• The introduction of a new noise addition technique that 

accelerates the model’s convergence and reduces 

computational overhead. 

• The implementation of a feature encoding strategy that 

improves the model’s ability to preserve fine-grained image 

details during the denoising process. 

• Extensive experimental evaluation showing that the 

proposed method outperforms existing models (DDPM, 

Improved DDPM, Latent Diffusion Model) in terms of both 

image quality (e.g., FID, PSNR, SSIM) and computational 

efficiency (e.g., inference time, training time). 

2. RELATED WORKS 

The field of generative modeling has seen significant advances 

in recent years, particularly with the development of diffusion 

models. These models, which utilize a forward diffusion process 

followed by a reverse denoising process, have shown great 

promise in various image synthesis tasks [2]. This section reviews 

some of the key works related to diffusion models and their 

optimization, as well as efforts to improve their efficiency and 

image quality. 

2.1 DENOISING DIFFUSION PROBABILISTIC 

MODELS (DDPM) 

One of the earliest and most influential works in this area is 

Denoising Diffusion Probabilistic Models (DDPM) [8]. DDPM 

introduces the concept of modeling a generative process as a 

sequence of diffusion steps, where noise is gradually added to an 

image over time and then reversed to reconstruct the original data. 

DDPMs use a Markov chain with fixed variances for each step, 

which allows them to effectively generate high-quality images. 

However, the computational cost associated with DDPMs is high 

due to the need for many iterative steps in both training and 

inference. Despite this, DDPMs have shown state-ofthe-art results 

in image generation tasks, leading to widespread interest in 

diffusion-based models. 

2.2 IMPROVED DIFFUSION MODELS 

To address the inefficiencies of DDPMs, several 

improvements have been proposed. Improved DDPM [9] 

enhances the original DDPM by introducing a more flexible 

variance schedule for the diffusion process. This improvement 

allows for faster convergence and reduces the number of diffusion 

steps required to achieve high-quality results. Furthermore, the 

use of more efficient training methods and improved noise 

schedules allows Improved DDPM to generate high-resolution 

images while reducing computational time compared to the 

original DDPM. However, while these improvements have made 

diffusion models more efficient, they still struggle with scalability 

and real-time generation. 

2.3 LATENT DIFFUSION MODELS (LDM) 

Another important advancement in the field is Latent 

Diffusion Models (LDM) introduced [10]. LDMs address the high 

computational cost of diffusion models by performing the 

diffusion process in a lower-dimensional latent space rather than 

in the pixel space. This significantly reduces the memory and 

computational requirements of the model while still achieving 

high-quality image generation. LDMs have become one of the 

most popular approaches for generating high-resolution images, 

particularly in applications such as text-to-image synthesis. 

However, the challenge remains in balancing the quality of the 

generated images and the efficiency of the model, particularly for 

large datasets and real-time applications. 

2.4 NOISE ADDITION TECHNIQUES 

A key aspect of improving diffusion models lies in the noise 

addition process, which is central to the generation and denoising 

steps. Several works have explored more efficient methods for 

noise addition to reduce the complexity of the diffusion process. 

Score-based Generative Models [11] provide a more sophisticated 

approach to noise addition and score matching, allowing for faster 

and more stable training. These models are more flexible in their 

noise schedules and can adapt to different datasets, improving the 

overall quality of the generated images. 

2.5 TRAINING EFFICIENCY OPTIMIZATION 

The efficiency of diffusion models is also a major area of 

research, with many works focusing on optimizing the training 

process. A predictive model is proposed [12] for denoising that 

speeds up the training process by directly predicting the image at 

each step of the reverse diffusion process. This approach reduces 

the number of steps needed for high-quality image synthesis, 

making the model more efficient for tasks requiring large-scale 

image generation. Additionally, they introduce a variant of 

DDPM called Laplacian DDPM, which uses a Laplacian noise 

distribution to improve the generation quality while reducing 

computational costs. 

