
R ANUSUYA et al.: ENSEMBLE STRATEGY TO MITIGATE ADVERSARIAL ATTACK IN FEDERATED LEARNING 

DOI: 10.21917/ijsc.2025.0506 

3646 

ENSEMBLE STRATEGY TO MITIGATE ADVERSARIAL ATTACK IN FEDERATED 

LEARNING 

R. Anusuya1, D. Karthika Renuka2, Ashok Kumar3, S.K. Prithika4, S. Mridula5, T. Subhaashini6 and  

R. Tharsha7 
1,2,4,5,6,7Department of Information Technology, PSG College of Technology, India  

3Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, India 

Abstract 

Concerns about privacy are crucial in the data-driven healthcare 

industry of today. Federated Learning (FL) lowers the danger of data 

breaches by facilitating cooperative model training without exchanging 

raw patient data. Differential Privacy (DP), which introduces noise into 

model updates to protect patient data, improves FL’s decentralized 

methodology. This is particularly useful for applications like early 

cardiovascular disease detection, allowing accurate models while 

maintaining privacy. Hospitals train models locally, sharing updates 

with a central server that refines a global model. Challenges include 

achieving model convergence and managing communication 

overhead. Ongoing research aims to optimize these processes, ensuring 

secure, privacy-preserving healthcare solutions. 
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1. INTRODUCTION 

Federated Learning (FL), which enables organizations to train 

machine learning models cooperatively without exchanging 

sensitive patient data, presents a viable option for the healthcare 

industry in a time when data privacy is crucial. With this 

decentralized method, clinics and hospitals can share just model 

updates, like weights or gradients, with a central server, while 

keeping their data local. It preserves privacy while benefiting 

from diverse datasets, resulting in robust models that capture 

various patient characteristics and enhance predictive accuracy. 

However, FL poses risks of potential data leakage through model 

updates, especially from small datasets. Differential Privacy (DP), 

which obscures individual contributions by adding noise to model 

updates, is used to lessen this and stop adversaries from deducing 

specific patient data. By encrypting model updates as they are 

being transmitted, Secure Aggregation strengthens security even 

further and guarantees that the data is safe even in the event that 

the central server is compromised. The integration of FL, DP, and 

Secure Aggregation allows healthcare organizations to develop 

more accurate predictive models without compromising patient 

privacy. This approach facilitates personalized treatment plans by 

leveraging insights from multiple institutions, leading to better 

patient outcomes. It also accelerates medical research by pooling 

knowledge while maintaining data privacy. Challenges include 

ensuring necessary infrastructure, refining DP techniques to 

balance privacy with model performance, and navigating 

regulatory requirements. As technology evolves, innovations like 

blockchain could further enhance data security and transparency. 

FL has the potential to revolutionize healthcare analytics and 

promote safe and efficient improvements in patient care with 

continued cooperation between legislators, data scientists, and 

healthcare professionals. 

2. LITERATURE SURVEY 

Despite being intended to protect privacy by maintaining data 

decentralization, federated learning (FL) is susceptible to attacks 

that can extract private information from shared updates, such as 

membership inference and model inversion. It is not enough to 

rely on just one privacy-preserving technique, such as Secure 

Multiparty Computation (SMPC) or Differential Privacy (DP). 

While SMPC encrypts data during transmission but may not 

address all privacy leaks, DP can defend against some attacks but 

may decrease accuracy. Combining multiple strategies is needed 

for comprehensive protection, raising concerns about FL in 

privacy-sensitive areas like healthcare [1]. 

The paper [2] introduces Average Accuracy Deviation 

Detection (AADD), addressing cybersecurity in FL. AADD 

compares each client’s model accuracy to the average across all 

clients, flagging significant deviations that may indicate 

poisoning. This method ensures collaborative model integrity by 

identifying potentially malicious clients. Model poisoning in FL 

occurs when malicious clients manipulate local data or updates to 

degrade overall performance. Detecting these attacks is difficult 

since local data isn’t visible to the server. A new framework 

addresses this by monitoring shared weight activations in local 

models, identifying unusual patterns that signal poisoning and 

improving FL security [3]. 

