
ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2024, VOLUME: 15, ISSUE: 02 

DOI: 10.21917/ijsc.2024.0489 

3505 

AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL 

QUERY SUPPORT  

Suvam Tamang1, M.S. Srinath2, Pallav Kumar Baruah3 
Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, India

Abstract 

Blockchains’ power of decentralization, immutability, and 

transparency has found its application in many fields. The blockchain 

is an append-only structure. As the blockchain grows, accessing blocks 

from the past in an efficient manner has become a challenging task. 

Further, blockchains were not initially envisioned to be read-heavy 

systems. With the passage of time, more and more applications are 

using blockchains and therefore blockchains need to provide active 

support for high read loads concerning the history state as well. To 

facilitate data querying in blockchain, we have proposed an SQL query 

processing feature in the Ethereum blockchain through a decentralized 

application. More specifically, we build an Ethereum-based Electronic 

Health Record (EHR) system with SQL query support. The following 

approaches for query processing have been explored and implemented: 

(i) linearly scanning blockchain, (ii) scanning only from a user-

specified block, (iii) replication in database, (iv) indexing in a database, 

and (v) using smart contracts. Our timing analysis across these 

implementations reveals that the smart contracts-based approach has 

reasonable performance gains compared the other approaches. 

 

Keywords:  

Electronic Health Records, Blockchain, Smart Contracts, Web3, IPFS. 

1. INTRODUCTION 

Health records have been used by humans ever since the 

Bronze Age. Its first traces found in the form of ancient Egyptian 

inscriptions date back to 1600 BC [1]. It has witnessed significant 

transformation over the past three and a half millennia. In recent 

years, governments have taken massive initiatives to maintain the 

health records of their citizens. In the year 2009, the HITECH 

Health Information Technology for Economic and Clinic Health 

act passed by the 

U.S. government to incentivize people for the usage of EHR 

was a great boost for the spread in the usage of EHR [2] as also 

the affordability of EHR was dropping down. The Indian 

government launched The Ayushman Bharat Digital Mission 

(ABDM) in response to the emerging need to digitize healthcare 

in India. COVID-19 was the main reason for reconsidering the 

healthcare ecosystem as the system needed to be more 

interoperable and streamlined. ABDM has eased the process of 

data sharing and achieved Universal Health Coverage (UHC) [3]. 

Wisner et al. [4] have discussed the issues that the paper-based 

system is prone to and how the EHR system solves those. The 

EHR system aims to mitigate the issues existing with the 

traditional paper-based records system, such as: 

• Security Compromise: The traditional health record system 

where a centralized authority or a cloud service keeps track 

of paper-based records is an easy target for attackers and 

hackers [5]. Further, insider attacks are quite a cause of 

concern here. Mazurek et al. [6] and Argaw et al. [7] also 

talk about how hospitals have become a target of data breach 

attacks. Since October 2009, 173 million data entries have 

been compromised. 

• Lack of Data Integrity: Data loss, deletion, and corruption 

are other causes of concern. Tamper-proof availability 

cannot be guaranteed in such paper-based systems as a mere 

paper needs to be manipulated. 

• Difficulty of Accessibility: The patients themselves could 

be unable to access their medical histories in paperbased 

systems simply because the paper document went missing or 

was destroyed. Yao et al. [8] talks about the vital need of the 

availability of patient data. 

• Lack of System Interoperability: Also the medical records 

tend to get scattered in quite a lot of places and different 

forms. Also, cross-region sharing may not be possible due to 

the laws and regulations differing across various regions. 

This severely affects system interoperability. Reisman et al. 

[9] also talk about the varying system functionalities across 

healthcare institutions and interoperability issues. 

• High-Cost Requirements: Centralized databases setting up 

takes up quite a lot of planning, funds, and maintenance 

costs thereafter, though this seems to get minimized when 

using cloud services. 

EHR solves all the above issues as it is a digital append-only 

document that tracks every clinical visit of a person. Information 

stored in this document includes the patient’s symptoms, 

diagnostics, medications, past medical history, demographics, 

laboratory data, immunizations, MRI images, and radiology 

reports [10]. If we have to jot down the benefits of EHR in brief, 

they are as follows: 

• EHR leads to the improvement in the quality of healthcare 

by reducing medical errors that creep in easily because of 

paper-based documents and can also contain measures 

specific to a patient that can highly specify the care 

appropriate to the patient. 

• EHR leads to the minimization of cash flows in the long run 

as opposed to paper-based documents that require a lot of 

paperwork and thereby improve both the financial and 

operational performance. 

• EHR also easily provides many research institutes to 

research as the data is available on the web thereby 

drastically improving the health of the population. 

