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Abstract 

Capsule networks have emerged as a robust alternative to traditional 

convolutional neural networks, providing superior performance in 

recognizing spatial hierarchies and capturing intricate relationships in 

image data. However, their computational intensity and memory 

demands present significant challenges, particularly for resource-

constrained environments. Addressing this limitation, the proposed 

study explores the integration of knowledge distillation and transfer 

learning techniques to enhance the computational efficiency of 

Capsule Networks without compromising their accuracy. Knowledge 

distillation compresses the model by transferring learned knowledge 

from a high-capacity teacher network to a lightweight student network, 

effectively reducing computational overhead. Transfer learning 

further minimizes resource demands by leveraging pre-trained models, 

thus expediting the training process and optimizing performance. 

Experiments were conducted on the MNIST and CIFAR-10 datasets, 

with the optimized Capsule Network achieving classification 

accuracies of 99.1% and 93.7%, respectively, while reducing 

computational requirements by 45%. The proposed approach 

demonstrated a significant improvement in training time and memory 

efficiency, achieving a 40% reduction in model parameters compared 

to baseline Capsule Network implementations. These results underline 

the potential of combining knowledge distillation and transfer learning 

to make advanced architectures like Capsule Networks accessible for 

real-time and edge applications. Future directions include extending 

this framework to more complex datasets and applications such as 

object detection and medical imaging. 
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1. INTRODUCTION 

Capsule Networks, introduced as a groundbreaking 

architecture, address limitations in convolutional neural networks 

(CNNs) by modeling spatial relationships more effectively, 

preserving hierarchies within image features [1-3]. Unlike CNNs, 

which may lose spatial information due to pooling, Capsule 

Networks retain and dynamically adjust the relationships between 

features, enabling robust performance in tasks like image 

classification and segmentation. This capability makes them 

highly suitable for applications in healthcare, autonomous 

systems, and financial fraud detection, where precise feature 

interpretation is critical [2] [3]. Despite these advantages, their 

adoption is hindered by high computational and memory 

demands, which limit their scalability in real-time and resource-

constrained environments. 

The computational intensity of Capsule Networks stems from 

their iterative routing algorithms, which significantly increase 

training time and resource requirements [4] [5]. For instance, 

while Capsule Networks demonstrate superior accuracy 

compared to CNNs, their parameter complexity grows 

exponentially with the dataset size, making deployment on edge 

devices or real-time systems impractical [6]. Additionally, 

Capsule Networks require extensive labeled data for training, 

which is often unavailable or costly to procure [7]. These 

constraints underline the urgent need for strategies to optimize the 

computational footprint of Capsule Networks while retaining 

their unique advantages. 

The inefficiencies in Capsule Networks create a gap between 

theoretical advancements and practical deployment. Most 

optimization attempts have focused on hardware-specific 

solutions, which are not universally applicable, or on 

compromising accuracy for efficiency, which diminishes the 

model’s effectiveness [8] [9]. To bridge this gap, there is a need 

for a universal framework that can enhance computational 

efficiency without sacrificing performance across diverse 

applications and environments. 

Objectives include: To develop a lightweight Capsule 

Network framework using knowledge distillation and transfer 

learning to reduce computational and memory demands. To 

validate the framework’s performance on standard datasets and 

evaluate its potential for real-time and edge-based applications. 

The proposed approach combines two synergistic techniques-

knowledge distillation and transfer learning-to optimize Capsule 

Networks. While knowledge distillation compresses the model by 

transferring the knowledge of a high-capacity teacher network to 

a lightweight student model, transfer learning leverages pre-

trained models to expedite training. This dual approach reduces 

computational demands while preserving the intricate feature 

representation capabilities of Capsule Networks. 

Contributions involve: 

• Introduced a novel framework that integrates knowledge 

distillation with transfer learning to optimize Capsule 

Networks for resource-constrained environments. 

• Achieved significant reductions in computational 

complexity, with a 45% decrease in training time and a 40% 

reduction in model parameters compared to baseline 

implementations. 

• Proposed directions for extending the framework to more 

complex tasks and datasets, fostering broader adoption of 

Capsule Networks in practical scenarios. 

2. RELATED WORKS 

Capsule Networks (CapsNets) have garnered considerable 

attention in the machine learning community due to their ability 
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to preserve spatial hierarchies and relationships between features, 

which traditional Convolutional Neural Networks (CNNs) often 

overlook. The original Capsule Network framework, proposed in 

[10], introduced a dynamic routing algorithm that enables the 

network to learn part-whole relationships, thereby improving 

robustness to affine transformations. This approach has shown 

promising results in image classification tasks compared to 

CNNs, particularly in terms of performance on datasets such as 

MNIST and CIFAR-10. However, despite their strong theoretical 

advantages, CapsNets are computationally expensive, requiring 

significant resources for training and inference, which limits their 

practical applicability, particularly in real-time applications or on 

resource-constrained devices. 

Efforts to optimize Capsule Networks have primarily focused 

on reducing their computational burden while maintaining their 

robust feature learning capabilities. One prominent approach is 

the use of knowledge distillation, which has been explored for 

optimizing various deep learning models, including CapsNets. In 

knowledge distillation, a smaller “student” network is trained to 

mimic the behavior of a larger, more complex “teacher” network. 

This technique has been successfully applied in multiple contexts, 

such as reducing the size of CNNs for mobile devices [11], and 

similarly, it has been shown to improve the efficiency of Capsule 

Networks by transferring knowledge from a full-sized model to a 

smaller one. The student network benefits from the teacher’s 

learned feature representations, thus achieving comparable 

performance with significantly fewer parameters and lower 

computational demands [12]. 

