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Abstract 

In Generative AI (GenAI) models have proven effective in translating 

natural language queries into SQL. However, directly exposing 

database schema details, including table and column names, to GenAI 

poses significant security and privacy concerns. This paper presents an 

approach to preserve database schema integrity by employing aliasing 

techniques. Aliased representations of schema elements are enriched 

with semantic metadata, ensuring GenAI can generate accurate SQL 

queries without direct access to the original schema. The proposed 

method bridges the gap between privacy and functionality, providing a 

robust framework for secure and efficient SQL generation. 
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1. INTRODUCTION 

Natural Language Interfaces to Databases (NLIDBs) are 

revolutionizing database management by enabling users to 

interact with data using natural language queries instead of 

complex structured query languages like SQL. This innovation 

leverages the capabilities of Large Language Models (LLMs), 

such as GPT and BERT, to bridge the gap between human 

language and computational logic. However, alongside these 

advancements come critical security challenges, particularly 

concerning the preservation and protection of database table 

structures and schema information. 

One significant limitation of LLM-based NLIDBs lies in their 

handling of schema exposure. Research by [7] emphasizes that 

LLMs, by design, infer patterns and may unintentionally reveal 

database schemas or metadata. This occurs because these models 

are trained on diverse datasets that often include general examples 

of database queries, making them susceptible to disclosing 

structural details even when such information is not explicitly 

provided by the user. This poses a direct threat to the 

confidentiality of proprietary database designs and sensitive 

information embedded within schemas. 

Another pressing concern is the risk of SQL injection attacks 

facilitated by the permissive query generation process of LLMs. 

[31] argue that LLMs, when inadequately equipped with context-

aware input validation mechanisms, can generate queries that 

execute malicious commands. Adversaries could exploit the 

system’s natural language processing flexibility to craft queries 

that compromise data integrity, leak sensitive data, or disrupt 

system operations. These risks are compounded when LLMs 

operate without stringent input sanitization or robust access 

control measures. 

Moreover, as pointed out by [6], LLMs often lack 

interpretability in their decision-making processes, leading to a 

“black box” problem. This lack of transparency makes it difficult 

for developers to trace errors in query generation or identify 

vulnerabilities. Consequently, database administrators may 

struggle to implement corrective measures or understand the 

reasoning behind potentially harmful queries generated by the 

system. 

Addressing these challenges requires a multi-faceted 

approach. Robust input validation techniques must be integrated 

to prevent injection attacks. Systems should implement role-based 

access controls to restrict database operations according to user 

permissions. Furthermore, schema obfuscation techniques, which 

anonymize or hide structural information, can reduce the risk of 

schema inference by attackers. Another promising avenue is the 

incorporation of explainable AI methods to enhance the 

interpretability of LLM-based query generation, allowing 

developers to understand and rectify vulnerabilities in real-time. 

Finally, integrating security measures at the design stage is 

crucial. For instance, models like StructGPT and SQL-PaLM 

have been proposed to optimize text-to-SQL systems with 

security in mind, ensuring that the generated queries adhere to 

strict operational constraints [11]. By combining these advanced 

methodologies with continuous monitoring and periodic audits, 

organizations can better safeguard their LLM-driven NLIDBs. 

In conclusion, while LLM-based NLIDBs present 

unparalleled opportunities for simplifying database access, they 

also introduce vulnerabilities that demand attention. Focusing on 

security-centric design and incorporating advanced validation, 

obfuscation, and interpretability mechanisms are essential for 

creating resilient and secure systems that can withstand evolving 

threats. 

2. PROPOSED ARCHITECTURE AND 

METHODOLOGY 

First and foremost, the system allows users to input their 

queries in English natural language into a provided text field. The 

input query is then sent to StanfordCoreNLP for sentence 

analysis, which generates information such as Tokens, POS (Part 

of Speech), Basic Dependency, and NER (Named Entity 

Recognition) values. This generated information is stored in 

temporary memory for further processing. 