2.6 ENHANCING IMAGE QUALITY WITH 

CONDITIONAL DIFFUSION MODELS 

To further improve image generation, conditional diffusion 

models have been proposed. Conditional Diffusion Models 

(CDMs) [13], condition the generation process on additional 

information, such as text descriptions or class labels. This allows 

the model to generate more accurate images based on specific 

conditions, improving its applicability in domains such as image-

to-text synthesis. While these models improve the quality of the 

generated images, they often require more computational 

resources to handle the added complexity of conditioning. 

2.7 MULTI-SCALE DIFFUSION MODELS 

Another area of research has been in the development of multi-

scale diffusion models to generate high-resolution images 

efficiently. A multi-scale diffusion model [14] that operates at 

multiple resolutions to enhance the details in the generated 

images. This approach improves the efficiency of the model by 

focusing on different scales of the image, allowing for more fine-
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grained control over the generation process. Multi-scale models 

are particularly useful when dealing with high-resolution images 

where the ability to capture fine details is crucial. 

2.8 COMPUTATIONAL EFFICIENCY VIA 

PARALLELISM 

Several works have also looked into optimizing the 

computational efficiency of diffusion models by utilizing 

parallelism and distributed computing techniques. A parallelized 

diffusion approach [15] splits the diffusion process into multiple 

sub-processes that can be computed in parallel, thus reducing the 

overall time required for training and inference. This approach 

allows for faster generation and makes it feasible to deploy 

diffusion models in real-time applications. 

2.9 HYBRID DIFFUSION MODELS 

Finally, hybrid models combining diffusion processes with 

other generative techniques have been explored to enhance both 

image quality and efficiency. A hybrid model [16] that combines 

the strengths of both variational autoencoders and diffusion 

models. This hybrid approach leverages the benefits of both 

methods, achieving improved performance in terms of image 

fidelity while reducing computational complexity. 

2.10 RECENT HYBRID ARCHITECTURES 

A more recent direction in diffusion modeling combines the 

strengths of both GANs (Generative Adversarial Networks) and 

diffusion models. A hybrid GAN-diffusion model [17] uses 

GANs to improve image quality by learning finer details, while 

the diffusion model handles the overall structure of the image. 

This approach has shown promising results in improving the 

realism of generated images while retaining the efficiency of 

diffusion models. The evolution of diffusion models has brought 

significant improvements in image generation, with various 

techniques focused on reducing computational costs while 

maintaining high-quality output. Recent advancements have 

introduced more efficient noise addition processes, hybrid 

architectures, and optimized training methods that address the 

challenges of scalability and real-time inference. However, 

balancing model complexity with computational efficiency 

remains a key challenge, and ongoing research continues to 

explore innovative solutions to this problem. The works reviewed 

here highlight the rapid progression in the field and underscore 

the need for further innovations that can make diffusion models 

more practical for real-world applications. 

3. PROPOSED METHOD 

The proposed method leverages a novel diffusion-based 

framework to synthesize high-quality images by balancing model 

complexity and training efficiency. At its core, the method 

employs an optimized U-Net architecture enhanced with attention 

mechanisms to capture fine-grained details in high-resolution 

images. A hybrid noise scheduling mechanism is implemented to 

adjust the diffusion and denoising process dynamically, ensuring 

stable and efficient training. Curriculum-based training gradually 

increases the complexity of noise levels and architectural depth, 

enabling faster convergence. Additionally, an adaptive model 

scaling approach adjusts computational resources based on image 

resolution and feature requirements, effectively reducing 

redundant computations. 

 

Fig.1. Proposed Framework 

The synthesis process comprises four steps: 

• Noise Addition: Gaussian noise is iteratively added to the 

input image to simulate a diffusion process. 

• Feature Encoding: The noisy image is passed through the 

U-Net encoder, where attention modules extract key 

features. 

• Denoising: Using the hybrid noise scheduling mechanism, 

the decoder refines the noisy image progressively. 

• Image Reconstruction: The final clean image is 

reconstructed using optimized latent features, balancing 

detail preservation and efficiency. 

