
JITESH PRASAD KHATICK AND SOUMITRA KUMAR MANDAL: PRESERVING DATABASE SCHEMA PRIVACY WHILE GENERATING SQL QUERIES USING GENERATIVE AI

DOI: 10.21917/ijsc.2025.0508

3662

PRESERVING DATABASE SCHEMA PRIVACY WHILE GENERATING SQL

QUERIES USING GENERATIVE AI

Jitesh Prasad Khatick1 and Soumitra Kumar Mandal2
1Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, India
2Department of Electrical Engineering, National Institute of Technical Teachers’ Training and Research, India

Abstract

In Generative AI (GenAI) models have proven effective in translating

natural language queries into SQL. However, directly exposing

database schema details, including table and column names, to GenAI

poses significant security and privacy concerns. This paper presents an

approach to preserve database schema integrity by employing aliasing

techniques. Aliased representations of schema elements are enriched

with semantic metadata, ensuring GenAI can generate accurate SQL

queries without direct access to the original schema. The proposed

method bridges the gap between privacy and functionality, providing a

robust framework for secure and efficient SQL generation.

Keywords:

NLIDB (Natural Language Interface to Database), SQL (Structured

Query Language), StanfordCoreNLP, Large Language Model (LLM),

Generative AI (GenAI)

1. INTRODUCTION

Natural Language Interfaces to Databases (NLIDBs) are

revolutionizing database management by enabling users to

interact with data using natural language queries instead of

complex structured query languages like SQL. This innovation

leverages the capabilities of Large Language Models (LLMs),

such as GPT and BERT, to bridge the gap between human

language and computational logic. However, alongside these

advancements come critical security challenges, particularly

concerning the preservation and protection of database table

structures and schema information.

One significant limitation of LLM-based NLIDBs lies in their

handling of schema exposure. Research by [7] emphasizes that

LLMs, by design, infer patterns and may unintentionally reveal

database schemas or metadata. This occurs because these models

are trained on diverse datasets that often include general examples

of database queries, making them susceptible to disclosing

structural details even when such information is not explicitly

provided by the user. This poses a direct threat to the

confidentiality of proprietary database designs and sensitive

information embedded within schemas.

Another pressing concern is the risk of SQL injection attacks

facilitated by the permissive query generation process of LLMs.

[31] argue that LLMs, when inadequately equipped with context-

aware input validation mechanisms, can generate queries that

execute malicious commands. Adversaries could exploit the

system’s natural language processing flexibility to craft queries

that compromise data integrity, leak sensitive data, or disrupt

system operations. These risks are compounded when LLMs

operate without stringent input sanitization or robust access

control measures.

Moreover, as pointed out by [6], LLMs often lack

interpretability in their decision-making processes, leading to a

“black box” problem. This lack of transparency makes it difficult

for developers to trace errors in query generation or identify

vulnerabilities. Consequently, database administrators may

struggle to implement corrective measures or understand the

reasoning behind potentially harmful queries generated by the

system.

Addressing these challenges requires a multi-faceted

approach. Robust input validation techniques must be integrated

to prevent injection attacks. Systems should implement role-based

access controls to restrict database operations according to user

permissions. Furthermore, schema obfuscation techniques, which

anonymize or hide structural information, can reduce the risk of

schema inference by attackers. Another promising avenue is the

incorporation of explainable AI methods to enhance the

interpretability of LLM-based query generation, allowing

developers to understand and rectify vulnerabilities in real-time.

Finally, integrating security measures at the design stage is

crucial. For instance, models like StructGPT and SQL-PaLM

have been proposed to optimize text-to-SQL systems with

security in mind, ensuring that the generated queries adhere to

strict operational constraints [11]. By combining these advanced

methodologies with continuous monitoring and periodic audits,

organizations can better safeguard their LLM-driven NLIDBs.

In conclusion, while LLM-based NLIDBs present

unparalleled opportunities for simplifying database access, they

also introduce vulnerabilities that demand attention. Focusing on

security-centric design and incorporating advanced validation,

obfuscation, and interpretability mechanisms are essential for

creating resilient and secure systems that can withstand evolving

threats.