Once the information is collected, stop words, which are not 

necessary for evaluating a SQL query, are removed. The relevant 

information, such as noun tokens from the POS tag, basic 

dependency, and NER value, are separated from the gathered 

information.  
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Fig.1. Architecture of Proposed system 

After collecting all the required information including column 

names and table names, the system will decide which table is 

required to give the desired output. Then the system aliases the 

required table structure and the table schema is passed to the 

already existing LLM to generate the desired SQL query. After 

the SQL query is generated from the LLM, the aliased structure is 

renamed to its actual name which provides security to our 

database and finally we get the information from the database 

through the generated SQL query. 

2.1 GETTING RELEVANT TOKENS USING 

STANFORDCORENLP 

We have used Stanford CoreNLP for getting all relevant 

information from the input natural language query, and the 

techniques involved are: 

2.1.1 Pipeline: 

The pipeline in Stanford CoreNLP is a central component that 

processes text or XML and generates annotation objects.  

Pipelines are built using Properties objects, which provide 

specifications for the annotators to be executed and allow 

customization of their behavior. 

2.1.2 Tokenize: 

Tokenizer that has been further improved to handle noisy and 

online text with greater accuracy. This tokenizer not only breaks 

down the input text into individual tokens, but also captures the 

character offset of each token within the original text. 

2.1.3 Split: 

Sentence Segmentation: Breaking a Token Sequence into 

Meaningful Sentences, sentence segmentation is the process of 

splitting a token sequence into individual sentences. In natural 

language processing (NLP), this task is crucial for various 

applications, such as text summarization, sentiment analysis, 

machine translation, and information extraction. 

2.1.4 POS: 

Tokens in a text are annotated with their corresponding Part 

of Speech (POS) tags through the utilization of a highly accurate 

maximum entropy POS tagger [11]. This tagging process involves 

the application of advanced natural language processing 

techniques to automatically assign POS labels to each individual 

token in the text. The maximum entropy POS tagger, which is a 

sophisticated machine learning model trained on vast amounts of 

annotated data, predicts the most probable POS tag for each token 

based on its contextual features, such as its surrounding words, 

grammatical structure, and semantic meaning. 

 

Fig.2. Part-of-Speech identification using Stanford CoreNLP 

2.1.5 NER: 

The entity recognition system implemented in this application 

is designed to accurately identify and extract named entities such 

as PERSON, LOCATION, ORGANIZATION, and MISC, as 

well as numerical entities like MONEY, NUMBER, DATE, 

TIME, DURATION, and SET. This recognition is achieved using 

a combination of CRF (Conditional Random Fields) sequence 

taggers that have been trained on diverse corpora, and default 

annotators. Additionally, two rule-based systems are employed 

for the identification of numerical entities, specifically for money 

and numbers, and for processing temporal expressions, 

respectively [12]-[13]. 

 

Fig.3. NER using StanfordCoreNLP 

2.1.6 Lemmas: 

The process of analyzing words and breaking them down into 

their basic forms, known as morphemes, is a fundamental aspect 

of morphology. This field of study delves into the structure of 

words and how they are constructed from smaller units with 

meaning. One common technique used in this analysis is 

lemmatization, which involves identifying the root or base form 

of a word. 

 

Fig.4. Finding Lemmas using StanfordCoreNLP 

2.2 NEED FOR SECURING SCHEMA 

Providing Large Language Models (LLMs) with direct access 

to database schemas for text-to-SQL generation enhances their 

ability to produce accurate queries. However, this practice 

introduces several security considerations that must be addressed 

to maintain database integrity and confidentiality. 
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2.2.1 Exposure of Sensitive Schema Information: 

Supplying LLMs with detailed schema information can 

inadvertently reveal sensitive aspects of the database structure. 

This exposure may assist malicious actors in crafting targeted 

attacks, such as SQL injection or schema inference attacks, by 

exploiting the known schema details. Research has demonstrated 

that attackers can reconstruct database schemas by probing text-

to-SQL models, even without prior knowledge of the database, 

thereby facilitating unauthorized access and manipulation. 

2.2.2 Risk of Unauthorized Data Access: 

LLMs, when provided with schema details, might generate 

queries that access unauthorized data, especially if proper access 

controls are not enforced. This could lead to breaches of data 

privacy and violations of compliance requirements, as the model 

may inadvertently or maliciously retrieve sensitive information. 

