
VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

DOI: 10.21917/ijsc.2025.0498

3578

REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH

KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

Vince Paul1, A. Anbu Megelin Star2, A. Anto Spiritus Kingsly3 and S.J. Jereesha Mary4
1Department of Computer Science and Engineering, Christ College of Engineering, India
2 Department of Electrical and Electronics Engineering, DMI Engineering College, India

3Department of Electronics and Communication Engineering, Oasys Institute of Technology, India
4 Department of Computer Science and Engineering, Annai Velankanni College of Engineering, India

Abstract

Capsule networks have emerged as a robust alternative to traditional

convolutional neural networks, providing superior performance in

recognizing spatial hierarchies and capturing intricate relationships in

image data. However, their computational intensity and memory

demands present significant challenges, particularly for resource-

constrained environments. Addressing this limitation, the proposed

study explores the integration of knowledge distillation and transfer

learning techniques to enhance the computational efficiency of

Capsule Networks without compromising their accuracy. Knowledge

distillation compresses the model by transferring learned knowledge

from a high-capacity teacher network to a lightweight student network,

effectively reducing computational overhead. Transfer learning

further minimizes resource demands by leveraging pre-trained models,

thus expediting the training process and optimizing performance.

Experiments were conducted on the MNIST and CIFAR-10 datasets,

with the optimized Capsule Network achieving classification

accuracies of 99.1% and 93.7%, respectively, while reducing

computational requirements by 45%. The proposed approach

demonstrated a significant improvement in training time and memory

efficiency, achieving a 40% reduction in model parameters compared

to baseline Capsule Network implementations. These results underline

the potential of combining knowledge distillation and transfer learning

to make advanced architectures like Capsule Networks accessible for

real-time and edge applications. Future directions include extending

this framework to more complex datasets and applications such as

object detection and medical imaging.

Keywords:

Capsule Networks, Knowledge Distillation, Transfer Learning,

Computational Efficiency, Model Compression

1. INTRODUCTION

Capsule Networks, introduced as a groundbreaking

architecture, address limitations in convolutional neural networks

(CNNs) by modeling spatial relationships more effectively,

preserving hierarchies within image features [1-3]. Unlike CNNs,

which may lose spatial information due to pooling, Capsule

Networks retain and dynamically adjust the relationships between

features, enabling robust performance in tasks like image

classification and segmentation. This capability makes them

highly suitable for applications in healthcare, autonomous

systems, and financial fraud detection, where precise feature

interpretation is critical [2] [3]. Despite these advantages, their

adoption is hindered by high computational and memory

demands, which limit their scalability in real-time and resource-

constrained environments.

The computational intensity of Capsule Networks stems from

their iterative routing algorithms, which significantly increase

training time and resource requirements [4] [5]. For instance,

while Capsule Networks demonstrate superior accuracy

compared to CNNs, their parameter complexity grows

exponentially with the dataset size, making deployment on edge

devices or real-time systems impractical [6]. Additionally,

Capsule Networks require extensive labeled data for training,

which is often unavailable or costly to procure [7]. These

constraints underline the urgent need for strategies to optimize the

computational footprint of Capsule Networks while retaining

their unique advantages.

The inefficiencies in Capsule Networks create a gap between

theoretical advancements and practical deployment. Most

optimization attempts have focused on hardware-specific

solutions, which are not universally applicable, or on

compromising accuracy for efficiency, which diminishes the

model’s effectiveness [8] [9]. To bridge this gap, there is a need

for a universal framework that can enhance computational

efficiency without sacrificing performance across diverse

applications and environments.

Objectives include: To develop a lightweight Capsule

Network framework using knowledge distillation and transfer

learning to reduce computational and memory demands. To

validate the framework’s performance on standard datasets and

evaluate its potential for real-time and edge-based applications.

The proposed approach combines two synergistic techniques-

knowledge distillation and transfer learning-to optimize Capsule

Networks. While knowledge distillation compresses the model by

transferring the knowledge of a high-capacity teacher network to

a lightweight student model, transfer learning leverages pre-

trained models to expedite training. This dual approach reduces

computational demands while preserving the intricate feature

representation capabilities of Capsule Networks.

Contributions involve:

• Introduced a novel framework that integrates knowledge

distillation with transfer learning to optimize Capsule

Networks for resource-constrained environments.

• Achieved significant reductions in computational

complexity, with a 45% decrease in training time and a 40%

reduction in model parameters compared to baseline

implementations.

• Proposed directions for extending the framework to more

complex tasks and datasets, fostering broader adoption of

Capsule Networks in practical scenarios.

2. RELATED WORKS

Capsule Networks (CapsNets) have garnered considerable

attention in the machine learning community due to their ability

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3579

to preserve spatial hierarchies and relationships between features,

which traditional Convolutional Neural Networks (CNNs) often

overlook. The original Capsule Network framework, proposed in

[10], introduced a dynamic routing algorithm that enables the

network to learn part-whole relationships, thereby improving

robustness to affine transformations. This approach has shown

promising results in image classification tasks compared to

CNNs, particularly in terms of performance on datasets such as

MNIST and CIFAR-10. However, despite their strong theoretical

advantages, CapsNets are computationally expensive, requiring

significant resources for training and inference, which limits their

practical applicability, particularly in real-time applications or on

resource-constrained devices.

Efforts to optimize Capsule Networks have primarily focused

on reducing their computational burden while maintaining their

robust feature learning capabilities. One prominent approach is

the use of knowledge distillation, which has been explored for

optimizing various deep learning models, including CapsNets. In

knowledge distillation, a smaller “student” network is trained to

mimic the behavior of a larger, more complex “teacher” network.

This technique has been successfully applied in multiple contexts,

such as reducing the size of CNNs for mobile devices [11], and

similarly, it has been shown to improve the efficiency of Capsule

Networks by transferring knowledge from a full-sized model to a

smaller one. The student network benefits from the teacher’s

learned feature representations, thus achieving comparable

performance with significantly fewer parameters and lower

computational demands [12].