In paper [4], a framework enhances FL security by eliminating 

adversarial users, identified through their reported loss values 

during training. This approach helps maintain accuracy by 

preventing malicious users from degrading the global model’s 

performance. FedRecover, introduced in paper [5], helps restore 

a global model in FL after poisoning attacks, using historical 

training data collected before malicious clients are detected. This 

ensures an accurate model while keeping computational and 

communication costs low. Paper [6] categorizes FL defense 

mechanisms into two approaches: evaluating local updates’ 

trustworthiness and securely aggregating them into a global 

model. It analyzes strengths, weaknesses, and challenges like 

scalability and balancing accuracy with security, providing 

insights for improving FL defenses. 
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Fig.1. Block diagram of early cardiovascular disease detection with Federated Learning 

The study in paper [7] explores FL’s security issues, including 

poisoning, inference, communication, and free-riding attacks. It 

reviews existing defenses, highlights their limitations, and 

suggests future research to improve FL’s resilience to emerging 

threats. Paper [8] discusses FL’s privacy and security challenges, 

such as communication costs and diverse environments. It 

reviews defense techniques like DP and SMPC, categorizing 

threats by their impact on confidentiality, integrity, and 

availability. The study notes that while FL enhances privacy, its 

complexity poses challenges for widespread use. Paper [9] 

addresses free-rider attacks in FL, where clients submit fake 

updates for rewards. A high-dimensional anomaly detection 

method in the STD-DAGMM framework is proposed for 

detection. DP can mitigate these attacks but complicates the 

process. Robust defenses are needed to ensure FL’s reliability. 

The study in paper [10] examines FL’s security challenges, 

including various attack types and current defensive strategies. It 

highlights the limitations of these methods and suggests future 

research directions to improve FL’s resilience. Research in paper 

[11] critiques the evaluation of FL security, noting unrealistic 

assumptions that may overstate attack effectiveness. A systematic 

study classifies attacks, recommending improvements for more 

accurate and relevant assessments in FL security research. 

3. METHODOLOGY 

The creation of a robust, privacy-preserving system for early 

cardiovascular disease detection combines Federated Learning 

(FL) with advanced neural network architectures. With FL, 

hospitals and other clients can work together to train a global 

model without disclosing private patient information. To lower 

privacy threats, each client trains a local model and only 

exchanges model updates, such as weights and gradients. By 

keeping data local, this decentralized method maintains 

anonymity while enhancing the functionality of the global model. 

Three neural network architectures are employed: 

Feedforward Neural Networks (FNN), Multi-Layer Perceptrons 

(MLP), and Gated Residual Networks (GRU). FNN provides a 

simple structure for initial binary classification tasks, MLP offers 

enhanced resilience against adversarial attacks, and GRU uses 

advanced gating and residual connections for complex data 

patterns, making it particularly effective for understanding 

cardiovascular risk factors. Adversarial training is integrated 

using the Fast Gradient Sign Method (FGSM) to build resistance 

against attacks, while quantization techniques reduce the 

precision of model weights for efficient communication. 

Differential Privacy (DP) adds noise to model updates, further 

protecting patient data during transmission. Using the Federated 

Averaging (FedAvg) algorithm, local updates are combined into 

a global model, allowing for collaborative improvement while 

maintaining privacy. 

An ensemble model, combining predictions from FNN, MLP, 

and GRU through majority voting, further enhances accuracy, 

leveraging the strengths of each model for better decision-making. 

This approach improves predictive performance by balancing 

accuracy with robust data privacy. This framework offers a 

transformative solution for early cardiovascular disease detection, 

maintaining high model accuracy, ensuring data security, and 

enabling collaboration among healthcare providers. This 

approach can improve patient outcomes and propel healthcare 

breakthroughs by enabling institutions to collaborate while 

protecting sensitive data. 