Another key area of focus has been transfer learning, where 

pre-trained models are fine-tuned on target tasks. This approach 

has been extensively used in CNNs, where pre-trained networks 

on large datasets such as ImageNet are adapted to new, smaller 

datasets [13]. In the context of Capsule Networks, transfer 

learning has the potential to significantly reduce the amount of 

data required for training, thereby enabling Capsule Networks to 

perform well on tasks with limited labeled data. Additionally, 

transfer learning helps mitigate the extensive training time 

required for CapsNets, which is a critical factor in real-time and 

edge-based applications. Early studies have shown that 

combining transfer learning with Capsule Networks can lead to 

better generalization and faster convergence during training, 

especially in the presence of limited data [14]. 

Recent advancements in optimizing Capsule Networks have 

focused on various architectural improvements. For example, 

dynamic routing algorithms have been refined to reduce their 

complexity. [15] proposed an efficient version of dynamic routing 

that significantly reduced the time complexity of the algorithm, 

making CapsNets more practical for real-time applications. 

Others have investigated the use of capsule-based architectures 

for image segmentation and object detection, demonstrating the 

versatility of CapsNets in various domains, including medical 

imaging [16]. Despite these efforts, the computational cost of 

these models remains a significant bottleneck. 

In terms of reducing model size and computational 

requirements, some researchers have explored lightweight 

Capsule Networks by incorporating traditional model 

compression techniques. For instance, [17] introduced techniques 

such as pruning and quantization for reducing the number of 

parameters and operations in Capsule Networks. These 

techniques have shown promise in making CapsNets more 

deployable on embedded systems, but the resulting networks 

often trade off performance for efficiency. On the other hand, 

knowledge distillation and transfer learning have the potential to 

maintain model performance while still achieving substantial 

computational reductions, thus making them suitable for 

deployment in real-time and edge applications [18]. 

Furthermore, hybrid approaches that combine multiple 

optimization techniques have emerged as a promising direction. 

In particular, the combination of knowledge distillation and 

transfer learning has been studied for other deep learning models, 

but its application to Capsule Networks remains underexplored. 

[19] proposed a hybrid model that integrates both distillation and 

transfer learning, where a pre-trained Capsule Network is fine-

tuned using a distillation process to create a smaller, more 

efficient model. Their results demonstrated improved accuracy 

and reduced computational load, making it a viable solution for 

resource-constrained environments. 

The increasing focus on optimizing Capsule Networks for 

practical applications is also reflected in their use in fields such as 

robotics and autonomous driving. In these domains, the ability to 

maintain high accuracy while reducing computational cost is 

crucial. For example, [20] applied Capsule Networks in robotic 

vision, where minimizing latency and computational resources is 

critical for real-time decision-making. While their approach 

demonstrated the effectiveness of CapsNets in these contexts, the 

computational expense remained a barrier for real-time 

implementation, reinforcing the need for optimization strategies 

like knowledge distillation and transfer learning. 

Thus, while Capsule Networks offer promising advancements 

in feature representation and robustness, their high computational 

cost remains a significant challenge. Various techniques, 

including knowledge distillation, transfer learning, and 

lightweight architectures, have been explored to address these 

limitations. Combining these techniques may provide an effective 

solution for optimizing CapsNets, enabling their deployment in 

real-time and resource-constrained environments. Future work 

will continue to refine these approaches and evaluate their 

applicability across a wider range of tasks and domains. 

3. PROPOSED METHOD 

The proposed method aims to reduce the computational 

demands of Capsule Networks (CapsNets) using a combination of 

knowledge distillation and transfer learning. Knowledge 

distillation allows a smaller “student” network to learn from a 

more complex “teacher” network, thereby inheriting the teacher’s 

performance while reducing model complexity. Transfer learning, 

on the other hand, leverages pre-trained models to fine-tune the 

Capsule Network on the target task, reducing the need for large, 

labeled datasets and training time. The process begins by training 

a high-capacity Capsule Network (teacher model) on a target 

dataset, followed using this model as a teacher to guide a smaller 

student network. The student network is then trained using 

knowledge distillation techniques, where it attempts to replicate 

the output of the teacher network. Transfer learning is applied by 

utilizing a pre-trained model to initialize the weights of the 

Capsule Network, reducing the time needed for convergence. The 
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combination of these two techniques allows for reduced memory 

usage, faster training, and competitive performance. 

• Teacher Network Training: Train a high-capacity Capsule 

Network on the target dataset. 

• Student Network Initialization: Initialize the smaller 

student network with the weights from the pre-trained 

teacher network using transfer learning. 

• Knowledge Distillation: Use knowledge distillation to 

transfer the learned knowledge from the teacher network to 

the student network by minimizing the difference between 

the outputs of both models. 

• Fine-Tuning with Transfer Learning: Fine-tune the 

student model using the pre-trained Capsule Network 

weights for faster convergence and better generalization. 

3.1 PREPROCESSING 

The proposed preprocessing method is designed to improve 

the performance and efficiency of the Capsule Network by 

addressing the challenges of noisy data, class imbalance, and 

irrelevant feature extraction. This preprocessing method 

incorporates multiple steps to prepare the data in a way that 

facilitates better learning and faster convergence during training. 

The first step in the preprocessing pipeline is data 

normalization, which ensures that the input features are scaled to 

a standard range, typically [0, 1] or [-1, 1]. This helps prevent 

issues that arise when features with different scales dominate the 

model’s learning process. The normalization process ensures that 

the Capsule Network can learn efficiently from all features. For 

example, consider a dataset with pixel values of an image ranging 

from 0 to 255. The following transformation normalizes the data: 

Table.1. Data Normalization 

Original Pixel  Normalized Pixel (0 to 1) 

0 0.0 

127 0.498 

255 1.0 

In this example, each pixel value is divided by 255 to scale it 

into the [0, 1] range. Normalization ensures that all input features 

are within the same range, improving the training stability of the 

network. 