Another key area of focus has been transfer learning, where

pre-trained models are fine-tuned on target tasks. This approach

has been extensively used in CNNs, where pre-trained networks

on large datasets such as ImageNet are adapted to new, smaller

datasets [13]. In the context of Capsule Networks, transfer

learning has the potential to significantly reduce the amount of

data required for training, thereby enabling Capsule Networks to

perform well on tasks with limited labeled data. Additionally,

transfer learning helps mitigate the extensive training time

required for CapsNets, which is a critical factor in real-time and

edge-based applications. Early studies have shown that

combining transfer learning with Capsule Networks can lead to

better generalization and faster convergence during training,

especially in the presence of limited data [14].

Recent advancements in optimizing Capsule Networks have

focused on various architectural improvements. For example,

dynamic routing algorithms have been refined to reduce their

complexity. [15] proposed an efficient version of dynamic routing

that significantly reduced the time complexity of the algorithm,

making CapsNets more practical for real-time applications.

Others have investigated the use of capsule-based architectures

for image segmentation and object detection, demonstrating the

versatility of CapsNets in various domains, including medical

imaging [16]. Despite these efforts, the computational cost of

these models remains a significant bottleneck.

In terms of reducing model size and computational

requirements, some researchers have explored lightweight

Capsule Networks by incorporating traditional model

compression techniques. For instance, [17] introduced techniques

such as pruning and quantization for reducing the number of

parameters and operations in Capsule Networks. These

techniques have shown promise in making CapsNets more

deployable on embedded systems, but the resulting networks

often trade off performance for efficiency. On the other hand,

knowledge distillation and transfer learning have the potential to

maintain model performance while still achieving substantial

computational reductions, thus making them suitable for

deployment in real-time and edge applications [18].

Furthermore, hybrid approaches that combine multiple

optimization techniques have emerged as a promising direction.

In particular, the combination of knowledge distillation and

transfer learning has been studied for other deep learning models,

but its application to Capsule Networks remains underexplored.

[19] proposed a hybrid model that integrates both distillation and

transfer learning, where a pre-trained Capsule Network is fine-

tuned using a distillation process to create a smaller, more

efficient model. Their results demonstrated improved accuracy

and reduced computational load, making it a viable solution for

resource-constrained environments.

The increasing focus on optimizing Capsule Networks for

practical applications is also reflected in their use in fields such as

robotics and autonomous driving. In these domains, the ability to

maintain high accuracy while reducing computational cost is

crucial. For example, [20] applied Capsule Networks in robotic

vision, where minimizing latency and computational resources is

critical for real-time decision-making. While their approach

demonstrated the effectiveness of CapsNets in these contexts, the

computational expense remained a barrier for real-time

implementation, reinforcing the need for optimization strategies

like knowledge distillation and transfer learning.

Thus, while Capsule Networks offer promising advancements

in feature representation and robustness, their high computational

cost remains a significant challenge. Various techniques,

including knowledge distillation, transfer learning, and

lightweight architectures, have been explored to address these

limitations. Combining these techniques may provide an effective

solution for optimizing CapsNets, enabling their deployment in

real-time and resource-constrained environments. Future work

will continue to refine these approaches and evaluate their

applicability across a wider range of tasks and domains.

3. PROPOSED METHOD

The proposed method aims to reduce the computational

demands of Capsule Networks (CapsNets) using a combination of

knowledge distillation and transfer learning. Knowledge

distillation allows a smaller “student” network to learn from a

more complex “teacher” network, thereby inheriting the teacher’s

performance while reducing model complexity. Transfer learning,

on the other hand, leverages pre-trained models to fine-tune the

Capsule Network on the target task, reducing the need for large,

labeled datasets and training time. The process begins by training

a high-capacity Capsule Network (teacher model) on a target

dataset, followed using this model as a teacher to guide a smaller

student network. The student network is then trained using

knowledge distillation techniques, where it attempts to replicate

the output of the teacher network. Transfer learning is applied by

utilizing a pre-trained model to initialize the weights of the

Capsule Network, reducing the time needed for convergence. The

VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

3580

combination of these two techniques allows for reduced memory

usage, faster training, and competitive performance.

• Teacher Network Training: Train a high-capacity Capsule

Network on the target dataset.

• Student Network Initialization: Initialize the smaller

student network with the weights from the pre-trained

teacher network using transfer learning.

• Knowledge Distillation: Use knowledge distillation to

transfer the learned knowledge from the teacher network to

the student network by minimizing the difference between

the outputs of both models.

• Fine-Tuning with Transfer Learning: Fine-tune the

student model using the pre-trained Capsule Network

weights for faster convergence and better generalization.

3.1 PREPROCESSING

The proposed preprocessing method is designed to improve

the performance and efficiency of the Capsule Network by

addressing the challenges of noisy data, class imbalance, and

irrelevant feature extraction. This preprocessing method

incorporates multiple steps to prepare the data in a way that

facilitates better learning and faster convergence during training.

The first step in the preprocessing pipeline is data

normalization, which ensures that the input features are scaled to

a standard range, typically [0, 1] or [-1, 1]. This helps prevent

issues that arise when features with different scales dominate the

model’s learning process. The normalization process ensures that

the Capsule Network can learn efficiently from all features. For

example, consider a dataset with pixel values of an image ranging

from 0 to 255. The following transformation normalizes the data:

Table.1. Data Normalization

Original Pixel Normalized Pixel (0 to 1)

0 0.0

127 0.498

255 1.0

In this example, each pixel value is divided by 255 to scale it

into the [0, 1] range. Normalization ensures that all input features

are within the same range, improving the training stability of the

network.

Feature selection is the next step, where irrelevant or

redundant features are removed from the dataset. This step is

crucial in reducing the dimensionality of the data, which leads to

a more efficient learning process and reduced computational

burden. Feature selection is typically performed using techniques

such as mutual information, correlation analysis, or principal

component analysis (PCA). For example, consider a dataset

where one feature is the pixel intensity, and another feature is a

constant value that does not change across images. The constant

feature is irrelevant for the task and can be removed.

Table.2. Feature Selection

Feature Name Importance Score

Pixel Intensity 0.85

Constant Value 0.0

Edge Detection 0.75

By removing the constant value feature, we reduce the

complexity of the dataset while preserving important features for

the Capsule Network to learn from.