The Table.1 describes the privacy-preserving federated 

learning architecture that uses an ensemble of neural networks 

(FNN, MLP, and GRU) to detect cardiovascular illness. By 

introducing noise to gradients, it integrates differential privacy 

approaches and Federated Averaging guarantees secure 

aggregation. 

Federated Learning with Privacy-Preserving Ensemble 

Framework 

Input: Local datasets Di for N healthcare clients, Privacy budgets 

ϵi, Learning rate η, Number of clients N and Neural network 

models: Feedforward Neural Network, Multi-Layer Perceptron, 

and Gated Recurrent Unit 

Output: Global Ensemble Model Mensemble 

Procedure: 

1. Initialize global models MFNN,MMLP,MGRU 

2. Local Training (at each client i): 

For each client i: 

• Perform local training on data Di for models FNN, MLP, 

and GRU. 

• Compute local gradients gGRU, gFNN, gMLP 

• Reduce the precision of model weights to q-bits. 

• Add Laplace noise to gradients for Differential Privacy 

(DP): gi′=gi+Laplace(0,Δ/ϵi) 
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• Send perturbed gradients gi′(for all models) to the central 

server. 

3. Global Aggregation (at the central server): 

• Aggregate local updates for each model using Federated 

Averaging (FedAvg). 

• Add Gaussian noise to global gradients for additional 

privacy: g′global=gglobal+Gaussian(0,σ2). 

• Update global models: Mglobal=Mglobal−η⋅g′global 

4. Ensemble Model Construction: 

• Collect predictions from MFNN,MMLP,MGRU back to the 

clients. 

• Apply majority voting to combine predictions into the 

ensemble model:  

Mensemble(x)=argmax(Vote(MFNN(x),MMLP(x),MGRU(x))) 

5. Iterative Training: 

• Send the updated global models  MFNN,MMLP,MGRU  back to 

the clients. 

• Repeat Steps 2–4 until the models converge. 

6. Final Deployment: Deploy the trained ensemble model. 

3.1 MODELS 

The project is implemented using three Models-Feedforward 

Neural Networks (FNN), Multilayer Perceptron (MLP) and Gated 

Recurrent Networks (GRU). 

 

Fig.2. MLP Architecture 

Multiple layers of nodes (neurons) make up MLPs, as seen in 

Fig.2, with each node connected to every other node in the layers 

above and below. An input layer, one or more hidden layers, and 

an output layer are often included in the design. The weighted sum 

of inputs received from the preceding layer is subjected to a non-

linear activation function by every node in the output and hidden 

layers. The MLP uses backpropagation to learn the ideal set of 

weights in order to translate input data into output predictions. 

The term “multilayer” refers to MLP’s stacked hidden layers, 

which enable the network to recognize more intricate patterns in 

the data than a basic perceptron. Although MLPs are quite 

powerful for various tasks, they are most effective in solving 

problems where the input data has a fixed size and is not 

sequential, such as image classification or tabular data. 

 

Fig.3. FNN Architecture 

Generalizations of MLPs are feedforward neural networks 

(FNNs), as illustrated in Fig.3. Their name comes from the fact 

that there are no feedback loops or cycles, and that information 

only moves in one direction, from the input layer to the output 

layer via the hidden layers. For many other neural networks, such 

as MLPs, Convolutional Neural Networks (CNNs), and more 

intricate designs, FNNs can be thought of as the fundamental 

building block. 