Blockchain was not conceived for any sophisticated querying 

mechanism. The major focus is on data storage, there are hardly 

any user-friendly avenues to query a blockchain. We would like 

to bridge this gap. We provide a SQL querying ability for 

querying the Ethereum blockchain for the details of patient health 

records through a decentralized application. We have made use of 

IPFS (Inter Planetary File System) as the major storage 

component and blockchain as the metadata storage layer. To this 

end, we have made the following contributions through this work. 



SUVAM TAMANG et al.: AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL QUERY SUPPORT 

3506 

• A survey of the existing literature on Electronic Health 

Record Systems on the blockchain. 

• A comparative study of the existing frameworks of the 

existing query processing system in the blockchain. 

• Proposed four different methods of query processing in the 

blockchain each with its drawbacks and characteristics. 

• Provided a dApp that incorporates all the features mentioned 

above and that runs on the Ethereum blockchain. 

The remainder of this paper is organized as follows. Section 2 

deals with all the background details regarding blockchain and its 

implementations. Section 3 talks about the literature review that 

aligns with the problem of our interest. The proposed system 

architecture along with all the system components with their 

respective functionalities have been discussed in Section 4. The 

performance analysis and the results are presented in Section 5. 

The last section comprises conclusions thus made and the 

references that were used. 

2. BACKGROUND 

The term blockchain came into the light way back in 1991 

when Stuart Haber and W. Scott Stornetta thought of a system 

consisting of a cryptographically secured chain of blocks that 

ensured that the document timestamp could not be tampered with. 

Merkle Trees or Hash Trees named after Ralph Merkle found its 

collaboration in the following year. Satoshi Nakamoto, an 

individual or a group of individuals [11] adapted the technique in 

2008 and created the first cryptocurrency bitcoin having 

introduced Bitcoin blockchain through a white paper. The paper 

mainly discusses an electronic payment system where in the 

absence of a centralized authority monitoring the payment, the 

cryptographic proofs formed a basis of trust. The Proof of Work 

(PoW) consensus algorithm found its first formal application in 

this paper. The decentralized network has the power to prevent 

double spending of the digital assets, where always the longest 

chain wins and gets finally committed to the network in case of 

forking. All the information is stored in blocks that are linked to 

each other forming a chain, thereby making it hard to tamper with. 

Thus, blockchain is a distributed, decentralized ledger of 

transactions that enables a secure, transparent, and tamper-proof 

way of storing and sharing information between multiple parties. 

2.1 BLOCKS 

The basic data structure of a blockchain is the blocks [12]. 

They are stored in a linked list style where the latest block gets 

attached to the previous block. A block contains transaction 

information and other details such as the nonce value, timestamp 

of the block, previous block hash, etc. The block contents depend 

on the type of blockchain used. The first block in the blockchain 

has a special name and is called a genesis block. The most 

important content of a block is its hash. The hash is what provides 

authenticity to a block and determines whether the block needs to 

be added or discarded. The block hash is its fingerprint. If a 

malicious user tries to change the block contents, its hash value 

also changes. This warns all the other nodes in the network 

regarding malicious activity. The Fig.1 shows a typical block 

structure. 

 

Fig.1. A block structure 

2.2 TRANSACTIONS 

A transaction is created whenever there is a data transfer from 

a sender to a receiver. The main contents of a transaction are 

sender, receiver, and value although it consists of other 

information such as timestamp, input value, transaction hash, etc. 

A transaction thus fired results in a blockchain state change. A 

block as discussed above stores all these transactions. For a 

transaction to be valid all the nodes in the network verify the 

transaction based on the consensus protocol that the network 

follows. 

2.3 CONSENSUS 

A transaction gets validated through consensus protocols. 

Two of the most popular ones are Proof of Work (PoW) and Proof 

of Stake (PoS). Bitcoin blockchain uses PoW whereas the 

Ethereum blockchain uses PoS. Consensus is a set of rules that 

needs to be followed in the network. Consensus is achieved when 

multiple nodes in the network participate. The more the number 

of participants stronger the consensus. Whenever a block 

proposed by a miner goes through the consensus protocol as a 

valid and genuine block, the miner is now eligible for a reward in 

the form of the blockchain’s native currency. Theoretically, 

attackers can collaborate to control 51% of the network 

computation power after which they have a higher chance of 

proposing the next block even if it is faulty. This scenario in the 

blockchain is known as a 51% attack. PoS is a consensus 

mechanism in which validator nodes stake some amount of asset 

as ”collateral”, and based on the amount of asset staked and the 

time duration for which the amount was staked, the next validator 

node is chosen and the node gets to propose a new block into the 

system [13]. The validator node receives a reward on a genuine 

proposal whereas if it tries to execute the foul play, the asset kept 

at stake will be confiscated and it will be detained from 

participating in the future consensus. Since PoS doesn’t involve 

any complex mathematical problem-solving, it is more energy-

efficient and less expensive than PoW. 