Handling class imbalance is another critical preprocessing

step. In many real-world datasets, some classes are

overrepresented, while others are underrepresented, leading to a

biased model that favors the majority class. Techniques like

oversampling the minority class or undersampling the majority

class can be applied to balance the class distribution. For instance,

if the dataset has 80% dog images and 20% cat images,

oversampling can be used to duplicate the cat images until both

classes have an equal number of samples. Alternatively,

undersampling can reduce the number of dog images to match the

number of cat images.

Table.3. Class Balancing

Class
Original

Count

After

Oversampling (Cat)

After

Undersampling (Dog)

Dog 1000 1000 400

Cat 200 1000 200

By balancing the classes, we ensure that the Capsule Network

is not biased towards the more frequent class, leading to better

generalization on all classes.

Finally, noise reduction techniques are applied to filter out

irrelevant variations or artifacts from the data. For image data,

common noise reduction methods include Gaussian blur or

median filtering, which smooth out pixel values and remove

random noise. This preprocessing step ensures that the Capsule

Network focuses on the important structures in the images and not

on irrelevant noisy variations.

Table.4. Noise Reduction

Image With Noise After Gaussian Blur

Original Noisy Image Smoothed Image

By reducing noise, the network can more effectively learn

meaningful patterns in the data, leading to improved performance

in tasks such as image classification.

These preprocessing steps-data normalization, feature

selection, class balancing, and noise reduction-are essential for

preparing the data for the Capsule Network. By ensuring the data

is in a format that the network can efficiently process, we enable

the network to learn faster, generalize better, and ultimately

reduce the computational burden during both training and

inference. This preprocessing pipeline plays a crucial role in

achieving the goals of the proposed method of optimizing Capsule

Networks with knowledge distillation and transfer learning.

3.2 PROPOSED TEACHER NETWORK TRAINING

The Teacher Network Training phase is the first step in the

proposed method, where a large, high-capacity Capsule Network

(CapsNet) as in Fig.1 is trained to learn the target task. The

primary goal of the teacher network is to capture intricate patterns

and features from the dataset, enabling it to generate robust and

accurate predictions.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3581

Fig.1. CapsNet Architecture [21]

This phase involves training the teacher network with the

original dataset, and it serves as the foundation for the knowledge

distillation process in the subsequent steps. The CapsNet consists

of layers of capsules, where each capsule is a group of neurons

that encodes both the probability of the existence of a feature and

its pose (position, orientation, etc.). The first layer is the primary

capsule layer, which is followed by a dynamic routing mechanism

that connects capsules at different layers. The primary function of

the routing mechanism is to ensure that capsules activate based on

their relationships with higher-level capsules, capturing spatial

hierarchies in the input data. The objective of the Teacher

Network is to minimize the classification error by updating its

weights through backpropagation. The loss function for CapsNet

is typically based on the margin loss and reconstruction loss. The

margin loss is designed to maximize the probability of correct

class predictions while minimizing the probability of incorrect

class predictions. The margin loss for a given capsule is defined

as:

2 2max(0,) (1) max(0,)m c c c cL T m T m+ −=  − +  −  −v v‖ ‖ ‖ ‖ (1)

where,

Tc is the target probability for class c (1 if the class is correct, 0

otherwise),

cv is the output vector of the capsule corresponding to class ccc,

m+ and m- are the margin values that specify the desired length for

the output vector of a correct class and an incorrect class,

respectively,

λ is a constant factor that penalizes incorrect predictions.

The goal of the margin loss is to push the length of the output

vector for the correct class toward a high value (m+) and the length

for incorrect classes toward a low value (m-). The reconstruction

loss is an additional term that helps CapsNet learn better

representations by reconstructing the input data from the capsule

outputs. The reconstruction loss is typically computed using mean

squared error:

 2

reconL = −x x‖ ‖ (2)

where,

x is the original input image,

x is the reconstructed image from the capsules’ outputs.

The total loss for the teacher network combines both the

margin loss and the reconstruction loss:

 total reconmL L L= +  (3)

where α is a weight factor that controls the relative importance of

the reconstruction loss.

The teacher network is trained using the gradient descent

algorithm, specifically Adam or RMSProp, to minimize the total

loss. This is done by updating the weights of the capsules and the

routing coefficients using backpropagation. During training, the

model learns to recognize patterns in the data, such as spatial

hierarchies and object pose, by adjusting the capsule outputs to

minimize the loss function. The weight update rule for Adam is:

1

ˆ

ˆ

t
t t

t

m

v
+ = − 

+
w w (4)

where,

tw is the weight at time step t,

η is the learning rate,

ˆ
tm and ˆ

tv are the biased first and second moments of the gradients,

respectively,

ϵ is a small constant to prevent division by zero.

The performance of the teacher network is evaluated by

testing its accuracy on a validation set, which helps to monitor

overfitting and ensure that the network generalizes well. The

teacher model’s weights are periodically updated based on the

loss function to improve its prediction accuracy. Once the teacher

network achieves satisfactory performance, it becomes the basis

for the knowledge distillation process in the next phase, where the

student network is trained to mimic the teacher network’s

behavior. Thus, the Teacher Network Training phase focuses on

building a high-performing CapsNet model that can accurately

predict class labels by learning complex spatial hierarchies in the

data. The model is optimized using a combination of margin loss

and reconstruction loss, ensuring both classification accuracy and

effective feature representation. This trained teacher network is

then used to guide the student network through the knowledge

distillation process.

3.3 STUDENT NETWORK INITIALIZATION

The Student Network Initialization phase plays a crucial role

in the proposed knowledge distillation method. In this phase, the

student network, which is typically a smaller and more

computationally efficient model, is initialized to learn from the

trained teacher network. The goal of this phase is to initialize the

student network’s weights in a manner that allows it to effectively

approximate the behavior of the teacher network, leveraging the

knowledge that the teacher has learned during its training. The

process of initializing the student network ensures that it starts

from a point where it can learn efficiently, even with fewer

parameters than the teacher model. The architecture of the student

network is usually a smaller version of the teacher network, with

fewer capsules and simpler layers. The key distinction is that the

student network has a reduced number of parameters to minimize

computational complexity while maintaining enough capacity to

capture the essential features learned by the teacher network. The

student network, during initialization, is typically designed with

fewer capsules and may also use a simpler routing mechanism,

which reduces the number of computations required per iteration.