An FNN is essentially composed of layers where each neuron 

processes input data and passes it forward, and there is no 

interaction between neurons within the same layer. During 

training, FNNs optimize their parameters using algorithms like 

backpropagation and gradient descent. For applications including 

function approximation, regression, and classification, FNNs are 

frequently utilized. Despite their ease of use, FNNs may not be 

able to handle jobs involving sequential or temporal data (such as 

time series forecasting) because they lack a way to take input 

order into consideration. A particular kind of neural network 

called Gated Recurrent Units (GRUs), depicted in Fig.4, is made 

especially to process sequential data by introducing the idea of 

recurrence. GRUs retain a recollection of prior inputs and use that 

memory to guide current predictions, in contrast to MLPs and 

FNNs, which analyze inputs independently. Because of this, 

GRUs are perfect for jobs where the order of data points is 

important, like time series analysis, speech recognition, and 

language modeling. Gates, which regulate the information flow 

via the network, are a crucial component of GRUs. Two main 

gates are used by GRUs:  

• The Update Gate: Establishes the proportion of historical 

data that should be carried forward into the future. 

• The Reset Gate: Determines how much of the past data 

ought to be erased. 

 

Fig.4. GRU Architecture 
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GRUs may concentrate on pertinent portions of the input 

sequence while eliminating unnecessary data thanks to these 

gates, which also let them to selectively keep or reject 

information. Unlike Long Short-Term Memory (LSTM) 

networks, GRUs may effectively capture long-term dependencies 

without requiring as much computational complexity thanks to its 

design. Unlike LSTMs, GRUs combine simplicity and efficiency 

by using fewer gates, which reduces computational overhead 

while maintaining performance on many sequential tasks. 

Compared to FNNs and MLPs, which excel in static data 

problems, GRUs are uniquely suited for modeling time-dependent 

processes and dynamic patterns in sequential data. 

A major development in machine learning is Federated 

Learning (FL), which allows several organizations, including 

medical research centers and hospitals, to work together to train a 

common model without having to centralize sensitive data. One 

of the most important issues in data-driven enterprises is the 

security and privacy of personal data, which is addressed by this 

decentralized approach. Conventional machine learning 

techniques are frequently needed for data aggregation on a central 

server, which can lead to vulnerabilities and the exposure of 

private information.  

FL, on the other hand, guarantees that the raw data stays inside 

the boundaries of each institution by enabling each participating 

body to train a local model using its own data. Every client, 

whether a hospital, clinic, or research facility, starts the FL 

process by using a particular subset of data to train its local model. 

Only the model parameters, such as weights and gradients, are 

transmitted to a central server after the local training is finished. 

The obtained changes are then combined by this server to improve 

a global model iteratively. While maintaining patient privacy 

during the training cycle, the aggregation procedure enables the 

integration of insights from many datasets, ultimately enhancing 

the model’s performance. A significant benefit in healthcare 

settings where anonymity is crucial is that each client can 

contribute to the model’s development without disclosing its raw 

data. 

The incorporation of adversarial training methods, particularly 

the Fast Gradient Sign Method (FGSM), is used to strengthen the 

security of this cooperative training procedure. By creating 

adversarial examples during the training process, this technique 

strengthens the model’s resistance to possible attacks. Each client 

can improve the model while protecting data privacy by 

encouraging collaborative learning through adversarial training, 

resulting in a more robust machine learning framework. To 

further protect personal information, Differential Privacy (DP) is 

used in addition to FL. When doing analyses or training machine 

learning models, DP, a mathematical framework, protects the 

privacy of each individual within a dataset. 

DP reduces the possibility of disclosing private information 

about specific people by introducing deliberate random noise into 

the model’s gradients. This method protects individual privacy by 

making sure that the inclusion or exclusion of anyone’s data has 

no effect on the final model outputs. Gaussian noise is added to 

the gradients determined during model training to execute DP. It 

is much more difficult for adversaries to deduce information from 

the model updates because of the additional noise, which 

effectively masks the contributions of individual data points. An 

additional layer of security is added by using gradient masking, 

which randomly nullifies less significant gradients. This dual 

strategy, which combines gradient masking and noise injections, 

guarantees that the model retains high performance accuracy 

while simultaneously improving data security. 