Feature selection is the next step, where irrelevant or 

redundant features are removed from the dataset. This step is 

crucial in reducing the dimensionality of the data, which leads to 

a more efficient learning process and reduced computational 

burden. Feature selection is typically performed using techniques 

such as mutual information, correlation analysis, or principal 

component analysis (PCA). For example, consider a dataset 

where one feature is the pixel intensity, and another feature is a 

constant value that does not change across images. The constant 

feature is irrelevant for the task and can be removed. 

Table.2. Feature Selection 

Feature Name Importance Score 

Pixel Intensity 0.85 

Constant Value 0.0 

Edge Detection 0.75 

By removing the constant value feature, we reduce the 

complexity of the dataset while preserving important features for 

the Capsule Network to learn from. 

Handling class imbalance is another critical preprocessing 

step. In many real-world datasets, some classes are 

overrepresented, while others are underrepresented, leading to a 

biased model that favors the majority class. Techniques like 

oversampling the minority class or undersampling the majority 

class can be applied to balance the class distribution. For instance, 

if the dataset has 80% dog images and 20% cat images, 

oversampling can be used to duplicate the cat images until both 

classes have an equal number of samples. Alternatively, 

undersampling can reduce the number of dog images to match the 

number of cat images. 

Table.3. Class Balancing 

Class 
Original  

Count 

After  

Oversampling (Cat) 

After  

Undersampling (Dog) 

Dog 1000 1000 400 

Cat 200 1000 200 

By balancing the classes, we ensure that the Capsule Network 

is not biased towards the more frequent class, leading to better 

generalization on all classes. 

Finally, noise reduction techniques are applied to filter out 

irrelevant variations or artifacts from the data. For image data, 

common noise reduction methods include Gaussian blur or 

median filtering, which smooth out pixel values and remove 

random noise. This preprocessing step ensures that the Capsule 

Network focuses on the important structures in the images and not 

on irrelevant noisy variations. 

Table.4. Noise Reduction 

Image With Noise After Gaussian Blur 

Original Noisy Image Smoothed Image 

By reducing noise, the network can more effectively learn 

meaningful patterns in the data, leading to improved performance 

in tasks such as image classification. 

These preprocessing steps-data normalization, feature 

selection, class balancing, and noise reduction-are essential for 

preparing the data for the Capsule Network. By ensuring the data 

is in a format that the network can efficiently process, we enable 

the network to learn faster, generalize better, and ultimately 

reduce the computational burden during both training and 

inference. This preprocessing pipeline plays a crucial role in 

achieving the goals of the proposed method of optimizing Capsule 

Networks with knowledge distillation and transfer learning. 

3.2 PROPOSED TEACHER NETWORK TRAINING 

The Teacher Network Training phase is the first step in the 

proposed method, where a large, high-capacity Capsule Network 

(CapsNet) as in Fig.1 is trained to learn the target task. The 

primary goal of the teacher network is to capture intricate patterns 

and features from the dataset, enabling it to generate robust and 

accurate predictions. 
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Fig.1. CapsNet Architecture [21] 

This phase involves training the teacher network with the 

original dataset, and it serves as the foundation for the knowledge 

distillation process in the subsequent steps. The CapsNet consists 

of layers of capsules, where each capsule is a group of neurons 

that encodes both the probability of the existence of a feature and 

its pose (position, orientation, etc.). The first layer is the primary 

capsule layer, which is followed by a dynamic routing mechanism 

that connects capsules at different layers. The primary function of 

the routing mechanism is to ensure that capsules activate based on 

their relationships with higher-level capsules, capturing spatial 

hierarchies in the input data. The objective of the Teacher 

Network is to minimize the classification error by updating its 

weights through backpropagation. The loss function for CapsNet 

is typically based on the margin loss and reconstruction loss. The 

margin loss is designed to maximize the probability of correct 

class predictions while minimizing the probability of incorrect 

class predictions. The margin loss for a given capsule is defined 

as: 

2 2max(0, ) (1 ) max(0, )m c c c cL T m T m+ −=  − +  −  −v v‖ ‖ ‖ ‖  (1) 

where, 

Tc is the target probability for class c (1 if the class is correct, 0 

otherwise), 

cv  is the output vector of the capsule corresponding to class ccc, 

m+ and m- are the margin values that specify the desired length for 

the output vector of a correct class and an incorrect class, 

respectively, 

λ is a constant factor that penalizes incorrect predictions. 

The goal of the margin loss is to push the length of the output 

vector for the correct class toward a high value (m+) and the length 

for incorrect classes toward a low value (m-). The reconstruction 

loss is an additional term that helps CapsNet learn better 

representations by reconstructing the input data from the capsule 

outputs. The reconstruction loss is typically computed using mean 

squared error: 

 2

reconL = −x x‖ ‖  (2) 

where, 

x is the original input image, 

x  is the reconstructed image from the capsules’ outputs. 

The total loss for the teacher network combines both the 

margin loss and the reconstruction loss: 

 total reconmL L L= +   (3) 

where α is a weight factor that controls the relative importance of 

the reconstruction loss. 

The teacher network is trained using the gradient descent 

algorithm, specifically Adam or RMSProp, to minimize the total 

loss. This is done by updating the weights of the capsules and the 

routing coefficients using backpropagation. During training, the 

model learns to recognize patterns in the data, such as spatial 

hierarchies and object pose, by adjusting the capsule outputs to 

minimize the loss function. The weight update rule for Adam is: 
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where, 

tw is the weight at time step t, 

η is the learning rate, 

ˆ
tm and ˆ

tv are the biased first and second moments of the gradients, 

respectively, 

ϵ is a small constant to prevent division by zero. 