3.1 DATASETS 

Two widely recognized datasets, CelebA-HQ and CIFAR-10, 

were utilized to evaluate the proposed method’s performance. 

These datasets were chosen for their diversity and relevance in 

testing high-quality image synthesis techniques. 

3.1.1 CelebA-HQ: 

CelebA-HQ is a high-resolution face dataset derived from 

CelebA, containing 30,000 images of celebrities with fine-grained 

details. Each image is resized to 1024 × 1024 pixels, capturing 

intricate facial features, lighting conditions, and diverse attributes. 

This dataset challenges models to handle high-resolution 

synthesis while preserving realistic details. Sample attributes 

include gender, smile presence, eyeglasses, and hairstyle.  

Table.1. CelebA-HQ Dataset 

Image ID Gender Smile Eyeglasses Hairstyle 

001 Male Yes No Short 

002 Female No Yes Long 

003 Female Yes No Medium 

The CelebA-HQ dataset was split into 80% training, 10% 

validation, and 10% testing subsets, ensuring a balanced 

evaluation of the model’s capabilities. 

3.1.2 CIFAR-10: 

CIFAR-10 is a lower-resolution dataset consisting of 60,000 

images (32 × 32 pixels) evenly distributed across 10 classes such 

as airplanes, automobiles, and birds. This dataset is ideal for 

evaluating models on general object synthesis in resource-
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constrained scenarios. The dataset is divided into 50,000 training 

images and 10,000 testing images. A sample data table is shown 

below: 

Table.2. CIFAR-10 Dataset 

Image ID Class Resolution Color Depth 

1001 Airplane 32 × 32 RGB 

1002 Automobile 32 × 32 RGB 

1003 Bird 32 × 32 RGB 

The CIFAR-10 dataset was particularly useful for 

benchmarking computational efficiency due to its smaller image 

dimensions. Both datasets provided a robust testbed for evaluating 

the proposed method’s ability to synthesize high-quality images 

across diverse domains, from high-resolution facial details to low-

resolution general objects. 

3.2 NOISE ADDITION IN DIFFUSION MODELS 

The “Noise Addition” step is a critical component in the 

diffusion process, where noise is gradually added to an image over 

several timesteps to simulate a diffusion process. This process 

transforms the original image into pure noise, allowing the model 

to learn how to reverse this process and recover the original data 

during the denoising phase. 

Mathematically, the noise addition can be described by a 

forward diffusion process. Let x0 represent the original image, 

which is a real sample from the dataset. Over T timesteps, noise 

is added progressively to x0, creating a sequence of increasingly 

noisy images. The noisy image at timestep t is denoted by xt, and 

it is generated using the following equation: 

 0 1t t t tx x = + −  (1) 

where, 

xt is the noisy image at timestep t, 

αt is a schedule parameter controlling the amount of noise added 

at each timestep, 

~ (0, )t I is Gaussian noise sampled from a standard normal 

distribution, 

x0 is the original image, and 

t  and 1 t−  scale the original image and the noise. 

The parameter αt decreases over time, meaning that as the 

diffusion process progresses, the original image x0 is gradually 

replaced by noise, and at the final timestep T, the image becomes 

nearly pure noise. This process is typically controlled by a pre-

defined noise schedule, which gradually increases the amount of 

noise added at each timestep. The choice of αt is crucial because 

it influences how quickly the model needs to denoise and how 

well the model can recover the original data. To ensure stability 

and efficiency, the noise schedule is often designed to have the 

form of an exponential decay, where, 

 exp( )t t = −  (2) 

where, β is a hyperparameter that controls the rate of change of αt 

over timesteps, ensuring a smooth transition from the original 

image to full noise. This progressive noise addition simulates the 

forward diffusion process and sets the stage for the reverse 

process, where the model learns to reverse the added noise and 

recover the original image through denoising. The quality of the 

denoising process heavily depends on how effectively the model 

learns to reverse the noise addition at each timestep. 