Federated Learning, adversarial training, and Differential 

Privacy work together to provide a strong solution for handling 

private medical data. Applications like heart disease prediction, 

where the analysis of private medical data needs to be done with 

extreme caution, benefit greatly from this architecture. This 

creative method creates groundwork for a time when machine 

learning can be used in healthcare without jeopardizing patient 

confidentiality by protecting data privacy and facilitating 

collaborative model training. In conclusion, the combination of 

FL and DP presents a viable technique to safely use machine 

learning in delicate settings, opening the door for improvements 

in patient care and medical research.  

3.2 GRADIENT MASKING AND QUANTIZATION: 

A defense technique called gradient masking is used to shield 

models from hostile attacks, particularly those that use gradient-

based techniques like the Fast Gradient Sign Method (FGSM). In 

these types of assaults, the adversary uses the model’s gradients 

to produce adversarial perturbations that can trick the model into 

producing inaccurate predictions. By hiding or changing the 

gradients, gradient masking prevents this and makes it harder for 

attackers to create useful adversarial samples. In this research, the 

main technique is to introduce Gaussian noise into the gradients 

as they are being trained. The gradients lose some of their 

informational value when noise is added. In federated learning 

scenarios, where several clients independently train their local 

models and communicate updates to a central server, this method 

is particularly helpful. Gradient masking aids in defending against 

hostile influences on both the local and global models. 

Adding noise to the gradients’ during training is a technique 

known as gradient masking. As a result, gradient-based 

adversarial attacks become less accurate, making it more difficult 

for adversaries to create effective perturbations. It is a defense 

mechanism that is easy to incorporate into the training pipeline 

and is both lightweight and computationally efficient. The 

quantity of noise introduced must be balanced, though, as too 

much noise can hinder model convergence or impair performance 

in general.  

The process of quantization lowers the precision of a model’s 

weights, usually turning 32-bit floating-point numbers into 8-bit 

integers. Smaller model sizes, less transmission capacity, and 

quicker inference periods are the results of this decrease in 

precision. Quantization is very useful in federated learning since 

it reduces the overhead of communication between clients and the 

central server. This is particularly crucial when expanding the 

clientele that participates. In addition to increasing performance, 

quantization guarantees that the model will continue to work well 

for extensive deployments in distributed systems by decreasing 

the precision of weights. 

3.3 ADVERSARIAL TRAINING 

By using adversarial examples-intentionally altered inputs 

intended to make the model produce inaccurate predictions-

adversarial training is a defensive technique that increases the 
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robustness of machine learning models. The model gains the 

ability to withstand such adversarial attacks in the future by being 

subjected to these manipulations during the training phase. The 

Fast Gradient Sign Method (FGSM) was used in this study to 

create adversarial instances. A white-box attack called FGSM 

modifies the input data in a way that maximizes the prediction 

error of the model. 

3.3.1 Mathematical Representation of FGSM: 

• Objective: Using a model fθ(x) with parameters θ, an input 

x, and the true label Y, we want to introduce a minor 

perturbation to X in order to maximize the loss function 

J(θ,x,y). 

• Gradient of the Loss: The gradient of the loss function J with 

respect to the input X is used to determine the perturbation 

direction. This gradient indicates how much the loss would 

change with respect to each feature in the input x: ∇xJ(θ,x,y) 

• Adversarial Perturbation: In the direction of the gradient’s 

sign, FGSM applies a perturbation of size ϵ (a tiny constant): 

δ=ϵ⋅sign(∇xJ(θ,x,y)). In this case, the sign function, 

represented by ϵ⋅sign(∇xJ(θ,x,y)), indicates whether each 

gradient component is positive or negative. 

• Perturbed (Adversarial) Input: The perturbation δ is added 

to the initial input (X) to calculate the adversarial example. 

Finally, this adversarial input is clipped to stay within the 

valid data range, typically between 0 and 1: 

 xadv=x+δ=x+ϵ⋅sign(∇xJ(θ,x,y)) 

To make the FNN model more resilient to attacks, the 

fgsm_attack function in TensorFlow computes the gradient of the 

loss with respect to the input ((∇xJ(θ,x,y)) and then introduces a 

perturbation using the sign of the gradient scaled by ϵ. 