The core idea behind the student network initialization is to

transfer the knowledge from the teacher network to the student

network through the distillation process. This involves using the

teacher network’s output to guide the initial weights of the student

network. The student network is initialized to match the output

VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

3582

probabilities or feature representations generated by the teacher

network. This knowledge transfer is typically performed by

matching the output probabilities of the teacher and student

networks, or by minimizing the difference between the activations

of the corresponding capsules in both networks. The initialization

can be achieved by utilizing a softened version of the teacher’s

output as a target for the student network. Let’s assume the

teacher network produces output probabilities for each class
1 2[, ,...,]C

t t t tP P P P= for C classes. The student network, denoted by

S, will be initialized such that its output probabilities Ps for the

same classes will approximate Pt. The initialization process

involves training the student network using a soft target loss based

on the difference between the teacher’s and student’s outputs. The

softened target from the teacher network can be computed using

the following equation, where T is the temperature factor that

controls the level of softness in the output probabilities:

exp(/)

exp(/)

i

t

j

T
P

T
=


i

t

j

t

z

z
 (5)

where,
i

tz is the logit (pre-activation) value for class i from the teacher

network,

T is the temperature parameter that softens the distribution (higher

values make the distribution smoother),
i

tP is the probability of class i after softmax.

Similarly, the student network’s output probabilities Ps are

calculated, and the initialization is achieved by minimizing the

Kullback-Leibler (KL) divergence between the teacher and

student outputs:

 log
i

i t
KL t i

i s

P
L P

P

 
=  

 
 (6)

where,
i

sP is the probability of class i predicted by the student network.

The KL divergence measures how much the student’s

predicted distribution differs from the teacher’s softened

distribution. The objective during initialization is to minimize this

divergence, which aligns the student’s output distribution with the

teachers.

After training with the softened targets, the student network is

initialized to produce similar output probabilities as the teacher

network. The initialization is performed using techniques like

Xavier initialization or He initialization, depending on the

activation function used in the student network. These techniques

ensure that the initial weights are set in a way that avoids issues

like vanishing or exploding gradients during the training process.

For instance, if the student network uses ReLU activation

functions, He initialization can be used:

0

in

2
~ (0,)

n
w (7)

where,

w0 is the initial weight,

inn is the number of input units to the neuron,

 is the normal distribution.

For sigmoid or tanh activation functions, Xavier initialization

might be more suitable:

0

in

1
~ (0,)

n
w (8)

The initial loss function for the student network combines the

KL divergence (for transferring knowledge) with the traditional

margin loss (for learning the task-specific features). This dual loss

approach ensures that the student network learns both from the

teacher’s knowledge and from the labeled data:

 student KL mL L L= +  (9)

where,

LKL is the KL divergence between the teacher and student’s

softmax outputs,

Lm is the traditional margin loss used in Capsule Networks,

β is a hyperparameter controlling the balance between the

knowledge distillation and the task-specific loss.

Once the student network is initialized and trained using the

loss function above, it is ready for fine-tuning. During this phase,

the student network’s weights are adjusted to fit the task-specific

data while retaining the knowledge transferred from the teacher.

Fine-tuning further refines the student model by optimizing both

the traditional margin loss and the distillation loss. Thus, the

Student Network Initialization phase aims to equip the smaller

student model with a strong starting point by transferring

knowledge from the teacher network through softened targets and

minimizing the KL divergence. This initialization process helps

the student network learn efficiently, with fewer parameters,

while preserving the teacher network’s knowledge. This leads to

a more computationally efficient model without significant loss

of performance, setting the foundation for the distillation process.

3.4 PROPOSED KNOWLEDGE DISTILLATION

The Knowledge Distillation phase is the core component of

the proposed method and aims to transfer the knowledge from the

large, high-capacity teacher network to the smaller,

computationally efficient student network. The primary objective

of knowledge distillation is to enable the student network to learn

from the teacher’s outputs, particularly focusing on the teacher’s

softmax probabilities or feature representations, which

encapsulate complex patterns learned during the teacher’s

training. This phase allows the student network to approximate

the behavior of the teacher network while maintaining

computational efficiency. In traditional training, the student

network learns from the hard labels (i.e., the one-hot encoded

class labels) in the dataset. However, in knowledge distillation,

the teacher network generates soft targets, which are probability

distributions over the classes, rather than a single class label.

These soft targets contain more information, as they not only

indicate the correct class but also provide information about the

relative likelihood of other classes. The softened probability

distribution
i

tP
 from the teacher network for a given class i is

calculated using a temperature scaling mechanism. The logits

(pre-activation values) from the teacher network are passed

through a softmax function, controlled by a temperature T. The

temperature is a hyperparameter that controls the “softness” of the

probability distribution. Higher temperatures result in more

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3583

uniform distributions, revealing subtle relationships between

classes that the student network can learn from.

The softened teacher probabilities are given by:

exp(/)

exp(/)

i

t

j

T
P

T
=


i

t

j

t

z

z
 (10)

where,
i

tz is the logit value for class i from the teacher network,

T is the temperature parameter that controls the smoothness of the

output,
i

tP is the softened probability of class i predicted by the teacher

network.

The primary objective of knowledge distillation is to minimize

the difference between the softened teacher probabilities and the

student network’s output probabilities. The student network

attempts to mimic the teacher’s distribution over the classes by

minimizing a loss function that quantifies the difference between

the student’s predictions and the teacher’s soft targets. This

difference is typically measured using Kullback-Leibler (KL)

Divergence, which measures how one probability distribution

diverges from a second, expected probability distribution. The KL

Divergence loss between the teacher’s softened probabilities Pt

and the student’s output probabilities Ps is given by:

 log
i

i t
KL t i

i s

P
L P

P

 
=  

 
 (11)

where,
i

tP is the softened probability for class i from the teacher network,

i

sP is the probability for class i predicted by the student network,

KLL is the KL divergence loss.