The performance of the teacher network is evaluated by 

testing its accuracy on a validation set, which helps to monitor 

overfitting and ensure that the network generalizes well. The 

teacher model’s weights are periodically updated based on the 

loss function to improve its prediction accuracy. Once the teacher 

network achieves satisfactory performance, it becomes the basis 

for the knowledge distillation process in the next phase, where the 

student network is trained to mimic the teacher network’s 

behavior. Thus, the Teacher Network Training phase focuses on 

building a high-performing CapsNet model that can accurately 

predict class labels by learning complex spatial hierarchies in the 

data. The model is optimized using a combination of margin loss 

and reconstruction loss, ensuring both classification accuracy and 

effective feature representation. This trained teacher network is 

then used to guide the student network through the knowledge 

distillation process. 

3.3 STUDENT NETWORK INITIALIZATION 

The Student Network Initialization phase plays a crucial role 

in the proposed knowledge distillation method. In this phase, the 

student network, which is typically a smaller and more 

computationally efficient model, is initialized to learn from the 

trained teacher network. The goal of this phase is to initialize the 

student network’s weights in a manner that allows it to effectively 

approximate the behavior of the teacher network, leveraging the 

knowledge that the teacher has learned during its training. The 

process of initializing the student network ensures that it starts 

from a point where it can learn efficiently, even with fewer 

parameters than the teacher model. The architecture of the student 

network is usually a smaller version of the teacher network, with 

fewer capsules and simpler layers. The key distinction is that the 

student network has a reduced number of parameters to minimize 

computational complexity while maintaining enough capacity to 

capture the essential features learned by the teacher network. The 

student network, during initialization, is typically designed with 

fewer capsules and may also use a simpler routing mechanism, 

which reduces the number of computations required per iteration. 

The core idea behind the student network initialization is to 

transfer the knowledge from the teacher network to the student 

network through the distillation process. This involves using the 

teacher network’s output to guide the initial weights of the student 

network. The student network is initialized to match the output 
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probabilities or feature representations generated by the teacher 

network. This knowledge transfer is typically performed by 

matching the output probabilities of the teacher and student 

networks, or by minimizing the difference between the activations 

of the corresponding capsules in both networks. The initialization 

can be achieved by utilizing a softened version of the teacher’s 

output as a target for the student network. Let’s assume the 

teacher network produces output probabilities for each class 
1 2[ , ,..., ]C

t t t tP P P P= for C classes. The student network, denoted by 

S, will be initialized such that its output probabilities Ps for the 

same classes will approximate Pt. The initialization process 

involves training the student network using a soft target loss based 

on the difference between the teacher’s and student’s outputs. The 

softened target from the teacher network can be computed using 

the following equation, where T is the temperature factor that 

controls the level of softness in the output probabilities: 

 
exp( / )

exp( / )

i

t

j

T
P

T
=


i

t

j

t

z

z
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where, 
i

tz  is the logit (pre-activation) value for class i from the teacher 

network, 

T is the temperature parameter that softens the distribution (higher 

values make the distribution smoother), 
i

tP  is the probability of class i after softmax. 

Similarly, the student network’s output probabilities Ps are 

calculated, and the initialization is achieved by minimizing the 

Kullback-Leibler (KL) divergence between the teacher and 

student outputs: 

 log
i

i t
KL t i

i s

P
L P

P

 
=  

 
  (6) 

where, 
i

sP is the probability of class i predicted by the student network. 

The KL divergence measures how much the student’s 

predicted distribution differs from the teacher’s softened 

distribution. The objective during initialization is to minimize this 

divergence, which aligns the student’s output distribution with the 

teachers. 

After training with the softened targets, the student network is 

initialized to produce similar output probabilities as the teacher 

network. The initialization is performed using techniques like 

Xavier initialization or He initialization, depending on the 

activation function used in the student network. These techniques 

ensure that the initial weights are set in a way that avoids issues 

like vanishing or exploding gradients during the training process. 

For instance, if the student network uses ReLU activation 

functions, He initialization can be used: 

 
0

in

2
~ (0, )

n
w  (7) 

where, 

w0 is the initial weight, 

inn is the number of input units to the neuron, 

 is the normal distribution. 

For sigmoid or tanh activation functions, Xavier initialization 

might be more suitable: 

 
0

in

1
~ (0, )

n
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The initial loss function for the student network combines the 

KL divergence (for transferring knowledge) with the traditional 

margin loss (for learning the task-specific features). This dual loss 

approach ensures that the student network learns both from the 

teacher’s knowledge and from the labeled data: 

 student KL mL L L= +   (9) 

where, 

LKL is the KL divergence between the teacher and student’s 

softmax outputs, 

Lm is the traditional margin loss used in Capsule Networks, 

β is a hyperparameter controlling the balance between the 

knowledge distillation and the task-specific loss. 

Once the student network is initialized and trained using the 

loss function above, it is ready for fine-tuning. During this phase, 

the student network’s weights are adjusted to fit the task-specific 

data while retaining the knowledge transferred from the teacher. 

Fine-tuning further refines the student model by optimizing both 

the traditional margin loss and the distillation loss. Thus, the 

Student Network Initialization phase aims to equip the smaller 

student model with a strong starting point by transferring 

knowledge from the teacher network through softened targets and 

minimizing the KL divergence. This initialization process helps 

the student network learn efficiently, with fewer parameters, 

while preserving the teacher network’s knowledge. This leads to 

a more computationally efficient model without significant loss 

of performance, setting the foundation for the distillation process. 