For the MLP model, the create_mlp_model function defines 

an architecture with two hidden layers. The fgsm_attack function 

generates adversarial inputs, and 

train_local_model_with_adversarial trains the model on these 

examples, improving its resilience. The 

federated_learning_with_mlp function coordinates local training 

across clients, combining their updates into a global model. 

The train_local_model function in the GRN model calculates 

gradients of the loss with respect to model parameters (∇θL(y,y′). 

These gradients are made random by Gaussian noise and masking, 

which preserves privacy during training while guaranteeing 

efficient learning. 

4. MODEL ENSEMBLING 

A machine learning technique called model ensembling mixes 

several models to increase prediction accuracy, generalization, 

and resilience to assaults like overfitting. This method is 

especially useful in delicate industries like healthcare, where 

precision and dependability are crucial. By combining predictions 

without centralizing sensitive data, ensembling improves model 

security and privacy in federated learning (FL) frameworks. Even 

in situations where training data is still decentralized, predictions 

are made more accurate by integrating local model outputs 

through an ensemble, such as by majority voting. 

This project ensembles models such as the Multi-Layer 

Perceptron (MLP), Feedforward Neural Network (FNN), and 

Gated Recurrent Unit (GRU). The central server uses majority 

voting to aggregate predictions from each local model’s training 

on its own data subset. By choosing the most common label across 

models as the final output, this technique improves robustness and 

accuracy. 

Better generalization, increased resistance to model extraction 

attempts, and increased accuracy are the driving forces behind 

model ensembling in FL. By adding noise to gradients, 

Differential Privacy (DP) further secures data and stops sensitive 

information from leaking. Ensembling has disadvantages like 

higher complexity, higher computing costs, and longer training 

durations, despite its advantages like fault tolerance and privacy 

preservation. Nevertheless, this strategy provides a robust, secure 

framework for healthcare applications, ensuring adherence to 

privacy laws like GDPR and HIPAA while maintaining model 

performance. 

5. SIMULATED ATTACKS 

A data leakage attack occurs when sensitive information is 

unintentionally exposed during training or model deployment. In 

federated learning (FL), while raw data is not directly shared, 

model parameters exchanged between clients can still reveal 

private details.  

For instance, rare cases might be captured in model updates, 

risking the exposure of sensitive healthcare data. To address this, 

randomized smoothing is used, adding controlled noise to model 

updates, reducing the risk of overfitting to specific data. 

Additionally, post-ensemble quantization compresses updates, 

obscuring detailed information and minimizing leakage risks.  

Particularly troubling in the healthcare industry, training data 

inference attacks use models to ascertain whether particular data 

was used during training. To counter this, differential privacy with 

enhanced noise mechanisms makes individual data contributions 

indistinguishable, preventing such inferences. Randomized 

smoothing and quantization further obscure model behavior. 

Model Inference Attacks (MIA) involve analyzing a model’s 

outputs to infer if particular data points were used in training. This 

is a threat when models are accessed via APIs, as attackers use 

specific queries to gather insights into training data.  

Attackers can steal proprietary algorithms without retraining 

by using model extraction attacks, which try to recreate a model’s 

functionality through querying it. When models are used as black-

box services in cloud-based AI applications, this poses a risk. 

Feature Extraction Attacks focus on revealing the internal 

representations learned by a model. Attackers exploit these 

intermediate representations to understand how a model makes 

predictions, potentially exposing sensitive attributes or 

proprietary information. 

6. RESULT ANALYSIS 

6.1 MODEL PERFORMANCE ANALYSIS 

• FNN: Achieved 91.89% accuracy, demonstrating robustness 

under adversarial conditions such as FGSM and PGD 

attacks. The model exhibited fast convergence, maintaining 

stable accuracy with low communication costs (3.32 MB 

over 10 rounds) and consistent loss reduction. Accuracy 
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variations across rounds suggest sensitivity to non-iid client 

data and differential privacy noise. 