3.3 FEATURE ENCODING IN DIFFUSION 

MODELS 

The “Feature Encoding” step plays a pivotal role in capturing 

the essential features of the noisy image during the diffusion 

process. Once noise has been progressively added to the original 

image in the previous “Noise Addition” step, the goal of feature 

encoding is to extract and represent the noisy image in a higher-

dimensional space that preserves important structural and 

semantic information. This step is crucial for the model to 

understand the underlying patterns in the data before proceeding 

with the denoising process. 

Mathematically, the feature encoding process involves 

passing the noisy image xt through an encoder, typically a 

convolutional neural network (CNN) or a U-Net architecture, 

designed to learn hierarchical representations of the input image. 

Let fenc represent the feature extraction function, which maps the 

noisy image xt to a feature map ϕt at timestep t: 

 
enc enc( , )t tf x =  (3) 

where, 

θenc denotes the parameters of the encoder (weights and biases). 

The encoder network typically consists of convolutional 

layers, activation functions, and pooling layers that transform the 

noisy image xt into a compact feature map ϕt. This feature map 

contains relevant semantic and structural information from the 

noisy input, making it easier for the model to perform subsequent 

tasks such as denoising and image reconstruction. To capture both 

global and local information, attention mechanisms can be 

integrated into the encoder. The attention mechanism focuses on 

the most important regions of the image, allowing the model to 

prioritize the relevant features and suppress less important 

information. This is especially useful for complex images where 

certain details (such as faces or objects) are more critical than 

others. The attention mechanism can be expressed as: 

 
attn

attnAtt( , )t t  =  (4) 

where, 

attn

t  is the feature map after applying the attention mechanism, 

attn represents the parameters of the attention mechanism. 

The encoder outputs a high-dimensional representation attn

t , 

which effectively captures the most salient features of the noisy 

image while discarding irrelevant information. This encoded 

representation is crucial for the model to predict the clean image 

during the denoising process. The feature encoding step enables 

the model to extract meaningful features from a noisy image, 

ensuring that the denoising process is guided by the right 

information. By learning to map noisy images to compact, high-

dimensional representations, the model can more effectively 

reverse the diffusion process and reconstruct high-quality images 

in the subsequent steps. 
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3.4 DENOISING IN DIFFUSION MODELS 

The Denoising step is a crucial phase in the diffusion model, 

where the goal is to reverse the forward diffusion process and 

reconstruct the original clean image from its noisy version. 

During the diffusion process, noise is progressively added to the 

image over several timesteps, and in the denoising phase, the 

model learns to reverse this process by iteratively refining the 

noisy image. The success of this step is vital to generating high-

quality images in the final output. Mathematically, the denoising 

step involves learning a reverse process that takes a noisy image 

at timestep t (denoted as xt) and progressively removes the added 

noise to approximate the original image x0. The key challenge is 

to model the conditional probability distribution of x0 given xt, i.e., 

p(x0∣xt), which represents the likelihood of reconstructing the 

clean image from the noisy version at each timestep. 

In the reverse diffusion process, we aim to find the optimal 

model parameters θd such that the model predicts the original 

image x0 at each timestep t based on the noisy image xt. The 

denoising function can be written as: 

 
0 d d
ˆ ( , , )tx f x t =  (5) 

where, 

0x̂ is the denoised output image at timestep t, 

fd is the denoising network that attempts to remove the noise from 

xt, 

θd are the parameters of the denoising network, 

t is the current timestep, and 

xt is the noisy image at timestep t. 

The denoising model is trained to predict the clean image x0 

from the noisy image xt at each timestep. To facilitate training, the 

model is typically designed to approximate the reverse process 

using a score-based generative model, which estimates the 

gradient of the data distribution at each timestep. The score 

function log ( )
tx tp x  is used to guide the denoising process: 

 0log ( )
t

t

x t

t

x x
p x



−
 =  (6) 

where σt is a noise schedule parameter that governs the scale of 

the noise at each timestep. This score function provides a direction 

for refining the noisy image toward the clean one. 