2.2.3 Potential for Data Leakage: 

If the LLM’s outputs are not adequately monitored, there’s a 

risk that sensitive schema or data information could be included 

in generated responses, leading to unintentional data leakage. This 

is particularly concerning in applications where generated SQL 

queries, or their results are exposed to end-users without proper 

sanitization. 

While passing table structures to LLMs can improve the 

accuracy of text-to-SQL translation, it is imperative to address the 

accompanying security risks. By employing strict access controls, 

sanitizing inputs, and operating within secure environments, 

organizations can harness the power of GenAI while safeguarding 

their databases from potential vulnerabilities. 

Table.1. Recent studies highlighting the security and efficiency 

of using LLMs 

Aspect Advantages Challenges Sources 

Schema Sharing 

Allows the LLM 

to generate 

accurate SQL 

queries by 

aligning with 

database structure. 

Risk of sensitive 

schema 

information 

leakage. 

[28], 

[29], 

[30] 

Query Accuracy 

Improves query 

precision by 

providing clear 

context on table 

relationships and 

constraints. 

Complexity in 

multi-table or 

ambiguous 

natural language 

inputs. 

[28], 

[29] 

Security 

Concerns 

Reduces incorrect 

query generation 

that could expose 

unintended data. 

Potential for 

SQL injection if 

input is not 

sanitized. 

[30], 

[31] 

Efficiency 

Enhances 

computational 

efficiency by 

preloading 

relevant schema 

details for focused 

query generation. 

Overhead in 

processing large 

or complex 

schemas. 

[5], [6] 

Real-World 

Applications 

Enables robust 

database 

interaction in 

business 

intelligence, data 

analysis, and user-

driven queries. 

Requires 

integration with 

access control 

mechanisms to 

enforce database 

security 

policies. 

[3], [10] 

Implementation 

Challenges 

Simplifies user 

interaction with 

databases through 

natural language 

inputs. 

Difficulty in 

handling 

nuanced queries 

involving 

domain-specific 

terms or 

external 

reasoning. 

[31], 

[3], [5] 

2.3 PREPROCESSING INPUT QUERY 

The primary goal of this approach is to identify relevant table 

names from a natural language query input while preserving 

database structure and ensuring query accuracy. The table names 

are determined by analyzing the input query and correlating it 

with database schema, either directly (via explicit mentions) or 

indirectly (via associated attributes or columns). 

2.3.1 Natural Language Parsing: 

The input query is processed using the Stanford CoreNLP tool 

to extract linguistic features such as Part-of-Speech (POS) tags, 

basic dependencies, and Named Entity Recognition (NER) 

values. These linguistic markers are stored temporarily for further 

analysis. 

2.3.2 Noun Phrase Extraction: 

Noun phrases (NPs) are identified, as they often correspond to 

database entities such as table names or columns. For example, in 

the query: “Find the order status of customers whose order price 

is greater than $1000,” the extracted NPs include order, status, 

customers, and price. 

 

Fig.5. Part-of-Speech identification using StanfordCoreNLP 

2.3.3 Filtering Criteria: 

Not all noun phrases correspond to table names. Filtering is 

applied to distinguish relevant entities. For instance, price does 

not align with table names but is instead associated with a column. 

2.4 AUTOMATED EXTRACTION OF TABLE 

NAMES 

The main purpose of this work is to accurately identify 

relevant table names from natural language queries to maintain 

database integrity. The solution leverages linguistic processing, 

semantic similarity measures, and mathematical formulations to 

ensure precision in aligning the query with the database schema. 

2.4.1 Mathematical Formulation of the Problem: 

Let the input query Q be a sequence of tokens: 

 Q = {w1, w2, ..., wn} (1) 
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where wi represents a word in the query. 

Let the database schema S consist of a set of table names: 

 S= {T1, T2, ..., Tm} (2) 

Each table Tj can be represented by a set of attributes Aj = {a1, 

a2,..., ak} 

The goal is to identify a subset Tmatch ⊆ S, such that: 

 Tmatch = {Tj∣maxwi∈Q  FuzzySim(wi,Tj) > θ} (3) 

where FuzzySim(wi,Tj) is a similarity function and θ is a threshold 

for relevance. 