2. PROPOSED ARCHITECTURE AND

METHODOLOGY

First and foremost, the system allows users to input their

queries in English natural language into a provided text field. The

input query is then sent to StanfordCoreNLP for sentence

analysis, which generates information such as Tokens, POS (Part

of Speech), Basic Dependency, and NER (Named Entity

Recognition) values. This generated information is stored in

temporary memory for further processing.

Once the information is collected, stop words, which are not

necessary for evaluating a SQL query, are removed. The relevant

information, such as noun tokens from the POS tag, basic

dependency, and NER value, are separated from the gathered

information.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3663

Fig.1. Architecture of Proposed system

After collecting all the required information including column

names and table names, the system will decide which table is

required to give the desired output. Then the system aliases the

required table structure and the table schema is passed to the

already existing LLM to generate the desired SQL query. After

the SQL query is generated from the LLM, the aliased structure is

renamed to its actual name which provides security to our

database and finally we get the information from the database

through the generated SQL query.

2.1 GETTING RELEVANT TOKENS USING

STANFORDCORENLP

We have used Stanford CoreNLP for getting all relevant

information from the input natural language query, and the

techniques involved are:

2.1.1 Pipeline:

The pipeline in Stanford CoreNLP is a central component that

processes text or XML and generates annotation objects.

Pipelines are built using Properties objects, which provide

specifications for the annotators to be executed and allow

customization of their behavior.

2.1.2 Tokenize:

Tokenizer that has been further improved to handle noisy and

online text with greater accuracy. This tokenizer not only breaks

down the input text into individual tokens, but also captures the

character offset of each token within the original text.

2.1.3 Split:

Sentence Segmentation: Breaking a Token Sequence into

Meaningful Sentences, sentence segmentation is the process of

splitting a token sequence into individual sentences. In natural

language processing (NLP), this task is crucial for various

applications, such as text summarization, sentiment analysis,

machine translation, and information extraction.

2.1.4 POS:

Tokens in a text are annotated with their corresponding Part

of Speech (POS) tags through the utilization of a highly accurate

maximum entropy POS tagger [11]. This tagging process involves

the application of advanced natural language processing

techniques to automatically assign POS labels to each individual

token in the text. The maximum entropy POS tagger, which is a

sophisticated machine learning model trained on vast amounts of

annotated data, predicts the most probable POS tag for each token

based on its contextual features, such as its surrounding words,

grammatical structure, and semantic meaning.

Fig.2. Part-of-Speech identification using Stanford CoreNLP

2.1.5 NER:

The entity recognition system implemented in this application

is designed to accurately identify and extract named entities such

as PERSON, LOCATION, ORGANIZATION, and MISC, as

well as numerical entities like MONEY, NUMBER, DATE,

TIME, DURATION, and SET. This recognition is achieved using

a combination of CRF (Conditional Random Fields) sequence

taggers that have been trained on diverse corpora, and default

annotators. Additionally, two rule-based systems are employed

for the identification of numerical entities, specifically for money

and numbers, and for processing temporal expressions,

respectively [12]-[13].

Fig.3. NER using StanfordCoreNLP

2.1.6 Lemmas:

The process of analyzing words and breaking them down into

their basic forms, known as morphemes, is a fundamental aspect

of morphology. This field of study delves into the structure of

words and how they are constructed from smaller units with

meaning. One common technique used in this analysis is

lemmatization, which involves identifying the root or base form

of a word.

Fig.4. Finding Lemmas using StanfordCoreNLP

2.2 NEED FOR SECURING SCHEMA

Providing Large Language Models (LLMs) with direct access

to database schemas for text-to-SQL generation enhances their

ability to produce accurate queries. However, this practice

introduces several security considerations that must be addressed

to maintain database integrity and confidentiality.

JITESH PRASAD KHATICK AND SOUMITRA KUMAR MANDAL: PRESERVING DATABASE SCHEMA PRIVACY WHILE GENERATING SQL QUERIES USING GENERATIVE AI

3664

2.2.1 Exposure of Sensitive Schema Information:

Supplying LLMs with detailed schema information can

inadvertently reveal sensitive aspects of the database structure.

This exposure may assist malicious actors in crafting targeted

attacks, such as SQL injection or schema inference attacks, by

exploiting the known schema details. Research has demonstrated

that attackers can reconstruct database schemas by probing text-

to-SQL models, even without prior knowledge of the database,

thereby facilitating unauthorized access and manipulation.