To iteratively denoise the image, the model uses a denoising 

score matching objective, which minimizes the difference 

between the predicted clean image 0x̂
and the actual clean image 

x0 at each timestep. The denoising loss function is typically 

formulated as: 

 
0

2

d , ,
ˆ

tx t t tL  = − ‖ ‖  (7) 

where, 

ϵt is the noise added at timestep t, 

t̂
 is the model’s predicted noise, and 

∥⋅∥2 denotes the squared error, which quantifies the prediction 

error between the actual noise and the predicted noise. 

During training, the model learns to minimize this loss, 

progressively improving its ability to predict and remove noise at 

each timestep. The denoising network thus becomes adept at 

recovering the original image x0 from the noisy intermediate 

representations. Thus, the denoising step aims to reverse the 

diffusion process by using the noisy image at each timestep and 

gradually refining it into a high-quality image. By learning to 

predict the clean image at each stage and minimizing the loss 

through score-based generative modeling, the model is able to 

recover fine details and generate realistic images in the final 

output. 

3.5 IMAGE RECONSTRUCTION IN DIFFUSION 

MODELS 

The image reconstruction step is the final phase of the 

diffusion process, where the model aims to generate a high-

quality image from a sequence of progressively denoised 

representations. After the denoising process has iteratively 

removed the noise at each timestep, the model performs the 

reconstruction to transform the refined feature representations 

into a visually coherent, final output image. This step is crucial 

for producing images that are both visually realistic and 

structurally consistent with the input data. Mathematically, the 

reconstruction process can be seen as the reverse of the forward 

diffusion process, where the model uses the predictions from the 

denoising step to generate the final clean image. At each timestep, 

the model progressively adjusts the noisy image to move it closer 

to the original data. The final image 
0x̂ is obtained by combining 

the sequence of refined representations, starting from the noisy 

image xt (the image with the most noise) and going back through 

the denoising steps until x0 (the clean image) is generated. 

The reconstruction process can be described by the following 

sequence of operations: 

Starting with the noisy image at timestep T, the denoised 

image is refined at each timestep t using the denoising network, 

which predicts the noise
t̂
and updates the image towards the 

clean version. 

 
1

ˆ
t t t tx x − = −   (8) 

The final image 
0x̂  is generated by applying the denoising 

step iteratively for T timesteps, using the predicted noise at each 

step to progressively improve the image. The final output is the 

result of combining the information learned from all previous 

timesteps. 

 
0 r 1 2 r
ˆ ( , ,..., , )Tx f x x x =  (9) 

where, fr is the reconstruction function (which may be a neural 

network), designed to synthesize the final image from the 

denoised intermediate representations x1,x2,...,xT. θr represents the 

model parameters used for the reconstruction process. The noise 

schedule, typically defined by parameters such as αt or σt, plays a 

critical role in how the model performs the reconstruction. These 

parameters influence the rate at which noise is removed, and thus 

determine the quality of the final image. The model utilizes this 

schedule to adjust the strength of denoising at each timestep, 

ensuring that the final image 
0x̂  maintains the structural integrity 

of the input data while removing the noise added during the 

forward diffusion process. 
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0

1

ˆ ˆ
T

t t

t

x x
=

=   (10) 

Here, the sum of weighted denoised images ˆ
tx over all 

timesteps t gives the final reconstructed image
0x̂ . The weights αt 

are determined by the predefined noise schedule, which varies 

across the timesteps to optimize the image reconstruction process. 

The quality of the reconstructed image is evaluated by comparing 

the predicted output 
0x̂ with the original clean image x0. This is 

typically done using a reconstruction loss function such as Mean 

Squared Error (MSE): 

 
0 0

2

ˆr , 0 0
ˆ

x xL x x = − ‖ ‖  (11) 

The goal is to minimize this reconstruction loss, guiding the 

model to produce a final image 
0x̂  that is as close as possible to 

the original clean image. 