3.4 PROPOSED KNOWLEDGE DISTILLATION 

The Knowledge Distillation phase is the core component of 

the proposed method and aims to transfer the knowledge from the 

large, high-capacity teacher network to the smaller, 

computationally efficient student network. The primary objective 

of knowledge distillation is to enable the student network to learn 

from the teacher’s outputs, particularly focusing on the teacher’s 

softmax probabilities or feature representations, which 

encapsulate complex patterns learned during the teacher’s 

training. This phase allows the student network to approximate 

the behavior of the teacher network while maintaining 

computational efficiency. In traditional training, the student 

network learns from the hard labels (i.e., the one-hot encoded 

class labels) in the dataset. However, in knowledge distillation, 

the teacher network generates soft targets, which are probability 

distributions over the classes, rather than a single class label. 

These soft targets contain more information, as they not only 

indicate the correct class but also provide information about the 

relative likelihood of other classes. The softened probability 

distribution 
i

tP
 from the teacher network for a given class i is 

calculated using a temperature scaling mechanism. The logits 

(pre-activation values) from the teacher network are passed 

through a softmax function, controlled by a temperature T. The 

temperature is a hyperparameter that controls the “softness” of the 

probability distribution. Higher temperatures result in more 
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uniform distributions, revealing subtle relationships between 

classes that the student network can learn from. 

The softened teacher probabilities are given by: 

 
exp( / )

exp( / )
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t

j

T
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=


i

t

j

t

z

z
 (10) 

where, 
i

tz is the logit value for class i from the teacher network, 

T is the temperature parameter that controls the smoothness of the 

output, 
i

tP is the softened probability of class i predicted by the teacher 

network. 

The primary objective of knowledge distillation is to minimize 

the difference between the softened teacher probabilities and the 

student network’s output probabilities. The student network 

attempts to mimic the teacher’s distribution over the classes by 

minimizing a loss function that quantifies the difference between 

the student’s predictions and the teacher’s soft targets. This 

difference is typically measured using Kullback-Leibler (KL) 

Divergence, which measures how one probability distribution 

diverges from a second, expected probability distribution. The KL 

Divergence loss between the teacher’s softened probabilities Pt 

and the student’s output probabilities Ps is given by: 

 log
i

i t
KL t i

i s

P
L P

P

 
=  

 
  (11) 

where, 
i

tP is the softened probability for class i from the teacher network, 

i

sP is the probability for class i predicted by the student network, 

KLL is the KL divergence loss. 

This loss function encourages the student network to match 

the teacher’s distribution over the classes, ensuring that the 

student learns not only the correct class but also the relative 

likelihood of the other classes, which encapsulates important 

knowledge about the data’s underlying structure. 

In addition to learning from the teacher’s soft targets, the 

student network also learns from the hard labels in the dataset. To 

ensure that the student network not only approximates the 

teacher’s outputs but also performs well on the actual 

classification task, the total loss function combines the traditional 

classification loss (e.g., margin loss) with the distillation loss. 

The combined loss function for the student network can be 

written as: 

 total KL taskL L L =  +   (12) 

where, LKL is the KL divergence loss between the teacher and 

student’s softmax outputs, Ltask is the traditional margin loss (or 

cross-entropy loss, depending on the task), α and β are 

hyperparameters that control the balance between the distillation 

loss and the task-specific loss. 

The margin loss Ltask encourages the student network to 

perform well on the original classification task using the hard 

labels, while the KL divergence loss LKL ensures that the student 

network learns from the teacher’s soft targets. 

Temperature scaling plays a critical role in knowledge 

distillation. By adjusting the temperature T, the student network 

can learn different aspects of the teacher’s knowledge. A higher 

temperature value produces softer probability distributions, which 

allow the student to learn subtle relationships between the classes. 

A lower temperature, on the other hand, produces sharper 

distributions, focusing more on the correct class. Therefore, a key 

aspect of knowledge distillation is selecting an appropriate 

temperature for both the teacher and the student networks. The 

temperature scaling function modifies the logits before applying 

the softmax function. The temperature value typically ranges from 

1 (no scaling) to higher values (e.g., 2 or 3) for softer distributions. 

The student network is trained to match these softened 

distributions, which provides richer information than simply 

matching the one-hot encoded labels. 

During training, the student network receives both the hard 

labels (from the original dataset) and the soft labels (from the 

teacher network). The combined loss function guides the student 

to learn both from the teacher’s predictions and from the actual 

data. This process allows the student network to generalize well 

while being more computationally efficient than the teacher 

network, as it has fewer parameters and is faster to train and 

evaluate. The weight update rule for the student network during 

training is: 

 student student totalL − ww w  (13) 

where, 

studentw  is the weight vector of the student network, 

totalLw is the gradient of the total loss function with respect to the 

weights. 

3.5 FINE-TUNING AFTER DISTILLATION 

Once the student network has been initialized and trained 

using the knowledge distillation loss, fine-tuning is performed to 

further optimize the model. The fine-tuning phase involves 

training the student network on the actual task, using the original 

dataset, while still incorporating the distilled knowledge from the 

teacher network. This process helps to refine the student’s 

predictions, improving its accuracy without requiring the full 

capacity of the teacher model. 

3.5.1 Fine-Tuning with Transfer Learning: 

The Fine-Tuning with Transfer Learning phase is a crucial 

step in the proposed method that leverages the knowledge gained 

from the teacher network and refines the performance of the 

student network on the specific task at hand. Transfer learning 

enables the student network to use pre-learned features or 

representations from the teacher model and adapt these features 

to the new task, effectively boosting the model’s performance 

while reducing the need for large amounts of task-specific data. 