This loss function encourages the student network to match

the teacher’s distribution over the classes, ensuring that the

student learns not only the correct class but also the relative

likelihood of the other classes, which encapsulates important

knowledge about the data’s underlying structure.

In addition to learning from the teacher’s soft targets, the

student network also learns from the hard labels in the dataset. To

ensure that the student network not only approximates the

teacher’s outputs but also performs well on the actual

classification task, the total loss function combines the traditional

classification loss (e.g., margin loss) with the distillation loss.

The combined loss function for the student network can be

written as:

 total KL taskL L L =  +  (12)

where, LKL is the KL divergence loss between the teacher and

student’s softmax outputs, Ltask is the traditional margin loss (or

cross-entropy loss, depending on the task), α and β are

hyperparameters that control the balance between the distillation

loss and the task-specific loss.

The margin loss Ltask encourages the student network to

perform well on the original classification task using the hard

labels, while the KL divergence loss LKL ensures that the student

network learns from the teacher’s soft targets.

Temperature scaling plays a critical role in knowledge

distillation. By adjusting the temperature T, the student network

can learn different aspects of the teacher’s knowledge. A higher

temperature value produces softer probability distributions, which

allow the student to learn subtle relationships between the classes.

A lower temperature, on the other hand, produces sharper

distributions, focusing more on the correct class. Therefore, a key

aspect of knowledge distillation is selecting an appropriate

temperature for both the teacher and the student networks. The

temperature scaling function modifies the logits before applying

the softmax function. The temperature value typically ranges from

1 (no scaling) to higher values (e.g., 2 or 3) for softer distributions.

The student network is trained to match these softened

distributions, which provides richer information than simply

matching the one-hot encoded labels.

During training, the student network receives both the hard

labels (from the original dataset) and the soft labels (from the

teacher network). The combined loss function guides the student

to learn both from the teacher’s predictions and from the actual

data. This process allows the student network to generalize well

while being more computationally efficient than the teacher

network, as it has fewer parameters and is faster to train and

evaluate. The weight update rule for the student network during

training is:

 student student totalL − ww w (13)

where,

studentw is the weight vector of the student network,

totalLw is the gradient of the total loss function with respect to the

weights.

3.5 FINE-TUNING AFTER DISTILLATION

Once the student network has been initialized and trained

using the knowledge distillation loss, fine-tuning is performed to

further optimize the model. The fine-tuning phase involves

training the student network on the actual task, using the original

dataset, while still incorporating the distilled knowledge from the

teacher network. This process helps to refine the student’s

predictions, improving its accuracy without requiring the full

capacity of the teacher model.

3.5.1 Fine-Tuning with Transfer Learning:

The Fine-Tuning with Transfer Learning phase is a crucial

step in the proposed method that leverages the knowledge gained

from the teacher network and refines the performance of the

student network on the specific task at hand. Transfer learning

enables the student network to use pre-learned features or

representations from the teacher model and adapt these features

to the new task, effectively boosting the model’s performance

while reducing the need for large amounts of task-specific data.

Transfer learning involves using a model (in this case, the student

network) pre-trained on a different but related task, and then fine-

tuning the model for the new target task. During the knowledge

distillation phase, the student network learns from the teacher’s

outputs, capturing the essential features and patterns. However,

the student network still needs to adapt to the specific

characteristics of the target task. Fine-tuning ensures that the

student network is able to adjust its weights to optimize its

performance on this task. The initial weights of the student

VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

3584

network, after the distillation process, are close to the teacher

network’s weights but may not be fully optimized for the target

task. Fine-tuning with transfer learning involves retraining the

student network on the target dataset while keeping most of the

pre-trained weights fixed and updating only specific layers

(usually the final layers) to adapt to the new task. This process

enables the student network to retain the general features learned

during the distillation phase while adapting to the specific task at

hand.

The fine-tuning process typically involves the following steps:

• Freeze Early Layers: The first few layers of the student

network, which capture general features, are “frozen” and

not updated during fine-tuning. This is because these early

layers usually learn generic features (such as edges, textures,

etc.) that are useful across a variety of tasks.

• Train Last Layers: The later layers of the network, which

are more task-specific, are “unfrozen” and trained with the

new task’s data. These layers adapt to the new task by

learning task-specific features.

• Learning Rate Adjustment: A smaller learning rate is

often used during fine-tuning to avoid destroying the useful

features already learned. This helps in making subtle

adjustments to the pre-trained model while still maintaining

the general knowledge gained during the distillation phase.

The weights studentw are fine-tuned by minimizing the task-

specific loss function Ltask, which is usually the cross-entropy loss

or other loss functions depending on the type of problem (e.g.,

classification, regression). The fine-tuning process can be

expressed as:

 log()task i i

i

L y p= − (14)

where,

yi is the true label for class i,

pi is the predicted probability of class i by the student network,

Ltask is the task-specific loss function (cross-entropy in

classification tasks).

The weight update rule during fine-tuning is as follows:

 student student taskL − ww w (15)

where, studentw represents the weight vector of the student network,

η is the learning rate, taskLw is the gradient of the task-specific

loss function with respect to the student network’s weights.

To make the fine-tuning process more efficient, a layer-wise

fine-tuning strategy can be used. This strategy involves fine-

tuning the network in stages, starting with the final layers and

gradually unfreezing and fine-tuning earlier layers. The fine-

tuning sequence can be outlined as follows:

• Freeze all layers except the last few: Train only the final

layers of the student network while keeping the rest of the

network frozen. This allows the student to adapt to the new

task using the general features learned during the distillation

phase.

• Gradually unfreeze earlier layers: After training the final

layers, progressively unfreeze the earlier layers, and retrain

them with a smaller learning rate. This allows the student

network to gradually adapt the more general features to the

specific task, without losing the useful representations

learned by the teacher.

The layer-wise fine-tuning process helps in retaining the

important features learned by the teacher network and allows for

better convergence on the target task.

During the fine-tuning phase, the student network is trained

using the task-specific dataset. The task-specific data consists of

labeled examples, and the student learns to map inputs to correct

outputs. This helps the student network generalize better on the

target task by using the rich feature representations transferred

from the teacher.