2.2.2 Risk of Unauthorized Data Access:

LLMs, when provided with schema details, might generate

queries that access unauthorized data, especially if proper access

controls are not enforced. This could lead to breaches of data

privacy and violations of compliance requirements, as the model

may inadvertently or maliciously retrieve sensitive information.

2.2.3 Potential for Data Leakage:

If the LLM’s outputs are not adequately monitored, there’s a

risk that sensitive schema or data information could be included

in generated responses, leading to unintentional data leakage. This

is particularly concerning in applications where generated SQL

queries, or their results are exposed to end-users without proper

sanitization.

While passing table structures to LLMs can improve the

accuracy of text-to-SQL translation, it is imperative to address the

accompanying security risks. By employing strict access controls,

sanitizing inputs, and operating within secure environments,

organizations can harness the power of GenAI while safeguarding

their databases from potential vulnerabilities.

Table.1. Recent studies highlighting the security and efficiency

of using LLMs

Aspect Advantages Challenges Sources

Schema Sharing

Allows the LLM

to generate

accurate SQL

queries by

aligning with

database structure.

Risk of sensitive

schema

information

leakage.

[28],

[29],

[30]

Query Accuracy

Improves query

precision by

providing clear

context on table

relationships and

constraints.

Complexity in

multi-table or

ambiguous

natural language

inputs.

[28],

[29]

Security

Concerns

Reduces incorrect

query generation

that could expose

unintended data.

Potential for

SQL injection if

input is not

sanitized.

[30],

[31]

Efficiency

Enhances

computational

efficiency by

preloading

relevant schema

details for focused

query generation.

Overhead in

processing large

or complex

schemas.

[5], [6]

Real-World

Applications

Enables robust

database

interaction in

business

intelligence, data

analysis, and user-

driven queries.

Requires

integration with

access control

mechanisms to

enforce database

security

policies.

[3], [10]

Implementation

Challenges

Simplifies user

interaction with

databases through

natural language

inputs.

Difficulty in

handling

nuanced queries

involving

domain-specific

terms or

external

reasoning.

[31],

[3], [5]

2.3 PREPROCESSING INPUT QUERY

The primary goal of this approach is to identify relevant table

names from a natural language query input while preserving

database structure and ensuring query accuracy. The table names

are determined by analyzing the input query and correlating it

with database schema, either directly (via explicit mentions) or

indirectly (via associated attributes or columns).

2.3.1 Natural Language Parsing:

The input query is processed using the Stanford CoreNLP tool

to extract linguistic features such as Part-of-Speech (POS) tags,

basic dependencies, and Named Entity Recognition (NER)

values. These linguistic markers are stored temporarily for further

analysis.

2.3.2 Noun Phrase Extraction:

Noun phrases (NPs) are identified, as they often correspond to

database entities such as table names or columns. For example, in

the query: “Find the order status of customers whose order price

is greater than $1000,” the extracted NPs include order, status,

customers, and price.

Fig.5. Part-of-Speech identification using StanfordCoreNLP

2.3.3 Filtering Criteria:

Not all noun phrases correspond to table names. Filtering is

applied to distinguish relevant entities. For instance, price does

not align with table names but is instead associated with a column.

2.4 AUTOMATED EXTRACTION OF TABLE

NAMES

The main purpose of this work is to accurately identify

relevant table names from natural language queries to maintain

database integrity. The solution leverages linguistic processing,

semantic similarity measures, and mathematical formulations to

ensure precision in aligning the query with the database schema.

2.4.1 Mathematical Formulation of the Problem:

Let the input query Q be a sequence of tokens:

 Q = {w1, w2, ..., wn} (1)

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3665

where wi represents a word in the query.

Let the database schema S consist of a set of table names:

 S= {T1, T2, ..., Tm} (2)

Each table Tj can be represented by a set of attributes Aj = {a1,

a2,..., ak}

The goal is to identify a subset Tmatch ⊆ S, such that:

 Tmatch = {Tj∣maxwi∈Q  FuzzySim(wi,Tj) > θ} (3)

where FuzzySim(wi,Tj) is a similarity function and θ is a threshold

for relevance.