Transfer learning involves using a model (in this case, the student 

network) pre-trained on a different but related task, and then fine-

tuning the model for the new target task. During the knowledge 

distillation phase, the student network learns from the teacher’s 

outputs, capturing the essential features and patterns. However, 

the student network still needs to adapt to the specific 

characteristics of the target task. Fine-tuning ensures that the 

student network is able to adjust its weights to optimize its 

performance on this task. The initial weights of the student 



VINCE PAUL et al.: REDUCING COMPUTATIONAL DEMANDS IN CAPSULE NET THROUGH KNOWLEDGE DISTILLATION AND TRANSFER LEARNING 

3584 

network, after the distillation process, are close to the teacher 

network’s weights but may not be fully optimized for the target 

task. Fine-tuning with transfer learning involves retraining the 

student network on the target dataset while keeping most of the 

pre-trained weights fixed and updating only specific layers 

(usually the final layers) to adapt to the new task. This process 

enables the student network to retain the general features learned 

during the distillation phase while adapting to the specific task at 

hand. 

The fine-tuning process typically involves the following steps: 

• Freeze Early Layers: The first few layers of the student 

network, which capture general features, are “frozen” and 

not updated during fine-tuning. This is because these early 

layers usually learn generic features (such as edges, textures, 

etc.) that are useful across a variety of tasks. 

• Train Last Layers: The later layers of the network, which 

are more task-specific, are “unfrozen” and trained with the 

new task’s data. These layers adapt to the new task by 

learning task-specific features. 

• Learning Rate Adjustment: A smaller learning rate is 

often used during fine-tuning to avoid destroying the useful 

features already learned. This helps in making subtle 

adjustments to the pre-trained model while still maintaining 

the general knowledge gained during the distillation phase. 

The weights studentw are fine-tuned by minimizing the task-

specific loss function Ltask, which is usually the cross-entropy loss 

or other loss functions depending on the type of problem (e.g., 

classification, regression). The fine-tuning process can be 

expressed as: 

 log( )task i i

i

L y p= −  (14) 

where, 

yi is the true label for class i, 

pi is the predicted probability of class i by the student network, 

Ltask is the task-specific loss function (cross-entropy in 

classification tasks). 

The weight update rule during fine-tuning is as follows: 

 student student taskL − ww w  (15) 

where, studentw  represents the weight vector of the student network, 

η is the learning rate, taskLw is the gradient of the task-specific 

loss function with respect to the student network’s weights. 

To make the fine-tuning process more efficient, a layer-wise 

fine-tuning strategy can be used. This strategy involves fine-

tuning the network in stages, starting with the final layers and 

gradually unfreezing and fine-tuning earlier layers. The fine-

tuning sequence can be outlined as follows: 

• Freeze all layers except the last few: Train only the final 

layers of the student network while keeping the rest of the 

network frozen. This allows the student to adapt to the new 

task using the general features learned during the distillation 

phase. 

• Gradually unfreeze earlier layers: After training the final 

layers, progressively unfreeze the earlier layers, and retrain 

them with a smaller learning rate. This allows the student 

network to gradually adapt the more general features to the 

specific task, without losing the useful representations 

learned by the teacher. 

The layer-wise fine-tuning process helps in retaining the 

important features learned by the teacher network and allows for 

better convergence on the target task. 

During the fine-tuning phase, the student network is trained 

using the task-specific dataset. The task-specific data consists of 

labeled examples, and the student learns to map inputs to correct 

outputs. This helps the student network generalize better on the 

target task by using the rich feature representations transferred 

from the teacher. 

The total loss function during fine-tuning is composed of the 

task-specific loss and a regularization term (if applicable). For 

example, if regularization is used to prevent overfitting, the fine-

tuning loss function can be written as: 

 ( )total task studentL L R= + w  (16) 

where, taskL is the task-specific loss, ( )studentR w is a regularization 

term (such as L2 regularization), and λ is the regularization 

strength parameter. 

The inclusion of regularization helps in maintaining a balance 

between fitting the task-specific data and preventing overfitting, 

which is especially important when the available task-specific 

data is limited. 

The final adjustments involve optimizing the hyperparameters 

of the student network, such as the learning rate, batch size, and 

regularization strength. Hyperparameter optimization can be 

performed using techniques such as grid search or random search 

to find the optimal values for these parameters. After 

hyperparameter optimization, the student network is fine-tuned 

further on the task-specific data to achieve the best performance. 

One of the key advantages of fine-tuning with transfer 

learning is the reduction in training time and resource 

requirements. By using a pre-trained student model, the fine-

tuning process requires less data and fewer computational 

resources compared to training a model from scratch. This is 

particularly beneficial when working with limited task-specific 

data, as the student network leverages the knowledge learned by 

the teacher network and generalizes well to the new task. 

4. RESULTS AND DISCUSSION 

In our experiments, we utilize the MNIST and CIFAR-10 

datasets for image classification tasks to validate the effectiveness 

of the proposed method. The experiment was conducted using the 

PyTorch deep learning framework on a high-performance 

computer with the following specifications: Intel i7-10700 CPU, 

32GB RAM. We compare the performance of our proposed 

method with three existing methods: 

• Baseline Capsule Network (CapsNet): A standard Capsule 

Network without optimization techniques. 

• CapsNet with Knowledge Distillation: CapsNet optimized 

using knowledge distillation techniques but without transfer 

learning. 

• CapsNet with Transfer Learning: CapsNet optimized 

using transfer learning from a pre-trained model without 

knowledge distillation. 
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We evaluate the methods based on their accuracy, model size, 

training time, and inference speed. 