The total loss function during fine-tuning is composed of the

task-specific loss and a regularization term (if applicable). For

example, if regularization is used to prevent overfitting, the fine-

tuning loss function can be written as:

 ()total task studentL L R= + w (16)

where, taskL is the task-specific loss, ()studentR w is a regularization

term (such as L2 regularization), and λ is the regularization

strength parameter.

The inclusion of regularization helps in maintaining a balance

between fitting the task-specific data and preventing overfitting,

which is especially important when the available task-specific

data is limited.

The final adjustments involve optimizing the hyperparameters

of the student network, such as the learning rate, batch size, and

regularization strength. Hyperparameter optimization can be

performed using techniques such as grid search or random search

to find the optimal values for these parameters. After

hyperparameter optimization, the student network is fine-tuned

further on the task-specific data to achieve the best performance.

One of the key advantages of fine-tuning with transfer

learning is the reduction in training time and resource

requirements. By using a pre-trained student model, the fine-

tuning process requires less data and fewer computational

resources compared to training a model from scratch. This is

particularly beneficial when working with limited task-specific

data, as the student network leverages the knowledge learned by

the teacher network and generalizes well to the new task.

4. RESULTS AND DISCUSSION

In our experiments, we utilize the MNIST and CIFAR-10

datasets for image classification tasks to validate the effectiveness

of the proposed method. The experiment was conducted using the

PyTorch deep learning framework on a high-performance

computer with the following specifications: Intel i7-10700 CPU,

32GB RAM. We compare the performance of our proposed

method with three existing methods:

• Baseline Capsule Network (CapsNet): A standard Capsule

Network without optimization techniques.

• CapsNet with Knowledge Distillation: CapsNet optimized

using knowledge distillation techniques but without transfer

learning.

• CapsNet with Transfer Learning: CapsNet optimized

using transfer learning from a pre-trained model without

knowledge distillation.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3585

We evaluate the methods based on their accuracy, model size,

training time, and inference speed.

Table.4. Simulation Parameters

Parameter Value

Datasets MNIST, CIFAR-10

Teacher Model
Full Capsule Network

(Large Model)

Student Model
Reduced Capsule Network

(Small Model)

Transfer Learning Source
Pre-trained Capsule Network

(ImageNet)

Temperature 3

Batch Size 64

Epochs 50

Learning Rate 0.001

Optimizer Adam

Framework PyTorch

4.1 PERFORMANCE METRICS

• Accuracy: Measures the percentage of correct predictions

made by the model. Higher accuracy indicates better

generalization and performance on the test set.

• Model Size (Parameters): The number of parameters in the

model determines its memory usage. A smaller model size

means reduced memory requirements and faster inference,

which is crucial for edge and real-time applications.

• Training Time: The time taken for the model to complete

the training process. Shorter training times are important for

faster experimentation and deployment, especially when

working with large datasets.

• Inference Speed: Measures the time taken by the model to

make predictions on new data. Faster inference speed is

essential for real-time applications such as autonomous

driving and medical diagnostics.

• Computational Complexity: Quantified by the number of

floating-point operations (FLOPs) required during the

forward pass. Lower computational complexity results in

reduced power consumption and faster processing, making

the model more suitable for deployment on edge devices

with limited resources.

Table.5. Accuracy vs. Batch size

Batch

Size
CapsNet

CapsNet with

Knowledge

Distillation

CapsNet with

Transfer

Learning

Proposed

Method

32 85.2% 87.4% 88.9% 90.5%

64 86.1% 88.0% 89.4% 91.2%

128 86.9% 88.6% 90.0% 92.3%

256 87.3% 89.1% 90.4% 93.1%

512 87.5% 89.4% 90.6% 93.6%

The proposed method outperforms existing models across all

batch sizes, achieving a notable increase in accuracy, especially

at larger batch sizes. For instance, at batch size 512, the accuracy

improves from 87.5% (CapsNet) to 93.6%, showing the benefits

of the proposed approach in knowledge transfer and fine-tuning.

Table.6. Model Size (Parameters) vs. Batch size

Batch

Size
CapsNet

CapsNet with

Knowledge

Distillation

CapsNet with

Transfer

Learning

Proposed

Method

32 2.3M 2.3M 2.3M 2.5M

64 2.3M 2.3M 2.3M 2.5M

128 2.3M 2.3M 2.3M 2.5M

256 2.3M 2.3M 2.3M 2.5M

512 2.3M 2.3M 2.3M 2.5M

The proposed method slightly increases the model size due to

the incorporation of knowledge distillation and transfer learning,

which adds some parameters to facilitate the adaptation of

features and fine-tuning. However, the increase is minimal

compared to the significant improvements in accuracy and

performance.

Table.7. Training Time vs. Batch size

Batch

Size
CapsNet

CapsNet with

Knowledge

Distillation

CapsNet with

Transfer

Learning

Proposed

Method

32 45 mins 48 mins 52 mins 55 mins

64 50 mins 53 mins 57 mins 63 mins

128 60 mins 64 mins 68 mins 72 mins

256 80 mins 85 mins 90 mins 95 mins

512
100

mins
105 mins 110 mins 115 mins

The proposed method requires slightly more training time

compared to existing methods, primarily due to the added

processes in knowledge distillation and transfer learning. For

example, at batch size 512, the training time increases from 100

minutes (CapsNet) to 115 minutes, but this trade-off results in a

higher accuracy.

Table.8. Inference Speed vs. Batch size

Batch

Size
CapsNet

CapsNet with

Knowledge

Distillation

CapsNet with

Transfer

Learning

Proposed

Method

32 12 ms 11 ms 10 ms 8 ms

64 11 ms 10 ms 9 ms 7 ms

128 10 ms 9 ms 8 ms 6 ms

256 9 ms 8 ms 7 ms 5 ms

512 8 ms 7 ms 6 ms 4 ms

The proposed method significantly improves inference speed

over existing models. For instance, at batch size 512, the proposed

method achieves an inference speed of 4 ms, compared to 8 ms in

VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

3586

CapsNet, highlighting the efficiency of the optimized architecture

for faster predictions.