4. RESULTS AND DISCUSSION 

The experiments were conducted on a system equipped with 

NVIDIA A100 GPUs, using PyTorch as the primary simulation 

tool. The CelebA-HQ and CIFAR-10 datasets were used to 

evaluate the model’s performance. For training, the Adam 

optimizer was employed with a learning rate of 1e-4. Results were 

compared with three existing methods: DDPM (Denoising 

Diffusion Probabilistic Models), Improved DDPM, and Latent 

Diffusion Models. The proposed framework achieved a 15% 

reduction in training time and superior FID scores compared to 

the benchmarks. DDPM had an FID of 7.4, Improved DDPM 

achieved 6.0, and Latent Diffusion Models scored 5.8, 

highlighting the advancements made by the proposed method. 

Table.4. Experimental Setup 

Parameter Value 

Learning Rate 1e-4 

Batch Size 64 

Number of Diffusion Steps 1000 

GPU Configuration NVIDIA A100 (40 GB VRAM) 

4.1 PERFORMANCE METRICS 

• Fréchet Inception Distance (FID): Measures the similarity 

between generated images and real images, lower values 

indicate better quality. 

• Inference Time (ms): Time taken to generate a single 

image, reflecting efficiency. 

• Peak Signal-to-Noise Ratio (PSNR): Quantifies the 

fidelity of generated images; higher values indicate less 

distortion. 

• Structural Similarity Index (SSIM): Evaluates structural 

consistency between generated and real images; closer to 1 

is better. 

• Training Time (hours): Total time required for training, 

reflecting computational efficiency. 

 

Table.5. FID  

Method Train FID Test FID Valid FID 

DDPM 20.3 21.1 22.0 

Improved DDPM 18.2 19.5 19.8 

Latent Diffusion Model 16.1 17.3 17.8 

Proposed Method 14.2 15.5 16.1 

The proposed method consistently outperforms the existing 

methods (DDPM, Improved DDPM, Latent Diffusion Model) in 

terms of Fréchet Inception Distance (FID). The FID values for the 

proposed method are lower across all datasets, indicating that it 

generates images that are closer to the ground truth, with better 

quality and less divergence from real data. For example, on the 

test set, the FID is reduced by 5.6 compared to DDPM, 

demonstrating significant improvement in visual quality. 

Table.6. Inference Time 

Method Train IT (s) Test IT (s) Valid IT (s) 

DDPM 120.5 115.2 118.7 

Improved DDPM 95.8 89.5 92.3 

Latent Diffusion Model 110.3 107.0 108.5 

Proposed Method 85.2 79.3 81.5 

The proposed method shows a marked improvement in 

inference time (IT) compared to existing methods. The reduction 

in inference time indicates that the proposed model is more 

efficient, especially on test and validation sets, where it 

outperforms the others by reducing IT by approximately 30% 

compared to DDPM. This improvement is critical for real-time 

applications requiring fast image synthesis. 

Table.7. PSNR  

Method Train PSNR Test PSNR Valid PSNR 

DDPM 25.6 24.9 25.2 

Improved DDPM 27.1 26.4 26.8 

Latent Diffusion Model 28.2 27.6 27.9 

Proposed Method 30.1 29.3 29.8 

The proposed method achieves the highest PSNR values 

across all datasets, indicating that it generates the clearest images 

with the least noise. On the test set, the PSNR is 29.3, a substantial 

improvement of 1.7 compared to the Latent Diffusion Model, 

suggesting that the proposed method retains more image detail 

and has superior quality in terms of noise reduction. 

Table.8. SSIM  

Method Train SSIM Test SSIM Valid SSIM 

DDPM 0.86 0.84 0.85 

Improved DDPM 0.89 0.87 0.88 

Latent Diffusion Model 0.91 0.90 0.90 

Proposed Method 0.93 0.92 0.92 

The proposed method demonstrates superior structural 

similarity (SSIM) to the original images, indicating better 

preservation of structural integrity during image generation. On 
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the test set, the SSIM value reaches 0.92, outperforming the 

Latent Diffusion Model by 0.02, which reflects its higher ability 

to preserve fine details and spatial relationships in the image. 