2.4.2 Algorithm with Derivation:

Step 1: Input Query Preprocessing

Parse Q using linguistic tools (e.g., Stanford CoreNLP) to

extract:

• Part-of-Speech (POS) tags P = {p1, p2,..., pn},

• Named Entity Recognition (NER) tags N = {n1, n2,..., nn},

• Dependency relations D.

Identify noun phrases NP from Q based on POS tags:

NP= {wi∣pi ∈ {NN, NNS, NNP, NNPS}}.

Step 2: Synonym and Lexical Form Generation

Generate enriched forms for each table Tj in S:

• Synonyms Syn (Tj) using wordNet:

Syn(Tj) =⋃ Synset(ak) ∀ak ∈ Aj.

• Include singular and plural forms:

F(Tj) = Syn(Tj) ∪ {Tj}.

Step 3: Fuzzy Matching

• For each token wi ∈ NP and each table Tj ∈ S, calculate fuzzy

similarity: FuzzySim(wi,Tj)

where ∣wi∩Tj∣ is the number of matching characters in the two

strings, and max(∣wi∣,∣Tj∣) is the length of the longer string.

• Incorporate token synonyms for extended matching:

• For each synonym ws of wi , compute: FuzzySim(wi ,Tj)

• Select the highest score among wi and its synonyms:

MaxSim (wi, Tj) = max (FuzzySim (wi, Tj), FuzzySim (wi, Tj)).

• Match tokens to tables:

Tmatch={Tj ∣ max MaxSim(wi,Tj)>θ}.

2.5 ALIASING SCHEMA ELEMENTS

• Table Aliasing: Original table names are replaced with

generic identifiers (e.g., T1, T2).

• Column Aliasing: Column names are similarly obfuscated

(e.g., C1, C2).

• Enriching Aliases with Semantic Metadata: To retain

semantic clarity, aliasing is supplemented with contextual

metadata stored in a secure mapping. This mapping is used

internally but not shared with GenAI.

• GenAI Query Generation: GenAI processes the aliased

query and schema to produce SQL.

SELECT SUM(C3) AS TotalPrice

 FROM T1

 WHERE C2 BETWEEN ‘2024-01-01’ AND ‘2024-01-31’;

• Post-Processing: The aliased query is mapped back to the

original schema internally.

SELECT SUM(OrderPrice) AS TotalPrice

FROM CustomerOrders

WHERE OrderDate BETWEEN ‘2024-01-01’ AND ‘2024-

01- 31’;

The final query is executed securely without exposing the

schema to GenAI.

3. IMPLEMENTATION AND RESULT

3.1 DATASETS

To assess the performance of the proposed Natural Language

Interface to Database (NLIDB) system, we used the Spider

dataset, a well-known benchmark in NLIDB research. The Spider

dataset, which contains over 10,000 complicated natural language

queries from 200 databases, provides a number of obstacles, such

as multi-table joins, nested searches, and multi-step reasoning.

For this study, we tested the system on a collection of databases

that represented a wide range of schema types and query

complexities.

We concentrated on databases like Customer Orders,

Academic Courses, Flight Schedules, Sports Statistics, Hospital

Management, Movie Rentals. These databases represent distinct

fields and have varying degrees of complexity in their schema and

query forms. The use of these databases enabled us to thoroughly

test our system’s flexibility and robustness across both basic and

sophisticated query contexts.

The suggested system performed admirably on the chosen

databases, with a high success rate in producing accurate SQL

queries from natural language inputs. To assess the system’s

effectiveness, we created a series of comparison tables. These

tables compare the total amount of natural language questions,

SQL queries created by the proposed system, and actual SQL

queries from the Spider dataset. The findings demonstrate the

system’s accuracy in converting natural language into SQL

queries with minimum variance from the intended output. Here’s

an example of the data collected:

Table.2. Comparison among different databases

Database
Total

Queries

Proposed

NLIDB-

Generated

SQL

Actual

SQL

(Spider)

Success

Rate (%)