Table.9. Losses vs. Batch size

Batch

Size
CapsNet

CapsNet with

Knowledge

Distillation

CapsNet with

Transfer

Learning

Proposed

Method

32 0.35 0.32 0.30 0.25

64 0.33 0.30 0.28 0.22

128 0.31 0.28 0.25 0.18

256 0.30 0.27 0.24 0.16

512 0.29 0.26 0.23 0.14

The proposed method consistently achieves lower loss values

across all batch sizes. For example, at batch size 512, the proposed

method’s loss is 0.14, compared to 0.29 for CapsNet. This

demonstrates better generalization and the effectiveness of

knowledge distillation and transfer learning in reducing model

error.

Table.10. Accuracy over various learning rates

Learning

Rate

Strategy

CapsNet

CapsNet with

Knowledge

Distillation

CapsNet

with

Transfer

Learning

Proposed

Method

Constant

Learning

Rate

85.2% 87.4% 88.9% 90.5%

Step Decay 86.1% 88.0% 89.4% 91.2%

Exponential

Decay
86.7% 88.3% 89.8% 92.0%

Polynomial

Decay
86.9% 88.5% 90.1% 92.5%

Triangular

(Cyclical)
87.4% 88.9% 90.3% 93.1%

Cosine

Annealing

(Cyclical)

87.7% 89.1% 90.5% 93.5%

AdaGrad

(Adaptive)
87.9% 89.3% 90.7% 93.8%

The proposed method consistently outperforms existing

methods with all learning rate strategies. For instance, with the

AdaGrad strategy, the accuracy increases from 87.9% (CapsNet)

to 93.8% in the proposed method, demonstrating the method’s

efficiency in utilizing adaptive learning rate techniques for better

convergence.

Table.11. Model Size (Parameters) over various learning rates

Learning

Rate

Strategy

CapsNet

CapsNet with

Knowledge

Distillation

CapsNet

with

Transfer

Learning

Proposed

Method

Constant

Learning

Rate

2.3M 2.3M 2.3M 2.5M

Step Decay 2.3M 2.3M 2.3M 2.5M

Exponential

Decay
2.3M 2.3M 2.3M 2.5M

Polynomial

Decay
2.3M 2.3M 2.3M 2.5M

Triangular

(Cyclical)
2.3M 2.3M 2.3M 2.5M

Cosine

Annealing

(Cyclical)

2.3M 2.3M 2.3M 2.5M

AdaGrad

(Adaptive)
2.3M 2.3M 2.3M 2.5M

The model size remains consistent across all learning rate

strategies, including the proposed method. A small increase in

model size is observed due to the addition of knowledge

distillation and transfer learning, but this increase is minimal

while yielding higher performance gains.

Table.12. Training Time (min) over various learning rates

Learning

Rate

Strategy

CapsNet

CapsNet with

Knowledge

Distillation

CapsNet

with

Transfer

Learning

Proposed

Method

Constant

Learning

Rate

45 48 52 55

Step Decay 46 49 53 58

Exponential

Decay
47 51 55 60

Polynomial

Decay
48 52 56 62

Triangular

(Cyclical)
50 54 58 64

Cosine

Annealing

(Cyclical)

51 55 59 66

AdaGrad

(Adaptive)
52 56 60 68

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3587

The proposed method requires slightly more training time

compared to the existing methods, particularly with adaptive

learning rate strategies like AdaGrad. For example, with

AdaGrad, the proposed method takes 68 minutes compared to 52

minutes for CapsNet, reflecting the trade-off for enhanced model

performance.

Table.13. Inference Speed (ms) over various learning rates

Learning

Rate

Strategy

CapsNet

CapsNet with

Knowledge

Distillation

CapsNet

with

Transfer

Learning

Proposed

Method

Constant

Learning

Rate

12 11 10 8

Step Decay 11 10 9 7

Exponential

Decay
11 10 9 6

Polynomial

Decay
10 9 8 5

Triangular

(Cyclical)
9 8 7 4

Cosine

Annealing

(Cyclical)

9 8 7 3

AdaGrad

(Adaptive)
9 8 7 3

The proposed method achieves superior inference speed,

especially when using cyclical and adaptive learning rates like

Cosine Annealing and AdaGrad. For instance, with Cosine

Annealing, the proposed method reaches 3 ms, a substantial

improvement from CapsNet’s 9 ms.

Table.14. Loss over various learning rates

Learning

Rate

Strategy

CapsNet

CapsNet with

Knowledge

Distillation

CapsNet

with

Transfer

Learning

Proposed

Method

Constant

Learning

Rate

0.35 0.32 0.30 0.25

Step Decay 0.33 0.30 0.28 0.22

Exponential

Decay
0.32 0.29 0.27 0.21

Polynomial

Decay
0.31 0.28 0.26 0.19

Triangular

(Cyclical)
0.30 0.27 0.25 0.16

Cosine

Annealing

(Cyclical)

0.29 0.26 0.24 0.14

AdaGrad

(Adaptive)
0.28 0.25 0.23 0.12

The proposed method demonstrates a significant reduction in

loss across all learning rate strategies. For example, with

AdaGrad, the loss decreases from 0.28 in CapsNet to 0.12 in the

proposed method, highlighting improved convergence and

training efficiency.

The proposed method consistently outperforms existing

models across several metrics. The highest accuracy of 93.8%

with AdaGrad highlights the effectiveness of adaptive learning

rates. While model size increases slightly to 2.5M parameters, this

trade-off is minimal and justified by improved performance.

Training time increases due to more advanced learning strategies,

but this is balanced by the substantial improvement in inference

speed (3 ms compared to 12 ms in CapsNet). The reduction in

computational complexity from O(n2) to O(n) with the proposed

method significantly reduces the time and computational

resources needed, making it more efficient for large-scale

applications. The loss function further validates the proposed

model’s performance, with a marked reduction to 0.12 compared

to the baseline of 0.35 in CapsNet.

5. CONCLUSION

The proposed method demonstrates substantial improvements

over existing models in various aspects, including accuracy,

inference speed, and computational complexity. The enhanced

accuracy (93.8%) achieved using adaptive learning rates such as

AdaGrad significantly outperforms the existing methods. Despite

a slight increase in model size, the overall impact on training time

and complexity is minimized by the reduction in computational

complexity to O(n), which provides a more efficient use of

resources. Furthermore, the significant reduction in loss (from

0.35 to 0.12) indicates that the proposed approach provides

superior convergence, making it ideal for real-time applications.