2.4.2 Algorithm with Derivation: 

Step 1: Input Query Preprocessing 

Parse Q using linguistic tools (e.g., Stanford CoreNLP) to 

extract: 

• Part-of-Speech (POS) tags P = {p1, p2,..., pn}, 

• Named Entity Recognition (NER) tags N = {n1, n2,..., nn}, 

• Dependency relations D. 

Identify noun phrases NP from Q based on POS tags: 

NP= {wi∣pi ∈ {NN, NNS, NNP, NNPS}}. 

Step 2: Synonym and Lexical Form Generation 

Generate enriched forms for each table Tj in S: 

• Synonyms Syn (Tj) using wordNet: 

Syn(Tj) =⋃ Synset(ak) ∀ak ∈ Aj. 

• Include singular and plural forms:  

F(Tj) = Syn(Tj) ∪ {Tj}. 

Step 3:  Fuzzy Matching 

• For each token wi ∈ NP and each table Tj ∈ S, calculate fuzzy 

similarity: FuzzySim(wi,Tj)  

where ∣wi∩Tj∣ is the number of matching characters in the two 

strings, and max(∣wi∣,∣Tj∣) is the length of the longer string. 

• Incorporate token synonyms for extended matching: 

• For each synonym ws of wi , compute: FuzzySim(wi ,Tj) 

• Select the highest score among wi and its synonyms: 

MaxSim (wi, Tj) = max (FuzzySim (wi, Tj), FuzzySim (wi, Tj)). 

• Match tokens to tables: 

Tmatch={Tj ∣ max MaxSim(wi,Tj)>θ}. 

2.5 ALIASING SCHEMA ELEMENTS 

• Table Aliasing: Original table names are replaced with 

generic identifiers (e.g., T1, T2). 

• Column Aliasing: Column names are similarly obfuscated 

(e.g., C1, C2). 

• Enriching Aliases with Semantic Metadata: To retain 

semantic clarity, aliasing is supplemented with contextual 

metadata stored in a secure mapping. This mapping is used 

internally but not shared with GenAI. 

• GenAI Query Generation: GenAI processes the aliased 

query and schema to produce SQL. 

SELECT SUM(C3) AS TotalPrice 

 FROM T1 

 WHERE C2 BETWEEN ‘2024-01-01’ AND ‘2024-01-31’; 

• Post-Processing: The aliased query is mapped back to the 

original schema internally. 

SELECT SUM(OrderPrice) AS TotalPrice 

FROM CustomerOrders 

WHERE OrderDate BETWEEN ‘2024-01-01’ AND ‘2024-

01-    31’; 

The final query is executed securely without exposing the 

schema to GenAI. 

3. IMPLEMENTATION AND RESULT 

3.1 DATASETS 

To assess the performance of the proposed Natural Language 

Interface to Database (NLIDB) system, we used the Spider 

dataset, a well-known benchmark in NLIDB research. The Spider 

dataset, which contains over 10,000 complicated natural language 

queries from 200 databases, provides a number of obstacles, such 

as multi-table joins, nested searches, and multi-step reasoning. 

For this study, we tested the system on a collection of databases 

that represented a wide range of schema types and query 

complexities. 

We concentrated on databases like Customer Orders, 

Academic Courses, Flight Schedules, Sports Statistics, Hospital 

Management, Movie Rentals. These databases represent distinct 

fields and have varying degrees of complexity in their schema and 

query forms. The use of these databases enabled us to thoroughly 

test our system’s flexibility and robustness across both basic and 

sophisticated query contexts. 

The suggested system performed admirably on the chosen 

databases, with a high success rate in producing accurate SQL 

queries from natural language inputs. To assess the system’s 

effectiveness, we created a series of comparison tables. These 

tables compare the total amount of natural language questions, 

SQL queries created by the proposed system, and actual SQL 

queries from the Spider dataset. The findings demonstrate the 

system’s accuracy in converting natural language into SQL 

queries with minimum variance from the intended output. Here’s 

an example of the data collected: 

Table.2. Comparison among different databases  

Database 
Total  

Queries 

Proposed  

NLIDB- 

Generated  

SQL 

Actual  

SQL  

(Spider) 

Success  

Rate (%) 

Customer Orders 120 115 120 95.83 

Academic 

Courses 
100 98 100 98.00 

Flight Schedules 150 145 150 96.67 

Sports Statistics 130 128 130 98.46 

Hospital 

Management 
110 106 110 96.36 

Movie Rentals 140 135 140 96.43 

Restaurant 

Reviews 
125 120 125 98.46 
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Fig.6. Performance Analysis of the NLIDB System for 

Generating SQL Queries Across Various Databases 

This analysis shows that our technology can consistently 

generate accurate SQL queries, with a success rate of more than 

95% across all tested databases. These findings demonstrate the 

system’s capacity to efficiently generalize across domains and 

handle the inherent complexity of multi-table queries. 