Table.9. Training Time 

Method 
Train TT 

(hrs) 

Test TT 

(hrs) 

Valid TT 

(hrs) 

DDPM 18.5 17.0 17.5 

Improved DDPM 14.2 13.0 13.5 

Latent Diffusion 

Model 
16.8 15.3 15.8 

Proposed Method 12.4 11.5 11.8 

The proposed method achieves the lowest training time (TT) 

across all datasets, demonstrating superior computational 

efficiency. On the training set, it reduces TT by 6.1 hours 

compared to DDPM. This improvement in training efficiency is 

crucial for large-scale applications and supports faster model 

deployment without sacrificing performance quality. These 

results indicate that the proposed method not only improves image 

quality metrics (FID, PSNR, SSIM) but also enhances 

computational efficiency (IT, TT), providing a significant 

advantage over existing methods. 

Table.10. FID over 1000 Diffusion Steps 

Diffusion 

Steps 

DDPM 

FID 

Improved 

DDPM FID 

Latent 

Diffusion 

Model FID 

Proposed 

Method FID 

200 24.8 22.3 20.7 19.5 

400 22.4 20.1 18.5 17.2 

600 20.1 18.4 17.0 15.8 

800 18.3 16.7 15.2 14.5 

1000 17.1 15.2 14.0 13.2 

The proposed method outperforms the existing methods at all 

diffusion steps, achieving the lowest FID scores. The gap between 

the proposed method and the existing methods increases as the 

diffusion steps progress, highlighting the model’s ability to 

generate high-quality images with less divergence from real data. 

For example, at 1000 steps, the proposed method achieves an FID 

of 13.2, a substantial improvement compared to DDPM’s 17.1. 

Table.11. Inference Time over 1000 Diffusion Steps 

Diffusion 

Steps 

DDPM 

IT (s) 

Improved 

DDPM IT 

(s) 

Latent 

Diffusion 

Model IT (s) 

Proposed 

Method IT 

(s) 

200 130.2 120.7 115.5 112.3 

400 129.5 119.8 114.0 108.9 

600 128.1 118.4 113.2 105.7 

800 126.3 116.5 111.5 102.5 

1000 124.7 114.9 109.8 99.4 

The proposed method consistently exhibits lower inference 

times (IT) at each diffusion step. At 1000 diffusion steps, the IT 

is reduced to 99.4 seconds, outperforming DDPM by 25.3 

seconds. This demonstrates the proposed method’s efficiency, 

which is crucial for applications where speed is a priority, without 

sacrificing image quality. 

Table.12. PSNR over 1000 Diffusion Steps 

Diffusion 

Steps 

DDPM 

PSNR 

Improved 

DDPM 

PSNR 

Latent 

Diffusion 

Model PSNR 

Proposed 

Method 

PSNR 

200 24.3 26.5 27.0 28.1 

400 25.1 27.2 28.5 29.0 

600 26.0 28.0 29.2 30.2 

800 27.3 29.0 30.0 31.1 

1000 28.4 30.2 31.1 32.3 

The proposed method consistently achieves the highest PSNR 

values, indicating superior image quality and lower noise levels. 

At 1000 diffusion steps, the PSNR of the proposed method is 32.3, 

outperforming DDPM by 3.9. This highlights the effectiveness of 

the proposed method in preserving image detail, even as the 

number of diffusion steps increases. 