Customer Orders 120 115 120 95.83

Academic

Courses
100 98 100 98.00

Flight Schedules 150 145 150 96.67

Sports Statistics 130 128 130 98.46

Hospital

Management
110 106 110 96.36

Movie Rentals 140 135 140 96.43

Restaurant

Reviews
125 120 125 98.46

JITESH PRASAD KHATICK AND SOUMITRA KUMAR MANDAL: PRESERVING DATABASE SCHEMA PRIVACY WHILE GENERATING SQL QUERIES USING GENERATIVE AI

3666

Fig.6. Performance Analysis of the NLIDB System for

Generating SQL Queries Across Various Databases

This analysis shows that our technology can consistently

generate accurate SQL queries, with a success rate of more than

95% across all tested databases. These findings demonstrate the

system’s capacity to efficiently generalize across domains and

handle the inherent complexity of multi-table queries.

3.2 PERFORMANCE COMPARISON

The analysis is performed on question categories such as

Query Lists without Conditions, Query Lists with Conditions

(single condition and composite condition queries) and join

queries. Furthermore, the proposed system is used to measure

system performance in terms of Acceptance (A), Failure (F), and

Partly Acceptance (P) queries. After analysis of query and

comparison with previous notable systems we have found that our

system gives better output as compare of other system. Also

proposed system is able to gives 99% accuracy where the other

develop system reaches to maximum 96% accuracy and this 4%

inaccuracy leads to significant impact on business. Also, some

recently developed systems are only able to respond to restricted

input queries within the domain whereas the proposed system can

easily handle all the input query where it is related to the

aggregated function or the joining of tables or the queries on

logical operators etc. It responds all the input queries correctly.

Table.3. Query description with category name

Category of

Query
Description of Query

A
Query lists without conditions

(Including aggregate function)

B1

Only one table query and one condition

(Including aggregate function)

B2
Only one table query with composite conditions

(Including aggregate function)

C Query list with joining of two or more tables

D Query list containing Group by and having clause

Table.4. Performance comparison among proposed system, IQC,

EQ and Proposed System

System

Used

Input

Query

Accepted

Query

Percen

tage
Category

Proposed 30 30 99

A IQC 30 20 60

EQ 30 9 30

Proposed 30 30 99

B1 IQC 30 20 60

EQ 30 9 30

Proposed 30 30 99

B2 IQC 30 20 60

EQ 30 9 30

Proposed 30 30 99

C IQC 30 20 60

EQ 30 9 30

Proposed 30 30 99

D IQC 30 20 60

EQ 30 9 30

 We have compared the purpose system with some recently

developed system like IQC[14] and EQ system.

Fig.8. Comparison of system performance on different

categories

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2025, VOLUME: 15, ISSUE: 03

SPECIAL ISSUE ON ADVANCES IN GENAI AND DEEP LEARNING (AGDL-2025)

3667

4. LIMITATION

While the proposed approach addresses many privacy and

functionality concerns, certain limitations remain:

• Implicit Table and Column References: Some user inputs

do not explicitly reference table or column names, or they

may refer to them in a highly implicit manner. For example,

queries like “Find all records where the amount exceeds

$1000” lack direct hints about the schema. Even with

advanced semantic enrichment and fuzzy matching

techniques, the system may only generate partial SQL

queries, requiring manual intervention or additional

clarification.

• Complex Query Structures: Highly nested or ambiguous

queries can challenge the aliasing mechanism, leading to

increased processing time or reduced accuracy in query

generation.

• Dependency on Metadata Quality: The effectiveness of

the approach relies heavily on the accuracy and

comprehensiveness of the semantic metadata. Incomplete or

incorrect mappings can significantly impact the quality of

the generated SQL queries.

5. CONCLUSION

The proposed aliasing and semantic enrichment framework

offer a secure and accurate method for text-to-SQL generation.

This framework not only ensures data privacy but also maintains

high accuracy for SQL generation. By introducing semantic

metadata, it enables the GenAI to operate effectively with aliased

schema components, safeguarding sensitive schema details.

Additionally, it provides scalability to handle complex databases,

where traditional obfuscation methods may fail to preserve

performance.

Future work will focus on integrating dynamic schema

generation and real-time semantic adaptation to improve model

flexibility and efficiency. Furthermore, advancements in schema

learning could allow GenAI systems to infer and adapt to schema

changes autonomously, further enhancing usability in dynamic

environments.