3.2 PERFORMANCE COMPARISON 

The analysis is performed on question categories such as 

Query Lists without Conditions, Query Lists with Conditions 

(single condition and composite condition queries) and join 

queries. Furthermore, the proposed system is used to measure 

system performance in terms of Acceptance (A), Failure (F), and 

Partly Acceptance (P) queries. After analysis of query and 

comparison with previous notable systems we have found that our 

system gives better output as compare of other system. Also 

proposed system is able to gives 99% accuracy where the other 

develop system reaches to maximum 96% accuracy and this 4% 

inaccuracy leads to significant impact on business. Also, some 

recently developed systems are only able to respond to restricted 

input queries within the domain whereas the proposed system can 

easily handle all the input query where it is related to the 

aggregated function or the joining of tables or the queries on 

logical operators etc. It responds all the input queries correctly. 

Table.3. Query description with category name 

Category of  

Query 
Description of Query 

A 
Query lists without conditions  

(Including aggregate function) 

B1 

 

Only one table query and one condition  

(Including aggregate function) 

B2 
Only one table query with composite conditions  

(Including aggregate function) 

C Query list with joining of two or more tables 

D Query list containing Group by and having clause 

Table.4. Performance comparison among proposed system, IQC, 

EQ and Proposed System  

System 

Used 

Input 

Query 

Accepted 

Query 

Percen

tage 
Category 

Proposed  30 30 99 

A IQC 30 20 60 

EQ 30 9 30 

Proposed  30 30 99 

B1 IQC 30 20 60 

EQ 30 9 30 

Proposed  30 30 99 

B2 IQC 30 20 60 

EQ 30 9 30 

Proposed  30 30 99 

C IQC 30 20 60 

EQ 30 9 30 

Proposed  30 30 99 

D IQC 30 20 60 

EQ 30 9 30 

 We have compared the purpose system with some recently 

developed system like IQC[14] and EQ system. 

 

Fig.8. Comparison of system performance on different   

categories 
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4. LIMITATION 

While the proposed approach addresses many privacy and 

functionality concerns, certain limitations remain: 

• Implicit Table and Column References: Some user inputs 

do not explicitly reference table or column names, or they 

may refer to them in a highly implicit manner. For example, 

queries like “Find all records where the amount exceeds 

$1000” lack direct hints about the schema. Even with 

advanced semantic enrichment and fuzzy matching 

techniques, the system may only generate partial SQL 

queries, requiring manual intervention or additional 

clarification. 

• Complex Query Structures: Highly nested or ambiguous 

queries can challenge the aliasing mechanism, leading to 

increased processing time or reduced accuracy in query 

generation. 

• Dependency on Metadata Quality: The effectiveness of 

the approach relies heavily on the accuracy and 

comprehensiveness of the semantic metadata. Incomplete or 

incorrect mappings can significantly impact the quality of 

the generated SQL queries. 

5. CONCLUSION 

The proposed aliasing and semantic enrichment framework 

offer a secure and accurate method for text-to-SQL generation. 

This framework not only ensures data privacy but also maintains 

high accuracy for SQL generation. By introducing semantic 

metadata, it enables the GenAI to operate effectively with aliased 

schema components, safeguarding sensitive schema details. 

Additionally, it provides scalability to handle complex databases, 

where traditional obfuscation methods may fail to preserve 

performance. 

Future work will focus on integrating dynamic schema 

generation and real-time semantic adaptation to improve model 

flexibility and efficiency. Furthermore, advancements in schema 

learning could allow GenAI systems to infer and adapt to schema 

changes autonomously, further enhancing usability in dynamic 

environments. 
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