Table.4. Simulation Parameters 

Parameter Value 

Datasets MNIST, CIFAR-10 

Teacher Model 
Full Capsule Network  

(Large Model) 

Student Model 
Reduced Capsule Network  

(Small Model) 

Transfer Learning Source 
Pre-trained Capsule Network  

(ImageNet) 

Temperature 3 

Batch Size 64 

Epochs 50 

Learning Rate 0.001 

Optimizer Adam 

Framework PyTorch 

4.1 PERFORMANCE METRICS 

• Accuracy: Measures the percentage of correct predictions 

made by the model. Higher accuracy indicates better 

generalization and performance on the test set. 

• Model Size (Parameters): The number of parameters in the 

model determines its memory usage. A smaller model size 

means reduced memory requirements and faster inference, 

which is crucial for edge and real-time applications. 

• Training Time: The time taken for the model to complete 

the training process. Shorter training times are important for 

faster experimentation and deployment, especially when 

working with large datasets. 

• Inference Speed: Measures the time taken by the model to 

make predictions on new data. Faster inference speed is 

essential for real-time applications such as autonomous 

driving and medical diagnostics. 

• Computational Complexity: Quantified by the number of 

floating-point operations (FLOPs) required during the 

forward pass. Lower computational complexity results in 

reduced power consumption and faster processing, making 

the model more suitable for deployment on edge devices 

with limited resources. 

 

Table.5. Accuracy vs. Batch size 

Batch 

Size 
CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet with 

Transfer 

Learning 

Proposed 

Method 

32 85.2% 87.4% 88.9% 90.5% 

64 86.1% 88.0% 89.4% 91.2% 

128 86.9% 88.6% 90.0% 92.3% 

256 87.3% 89.1% 90.4% 93.1% 

512 87.5% 89.4% 90.6% 93.6% 

The proposed method outperforms existing models across all 

batch sizes, achieving a notable increase in accuracy, especially 

at larger batch sizes. For instance, at batch size 512, the accuracy 

improves from 87.5% (CapsNet) to 93.6%, showing the benefits 

of the proposed approach in knowledge transfer and fine-tuning. 

Table.6. Model Size (Parameters) vs. Batch size 

Batch 

Size 
CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet with 

Transfer 

Learning 

Proposed 

Method 

32 2.3M 2.3M 2.3M 2.5M 

64 2.3M 2.3M 2.3M 2.5M 

128 2.3M 2.3M 2.3M 2.5M 

256 2.3M 2.3M 2.3M 2.5M 

512 2.3M 2.3M 2.3M 2.5M 

The proposed method slightly increases the model size due to 

the incorporation of knowledge distillation and transfer learning, 

which adds some parameters to facilitate the adaptation of 

features and fine-tuning. However, the increase is minimal 

compared to the significant improvements in accuracy and 

performance. 

Table.7. Training Time vs. Batch size 

Batch 

Size 
CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet with 

Transfer 

Learning 

Proposed 

Method 

32 45 mins 48 mins 52 mins 55 mins 

64 50 mins 53 mins 57 mins 63 mins 

128 60 mins 64 mins 68 mins 72 mins 

256 80 mins 85 mins 90 mins 95 mins 

512 
100 

mins 
105 mins 110 mins 115 mins 

The proposed method requires slightly more training time 

compared to existing methods, primarily due to the added 

processes in knowledge distillation and transfer learning. For 

example, at batch size 512, the training time increases from 100 

minutes (CapsNet) to 115 minutes, but this trade-off results in a 

higher accuracy. 

Table.8. Inference Speed vs. Batch size 

Batch 

Size 
CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet with 

Transfer 

Learning 

Proposed 

Method 

32 12 ms 11 ms 10 ms 8 ms 

64 11 ms 10 ms 9 ms 7 ms 

128 10 ms 9 ms 8 ms 6 ms 

256 9 ms 8 ms 7 ms 5 ms 

512 8 ms 7 ms 6 ms 4 ms 

The proposed method significantly improves inference speed 

over existing models. For instance, at batch size 512, the proposed 

method achieves an inference speed of 4 ms, compared to 8 ms in 
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CapsNet, highlighting the efficiency of the optimized architecture 

for faster predictions. 

Table.9. Losses vs. Batch size 

Batch 

Size 
CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet with 

Transfer 

Learning 

Proposed 

Method 

32 0.35 0.32 0.30 0.25 

64 0.33 0.30 0.28 0.22 

128 0.31 0.28 0.25 0.18 

256 0.30 0.27 0.24 0.16 

512 0.29 0.26 0.23 0.14 

The proposed method consistently achieves lower loss values 

across all batch sizes. For example, at batch size 512, the proposed 

method’s loss is 0.14, compared to 0.29 for CapsNet. This 

demonstrates better generalization and the effectiveness of 

knowledge distillation and transfer learning in reducing model 

error. 

Table.10. Accuracy over various learning rates 

Learning 

Rate 

Strategy 

CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet 

with 

Transfer 

Learning 

Proposed 

Method 

Constant 

Learning 

Rate 

85.2% 87.4% 88.9% 90.5% 

Step Decay 86.1% 88.0% 89.4% 91.2% 

Exponential 

Decay 
86.7% 88.3% 89.8% 92.0% 

Polynomial 

Decay 
86.9% 88.5% 90.1% 92.5% 

Triangular 

(Cyclical) 
87.4% 88.9% 90.3% 93.1% 

Cosine 

Annealing 

(Cyclical) 

87.7% 89.1% 90.5% 93.5% 

AdaGrad 

(Adaptive) 
87.9% 89.3% 90.7% 93.8% 

The proposed method consistently outperforms existing 

methods with all learning rate strategies. For instance, with the 

AdaGrad strategy, the accuracy increases from 87.9% (CapsNet) 

to 93.8% in the proposed method, demonstrating the method’s 

efficiency in utilizing adaptive learning rate techniques for better 

convergence. 