REFERENCES

[1] Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang,

Wei Chen and Xiang Bai, “RSL-SQL: Robust Schema

Linking inText-to-SQLGeneration”, Proceedings of

International Conference on Artificial Intelligence, pp. 1-7,

2024.

[2] Đorđe Klisura and Anthony Rios, “Unmasking Database

Vulnerabilities: Zero-Knowledge Schema Inference Attacks

in Text-to-SQL Systems”, Proceedings of International

Conference on Computation and Language, pp. 1-6, 2024.

[3] L. Nan, Y. Zhao, W. Zou, N. Ri, J. Tae, E. Zhang, A. Cohan

and D. Radev, “Enhancing Text-to-SQL Capabilities of

Large Language Models: A Study on Prompt Design

Strategies”, Findings of Empirical Methods in Natural

Language Processing, pp. 1-7, 2023.

[4] Eduardo, Nascimento and A. Marco Casanova, “Querying

Databases with Natural Language: The use of Large

Language Models for Text-to-SQL Tasks”, Proceedings of

International Conference on Artificial Intelligence, pp. 1-6,

2024.

[5] Xiaohu Zhu, Qian Li, Lizhen Cui and Yongkang Liu, “Large

Language Model Enhanced Text-to-SQL Generation: A

Survey”, Proceedings of International Conference on

Databases, pp. 1-6, 2024.

[6] Sadullah Karimi, Annajiat Alim Rasel and Matin Saad

Abdullah, “Non-English Natural Language Interface to

Databases: A Systematic Review”, Proceedings of

International Conference on Electronics and Mobile

Communication, pp. 1-7, 2022.

[7] D. Satyajit, S. Sarker, X. Dong, X. Li and L. Qian,

“Enhancing LLM Fine-tuning for Text-to-SQLs by SQL

Quality Measurement”, Proceedings of International

Conference on Databases, pp. 1-6, 2024.

[8] Tingkai Zhang., Chaoyu Chen, Cong Liao, Jun Wang,

Xudong Zhao, Hang Yu, Jianchao Wang, Jianguo Li and

Wenhui Shi, “SQLfuse: Enhancing Text-to-SQL

Performance through Comprehensive LLM Synergy”,

Proceedings of International Conference on Artificial

Intelligence, pp. 1-7, 2024.

[9] Abhimanyu Kumar, Parth Nagarkar, Prabhav Nalhe and

Sanjeev Vijayakumar, “Deep Learning Driven Natural

Languages Text to SQL Query Conversion: A Survey”,

Proceedings of International Conference on Artificial

Intelligence, pp. 1-6, 2022.

[10] S. Chang and E. Fosler-Lussier, “How to Prompt LLMs for

Text-to-SQL: A Study in Zero-Shot, Single-Domain and

Cross-Domain Settings”, Proceedings of International

Workshop on Neural Representation Learning, pp. 1-6,

2023.

[11] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S.

Zhong, B. Yin and X. Hu, “Harnessing the Power of LLMs

in Practice: A Survey on Chatgpt and Beyond”, ACM

Transactions on Knowledge Discovery from Data, pp. 1-6,

2024.

[12] N. Rajkumar, R. Li and D. Bahdanau, “Evaluating the Text-

to-SQL Capabilities of Large Language Models”,

Proceedings of International Conference on Databases, pp.

1-6, 2022.

[13] M. Pourreza and D. Rafiei, “DIN-SQL: Decomposed in-

Context Learning of Text-to-SQL with Self-Correction”,

Advances in Neural Information Processing Systems, pp. 1-

6, 2023.

[14] Neelu Nihalani, Dr. Mahesh Motwani and Dr. Sanjay

Silakari “Intelligent Query Converter: a Domain

Independent Interface for Conversion of Natural Language

Queries in English to SQL”, International Journal of

Computer Engineering and Technology, Vol. 4, pp. 379-

385, 2013.

[15] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding and J.

Zhou, “Text-to-SQL Empowered by Large Language

Models: A Benchmark Evaluation”, Proceedings of

International Conference on Very Large Data Bases, pp. 1-

7, 2024.

[16] H. Li, J. Zhang, H. Liu, J. Fan, X. Zhang, J. Zhu, R. Wei, H.