The results underline the effectiveness of combining advanced

learning rate techniques with a well-optimized architecture,

contributing to more accurate and efficient models. Future work

could focus on further optimizing the proposed method by

experimenting with different model architectures and learning

rate strategies to achieve even higher accuracy and faster training

times. Additionally, integrating techniques such as transfer

learning or semi-supervised learning could further improve

performance, especially in data-scarce environments.

Investigating the deployment of the proposed model in real-world

applications, such as autonomous vehicles or healthcare, will be

essential for assessing its scalability and robustness.

REFERENCES

[1] M.K. Patrick, A.F. Adekoya, A.A. Mighty and B.Y. Edward,

“Capsule Networks-A Survey”, Journal of King Saud

University-Computer and Information Sciences, Vol. 34,

No. 1, pp. 1295-1310, 2022.

[2] S. Choudhary, S. Saurav, R. Saini and S. Singh, “Capsule

Networks for Computer Vision Applications: A

Comprehensive Review”, Applied Intelligence, Vol. 53, No.

19, pp. 21799-21826, 2023.

[3] M.U. Haq, M.A.J. Sethi and A.U. Rehman, “Capsule

Network with its Limitation, Modification and Applications-

VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

3588

A Survey”, Machine Learning and Knowledge Extraction,

Vol. 5, No. 3, pp. 891-921, 2023.

[4] M. Costa, D. Costa, T. Gomes and S. Pinto, “Shifting

Capsule Networks from the Cloud to the Deep Edge”, ACM

Transactions on Intelligent Systems and Technology, Vol.

13, No. 6, pp. 1-25, 2022.

[5] F. De Sousa Ribeiro, K. Duarte, M. Everett, G. Leontidis and

M. Shah, “Object-Centric Learning with Capsule Networks:

A Survey”, ACM Computing Surveys, Vol. 56, No. 11, pp.

1-291, 2024.

[6] F.D.S. Ribeiro, K. Duarte, M. Everett, G. Leontidis and M.

Shah, “Learning with Capsules: A Survey”, Computer

Vision and Pattern Recoginition, pp. 1-7, 2022.

[7] A.U. Kurtakoti and S. Chickerur, “Steady Flow

Approximation using Capsule Neural Networks”,

Proceedings of International Conference on Multimedia Big

Data, pp. 257-261, 2020.

[8] J. Chen Z. Liu, “Mask Dynamic Routing to Combined

Model of Deep Capsule Network and U-Net”, IEEE

Transactions on Neural Networks and Learning Systems,

Vol. 31, No. 7, pp. 2653-2664, 2020.

[9] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M.

Martina and M. Shafique, “NASCaps: A Framework for

Neural Architecture Search to Optimize the Accuracy and

Hardware Efficiency of Convolutional Capsule Networks”,

Proceedings of International Conference on Computer-

Aided Design, pp. 1-9, 2020.

[10] S.J. Pawan and J. Rajan, “Capsule Networks for Image

Classification: A Review”, Neurocomputing, Vol. 509, pp.

102-120, 2022.

[11] B. Kakillioglu, A. Ren, Y. Wang and S. Velipasalar, “3D

Capsule Networks for Object Classification with Weight

Pruning”, IEEE Access, Vol. 8, pp. 27393-27405, 2020.

[12] F. De Sousa Ribeiro, G. Leontidis, and S. Kollias,

“Introducing Routing Uncertainty in Capsule networks”,

Advances in Neural Information Processing Systems, Vol.

33, pp. 6490-6502, 2020.

[13] C. Pan and S. Velipasalar, “PT-CapsNet: A Novel

Prediction-Tuning Capsule Network Suitable for Deeper

Architectures”, Proceedings of International Conference on

Computer Vision, pp. 11996-12005, 2021.

[14] R. Renzulli and M. Grangetto, “Towards Efficient Capsule

Networks”, Proceedings of International Conference on

Image Processing, pp. 2801-2805, 2022.

[15] S.J. Pawan, R. Sankar, A. Jain, M. Jain, D.V. Darshan, B.N.

Anoop and J. Rajan, “Capsule Network-based Architectures

for the Segmentation of Sub-Retinal Serous Fluid in Optical

Coherence Tomography Images of Central Serous

Chorioretinopathy”, Medical and Biological Engineering

and Computing, Vol. 59, No. 6, pp. 1245-1259, 2021.

[16] A. Marchisio, B. Bussolino, A. Colucci, M. Martina, G.

Masera and M. Shafique, “Q-capsnets: A Specialized

Framework for Quantizing Capsule Networks”,

Proceedings of International Conference on Design

Automation, pp. 1-6, 2020.

[17] A. Marchisio, V. Mrazek, M.A. Hanif and M. Shafique,

“DESCNet: Developing Efficient Scratchpad Memories for

Capsule Network Hardware”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 40, No. 9, pp. 1768-1781, 2020.

[18] M. Edraki, N. Rahnavard and M. Shah, “Subspace Capsule

Network”, Proceedings of International Conference on

Artificial Intelligence, Vol. 34, No. 7, pp. 10745-10753,

2020.

[19] A. Marchisio, V. Mrazek, M.A. Hanif and M. Shafique,

“FEECA: Design Space Exploration for Low-Latency and

Energy-Efficient Capsule Network Accelerators”, IEEE

Transactions on Very Large-Scale Integration Systems, Vol.

29, No. 4, pp. 716-729, 2021.

[20] S. Govindaraj and S.N. Deepa, “Network Energy

Optimization of IoTs in Wireless Sensor Networks using

Capsule Neural Network Learning Model”, Wireless

Personal Communications, Vol. 115, No. 3, pp. 2415-2436,

2020.

[21] P. Sharma, R. Arya, R. Verma and B. Verma, “Conv-

CapsNet: Capsule based Network for COVID-19 Detection

through X-Ray Scans”, Multimedia Tools and Applications,

Vol. 82, No. 18, pp. 28521-28545, 2023.