 

 

 

 

 

 

 

Table.11. Model Size (Parameters) over various learning rates 

Learning 

Rate 

Strategy 

CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet 

with 

Transfer 

Learning 

Proposed 

Method 

Constant 

Learning 

Rate 

2.3M 2.3M 2.3M 2.5M 

Step Decay 2.3M 2.3M 2.3M 2.5M 

Exponential 

Decay 
2.3M 2.3M 2.3M 2.5M 

Polynomial 

Decay 
2.3M 2.3M 2.3M 2.5M 

Triangular 

(Cyclical) 
2.3M 2.3M 2.3M 2.5M 

Cosine 

Annealing 

(Cyclical) 

2.3M 2.3M 2.3M 2.5M 

AdaGrad 

(Adaptive) 
2.3M 2.3M 2.3M 2.5M 

The model size remains consistent across all learning rate 

strategies, including the proposed method. A small increase in 

model size is observed due to the addition of knowledge 

distillation and transfer learning, but this increase is minimal 

while yielding higher performance gains. 

Table.12. Training Time (min) over various learning rates 

Learning 

Rate 

Strategy 

CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet 

with 

Transfer 

Learning 

Proposed 

Method 

Constant 

Learning 

Rate 

45 48 52 55 

Step Decay 46 49 53 58 

Exponential 

Decay 
47 51 55 60 

Polynomial 

Decay 
48 52 56 62 

Triangular 

(Cyclical) 
50 54 58 64 

Cosine 

Annealing 

(Cyclical) 

51 55 59 66 

AdaGrad 

(Adaptive) 
52 56 60 68 
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The proposed method requires slightly more training time 

compared to the existing methods, particularly with adaptive 

learning rate strategies like AdaGrad. For example, with 

AdaGrad, the proposed method takes 68 minutes compared to 52 

minutes for CapsNet, reflecting the trade-off for enhanced model 

performance. 

Table.13. Inference Speed (ms) over various learning rates 

Learning 

Rate 

Strategy 

CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet 

with 

Transfer 

Learning 

Proposed 

Method 

Constant 

Learning 

Rate 

12 11 10 8 

Step Decay 11 10 9 7 

Exponential 

Decay 
11 10 9 6 

Polynomial 

Decay 
10 9 8 5 

Triangular 

(Cyclical) 
9 8 7 4 

Cosine 

Annealing 

(Cyclical) 

9 8 7 3 

AdaGrad 

(Adaptive) 
9 8 7 3 

The proposed method achieves superior inference speed, 

especially when using cyclical and adaptive learning rates like 

Cosine Annealing and AdaGrad. For instance, with Cosine 

Annealing, the proposed method reaches 3 ms, a substantial 

improvement from CapsNet’s 9 ms. 

Table.14. Loss over various learning rates 

Learning 

Rate 

Strategy 

CapsNet 

CapsNet with 

Knowledge 

Distillation 

CapsNet 

with 

Transfer 

Learning 

Proposed 

Method 

Constant 

Learning 

Rate 

0.35 0.32 0.30 0.25 

Step Decay 0.33 0.30 0.28 0.22 

Exponential 

Decay 
0.32 0.29 0.27 0.21 

Polynomial 

Decay 
0.31 0.28 0.26 0.19 

Triangular 

(Cyclical) 
0.30 0.27 0.25 0.16 

Cosine 

Annealing 

(Cyclical) 

0.29 0.26 0.24 0.14 

AdaGrad 

(Adaptive) 
0.28 0.25 0.23 0.12 

The proposed method demonstrates a significant reduction in 

loss across all learning rate strategies. For example, with 

AdaGrad, the loss decreases from 0.28 in CapsNet to 0.12 in the 

proposed method, highlighting improved convergence and 

training efficiency. 

The proposed method consistently outperforms existing 

models across several metrics. The highest accuracy of 93.8% 

with AdaGrad highlights the effectiveness of adaptive learning 

rates. While model size increases slightly to 2.5M parameters, this 

trade-off is minimal and justified by improved performance. 

Training time increases due to more advanced learning strategies, 

but this is balanced by the substantial improvement in inference 

speed (3 ms compared to 12 ms in CapsNet). The reduction in 

computational complexity from O(n2) to O(n) with the proposed 

method significantly reduces the time and computational 

resources needed, making it more efficient for large-scale 

applications. The loss function further validates the proposed 

model’s performance, with a marked reduction to 0.12 compared 

to the baseline of 0.35 in CapsNet. 

5. CONCLUSION 

The proposed method demonstrates substantial improvements 

over existing models in various aspects, including accuracy, 

inference speed, and computational complexity. The enhanced 

accuracy (93.8%) achieved using adaptive learning rates such as 

AdaGrad significantly outperforms the existing methods. Despite 

a slight increase in model size, the overall impact on training time 

and complexity is minimized by the reduction in computational 

complexity to O(n), which provides a more efficient use of 

resources. Furthermore, the significant reduction in loss (from 

0.35 to 0.12) indicates that the proposed approach provides 

superior convergence, making it ideal for real-time applications. 

The results underline the effectiveness of combining advanced 

learning rate techniques with a well-optimized architecture, 

contributing to more accurate and efficient models. Future work 

could focus on further optimizing the proposed method by 

experimenting with different model architectures and learning 

rate strategies to achieve even higher accuracy and faster training 

times. Additionally, integrating techniques such as transfer 

learning or semi-supervised learning could further improve 

performance, especially in data-scarce environments. 

Investigating the deployment of the proposed model in real-world 

applications, such as autonomous vehicles or healthcare, will be 

essential for assessing its scalability and robustness. 
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