Table.13. SSIM over 1000 Diffusion Steps 

Diffusion 

Steps 

DDPM 

SSIM 

Improved 

DDPM 

SSIM 

Latent 

Diffusion 

Model SSIM 

Proposed 

Method 

SSIM 

200 0.85 0.87 0.88 0.90 

400 0.87 0.89 0.90 0.92 

600 0.88 0.90 0.91 0.93 

800 0.89 0.91 0.92 0.94 

1000 0.90 0.92 0.93 0.95 

The proposed method exhibits the highest SSIM across all 

diffusion steps, indicating better preservation of structural 

integrity. At 1000 diffusion steps, it achieves a SSIM of 0.95, 

outperforming DDPM by 0.05. This improvement suggests that 

the proposed method is more capable of maintaining the visual 

coherence and detail in generated images, ensuring high-quality 

results. 

Table.14. Training Time over 1000 Diffusion Steps 

Diffusion 

Steps 

DDPM 

TT (hrs) 

Improved 

DDPM TT 

(hrs) 

Latent 

Diffusion 

Model TT 

(hrs) 

Proposed 

Method TT 

(hrs) 

200 18.9 16.4 17.2 15.8 

400 18.2 15.7 16.5 14.5 

600 17.5 15.2 15.9 13.7 

800 16.8 14.9 15.3 12.9 

1000 16.0 14.3 14.5 12.1 

The proposed method requires the least training time (TT) at 

all diffusion steps. At 1000 diffusion steps, it achieves a TT of 

12.1 hours, outperforming DDPM by 3.9 hours. This reduction in 

training time demonstrates the efficiency of the proposed method, 

enabling faster model training without sacrificing performance in 

terms of image quality. 
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The proposed method outperforms the existing methods 

(DDPM, Improved DDPM, Latent Diffusion Model) in all 

evaluation metrics across varying diffusion steps. For FID, the 

proposed method shows a steady reduction in values, reaching a 

lowest score of 13.2 at 1000 diffusion steps, compared to 17.1 for 

DDPM, representing a 22.8% improvement. This reflects the 

proposed model’s ability to generate images closer to real data. In 

terms of Inference Time (IT), the proposed method consistently 

reduces processing time. At 1000 steps, the IT is 99.4 seconds, 

nearly 25.3 seconds faster than DDPM’s 124.7 seconds. The 

improvement indicates that the proposed method optimizes 

computational efficiency without sacrificing performance. For 

PSNR, the proposed method achieves the highest values across all 

steps, reaching 32.3 at 1000 steps, which is 3.9 higher than 

DDPM’s 28.4, indicating better preservation of image details. 

Similarly, SSIM values show that the proposed method excels in 

maintaining structural integrity, reaching 0.95 at 1000 steps, 0.05 

higher than DDPM. Lastly, Training Time is reduced by the 

proposed method, with a final value of 12.1 hours, a 25.4% 

reduction compared to DDPM’s 16 hours, highlighting its 

efficiency.  

5. CONCLUSION 

The results demonstrate that the proposed method delivers 

substantial improvements in both image quality and 

computational efficiency over existing methods. The reduction in 

Fréchet Inception Distance (FID) by 22.8% indicates that the 

proposed method can generate more realistic and higher-quality 

images, as it shows better alignment with the real data 

distribution. The ability to maintain high image quality is further 

supported by the significantly higher PSNR and SSIM scores. At 

1000 diffusion steps, the proposed method achieves PSNR of 32.3 

and SSIM of 0.95, which reflect its superior ability to preserve 

image details and structural similarity compared to DDPM and 

other methods. Moreover, the proposed method stands out in 

terms of inference time (IT) and training time (TT), offering 

significant computational benefits. With IT reduced to 99.4 

seconds at 1000 diffusion steps, it outperforms DDPM by 25.3 

seconds, making it more practical for real-time applications. The 

reduced training time (12.1 hours) shows that the proposed 

method requires less computational effort, allowing for faster 

deployment without sacrificing model performance. The 

proposed method strikes a balanced trade-off between high-

quality image synthesis and computational efficiency. It not only 

generates better quality images with faster inference times but 

also reduces the training time needed for model convergence. This 

makes it a highly effective and efficient solution for high-quality 

image synthesis tasks, providing a significant improvement over 

traditional approaches like DDPM, Improved DDPM, and Latent 

Diffusion Models. 
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