Pan, C. Li and H. Chen, “Codes: Towards Building Open-

JITESH PRASAD KHATICK AND SOUMITRA KUMAR MANDAL: PRESERVING DATABASE SCHEMA PRIVACY WHILE GENERATING SQL QUERIES USING GENERATIVE AI

3668

Source Language Models for Text-to-SQL”, Proceedings of

International Conference on Management of Data, pp. 1-6,

2024.

[17] X. Liu, L. Hu, Wen and P.S. Yu, “A Comprehensive

Evaluation of ChatGPT’s Zero-Shot Text-to-SQL

Capability”, Proceedings of International Conference on

Artificial Intelligence, pp. 1-6, 2023.

[18] Y. Gan, X. Chen, Q. Huang, M. Purver, J.R. Woodward, J.

Xie and P. Huang, “Towards Robustness of Text-to-SQL

Models against Synonym Substitution”, Proceedings of

International Conference on Natural Language Processing,

pp. 1-6, 2021.

[19] R. Pazos, B. González, L. Aguirre, F. Martínez and H.

Fraire, “Natural Language Interfaces to Databases: An

Analysis of the State of the Art”, Recent Advances on Hybrid

Intelligent Systems, pp. 463-480, 2013.

[20] Y. Wang, I. Dillig and Dillig, “Type-and Content Driven

Synthesis of SQL Queries from Natural Language”,

Proceedings of International Conference on Databases, pp.

1-6, 2017.

[21] K. Hamaz and F. Benchikha, “A Novel Method for

Providing Relational Databases with Rich Semantics and

Natural Language Processing”, Journal of Enterprise

Information Management, Vol. 30, pp. 503-525, 2017.

[22] M. Owda, Z. Bandar and K. Crockett, “Conversation-based

Natural Language Interface to Relational Databases”,

Proceedings International Conferences on Web Intelligence

and Intelligent Agent Technology Workshops, pp. 363-367,

2007.

[23] Kristina Toutanova, Dan Klein, D. Christopher Manning and

Yoram Singer, “Feature-Rich Part-of Speech Tagging with

a Cyclic Dependency Network”, Proceedings of

International Conference on Computational Linguistics on

Human Language Technology, Vol. 3, pp. 252-259, 2003.

[24] Jenny Rose Finkel, Trond Grenager and Christopher

Manning, “Incorporating Non-Local Information into

Information Extraction Systems by Gibbs Sampling”,

Proceedings of International Conference on Association for

Computational Linguistics, Vol. 43, pp. 363-370, 2005.

[25] Daniel Jurafsky and H. James Martin, “Speech and

Language Processing”, Available at

https://web.stanford.edu/~jurafsky/slp3/old_oct19/oldindex

.html, Accessed in 2021.

[26] G.D. Androutsopoulos, Ritchie and P. Thanisch, “Natural

Language Interfaces to Databases-An Introduction”,

Journal of Natural Language Engineering, pp. 29-81, 1995.

[27] G. Hendrix, E. Sacerdoti, D. Sagalowicz and J. Slocum,

“Developing a Natural Language Interface to Complex

Data”, ACM Transactions on Database Systems, pp. 105-

147, 1978.

[28] Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin and

Yujiu Yang, “PTD-SQL: Partitioning and Targeted Drilling

with LLMs in Text-to-SQL.”, Proceedings of International

Conference on Empirical Methods in Natural Language

Processing, pp. 1-6, 2024.

[29] Hong Zhang, Yanfang Zheng, Qinggang Zhang, Hao Wen,

Junnan Dong, Feiran Huang and Xiao Huang, “Next-

Generation Database Interfaces: A Survey of LLM-based

Text-to-SQL”, Proceedings of International Conference on

Artificial Intelligence, pp. 1-6, 2024.

[30] Nina Narodytska and Shay Vargaftik “Lucy: Think and

Reason to Solve Text-to-SQL”, Proceedings of

International Conference on Artificial Intelligence, pp. 1-6,

2024.

[31] Liang Shi, Zhengju Tang and Zhi Yang, “A Survey on

Employing Large Language Models for Text-to-SQL

Tasks”, Proceedings of International Conference on

Computation and Language, pp. 1-6, 2024.