• MLP: Reached 91.97% accuracy, showing resilience to 

adversarial attacks and early convergence. It demonstrated 

minimal communication overhead (1.05 MB over 10 

rounds) and a gradual loss decline, reflecting efficient 

performance optimization. 

• GRU: Achieved 91.76% accuracy with strong adversarial 

performance. The model stabilized rapidly, with a 

communication cost of 5.50 MB over 10 rounds, and a 

consistent loss decrease from 2.6245 to 2.5322. Minor 

accuracy fluctuations were observed, indicating iterative 

learning in a federated environment. Because of its 

sophisticated design and capacity to accurately capture 

intricate temporal correlations in sequential data, the GRU 

model has greater communication costs than FNN and MLP. 

This trade-off guarantees strong iterative learning and 

excellent adversarial performance—both essential in 

federated environments. 

The Fig.6 and Fig.7 represent the following data points as a 

column graph for better understanding. 

 

Fig.6. Accuracy Comparison of FNN, MLP, and GRU Models 

 

Fig.7. Computation Time and Communication Cost of FNN, 

MLP and GRU 

 

Fig.8. Accuracy Comparison Before and After Ensembling 

Attack Resilience Analysis 

 

Fig.9. Accuracies of MIA, Model extraction attack, Feature              

inference attack, Training data inference attack, and Data 

leakage attack 

The Fig.6 compares the Accuracy Peak and Accuracy 

Fluctuation Range across FNN, MLP, and GRU models. FNN 

achieves the highest peak accuracy of 93.43% in Round 2, while 

MLP and GRU both stabilize at 91.92% by Round 4. The 

Accuracy Fluctuation Range is smallest for FNN (91.92% to 

93.43%), with MLP and GRU showing a slightly narrower range 

of 90.47% to 91.92%. 

1) Membership Inference Attack: Accuracy and AUC of 

0.5000 indicate robust privacy mechanisms, effectively 

preventing inference of training data membership. 

2) Model Extraction Attack: With an accuracy of 0.4700 and 

almost zero precision and recall, the stolen model appears 

to have had limited success in reproducing the original 

model. 

3) Feature Inference Attack: The attack resulted in an 

accuracy of 0.4800, close to random guessing, indicating 

poor attacker performance. 

4) Training Data Inference Attack: An accuracy of 0.5000 

highlights effective protection against determining the 

inclusion of specific records in the training dataset. 

5) Data Leakage Attack: Achieved an accuracy of 0.4930, 

reflecting minimal success and demonstrating strong 

privacy protections. 

The Fig.8 graphically represents the accuracy of the attack 

resilience of the model. 

7. CONCLUSION 

The study of the results demonstrates the correctness, 

convergence, and communication efficiency of both the ensemble 

and individual models. The system also demonstrates resilience 

to attacks, guaranteeing model security and data privacy. Because 

of this, the deployment technique is appropriate for real-world 

healthcare applications where model performance and privacy 

preservation are crucial. 

8. FUTURE WORK 

Future studies can concentrate on improving the GRU model’s 

communication efficiency by investigating sophisticated 

compression methods including gradient pruning and 

quantization to lower overhead without sacrificing accuracy. The 

robustness and security of the framework can be further increased 
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by implementing adaptive adversarial defense mechanisms and 

hybrid privacy-preserving techniques that combine cryptographic 

and differential privacy techniques. Another interesting approach 

is to use hierarchical or personalized federated learning to address 

scalability issues in diverse environments. Deeper understanding 

and useful advantages may result from actual validation in 

healthcare environments and broadening the framework’s 

application to a variety of medical use cases. Lastly, the 

framework’s scalability and performance in distributed systems 

may be maximized by using cutting-edge technologies like edge 

computing for real-time processing and blockchain for secure 

model aggregation. 
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