2.4 ETHEREUM 

Ethereum is a programmable blockchain. Unlike bitcoin 

blockchain which mainly focused on transactions and only 

transactions Ethereum was introduced to make blockchain more 

lively by being able to use blockchain in many fields such as 

healthcare, education, social media, supply chain, etc. Ethereum 

was first conceived by a Russian programmer, Vitalik Buterin in 

the year 2014 when we wrote a paper titled Ethereum: A Next-



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2024, VOLUME: 15, ISSUE: 02 

3507 

Generation Smart Contract and Decentralized Application 

Platform [14]. Ethereum was formally released in the year 2015 

by Buterin alongside Joe Lubin. Ethereum allows developers to 

write and deploy their code in blockchain in the form of Smart 

Contracts and thus enables the creation of decentralized 

applications or dApp in short. Thus, the dApps built can run with 

no fraud, downtime, or thirdparty interference. Ethereum is a 

blockchain with a built-in Turing Complete Language. Ethereum 

initially used PoW as its consensus mechanism but it moved on to 

PoS on September 15th, 2022 06:42:42 UTC, at block 15537393 

known as The Merge. 

2.5 ETHER 

Ether is the native currency of the Ethereum blockchain. It is 

used for transaction payments. When a user has to get his 

transaction verified and added to the network, then a transaction 

fee, also known as gas fees needs to be paid, depending on the 

amount of computation that transaction is going to involve and 

the status of the network. Ethers are created by the underlying 

Ethereum protocol and cannot be created by a user. The 

transaction fee is calculated using the formula: 

 Transactionfee = Gasprice × Gaslimit (1) 

where the gas price is the price of a unit of gas, and the gas limit 

is the maximum amount of gas that the transaction is willing to 

spend. 

2.6 SMART CONTRACT 

Smart Contracts (SCs) are pieces of code that are deployed 

and executed in the blockchain. In fact, in simple words, a smart 

contract is a simple computer program that gets executed when 

certain predefined conditions are met and thereby facilitates the 

transfer of assets between two parties. SCs was first introduced by 

Nick Szabo, an American computer scientist, and cryptographer, 

in the year 1994 [15]. It is the revolutionizing technology that 

gave Ethereum its usefulness in almost every field of application 

in today’s world of web3. The business logic can well be coded 

in the SCs and deployed in the blockchain after which whenever 

the condition as specified in the logic is satisfied, the contract 

executes automatically and performs necessary actions of fund 

transfer or any other activity. Ethereum Virtual Machine (EVM) 

is responsible for smart contract execution. 

3. RELATED WORK 

Blockchain as such has been applied in many ways in the field 

of medical science but the real issue lies in the fact that most of 

them don’t talk about the query processing feature in the 

blockchain. Some of the papers do talk about query processing 

but they haven’t described query processing in specific fields like 

healthcare which is our problem of interest. Daraghmi et al. [16] 

proposes a system called MedChain that is mainly concerned with 

the secure sharing and interoperability of patients’ medical 

records among healthcare providers. Advanced encryption 

techniques to maintain security aspects have been discussed and 

timely based medical records access after which the access rights 

will be revoked has also been discussed. 

Shuaib et al. [17] implement a secure, sharable medical record 

system on Hyperledger Besu using Practical Byzantine Fault 

Tolerance (PBFT) consensus and found their performance 

improving greatly in terms of transaction throughput, and latency 

than existing blockchain systems. Rouhani et al. [18] also talk 

about the blockchain being more used for cryptocurrency aspects 

and consensus protocols like PoW adding to the performance 

overhead. They talk about an asset management system that stores 

and manages the medical records of the patients in the 

Hyperledger fabric. Azaria et al. [19] propose a system called 

MedRec that allows easy access of blockchains to the patients. 

They also propose a modular architecture that can easily integrate 

with the data storage of the local existing systems for easy 

adoption. One of the very interesting features of this system is that 

it allows the stakeholders to participate in the system as a miner 

and by maintaining the network security using consensus 

protocols they get patient records as rewards in return. Shanaz et. 

al. [20], also discuss building an Electronic Health Record System 

on the blockchain but they don’t provide any hints as to how 

queries can be performed. 

Bragagnolo et al. [21] very much aligns with our goal of 

providing SQL query support to the Ethereum blockchain. Their 

work does support SQL, select from where clause but they are 

mostly concerned with fetching the blocks, accounts, and 

transactions information and there are many sources available 

online that provide such kind of information. Cheng et al. [22] 

proposes a system that can perform range queries over a Boolean 

range. Both the techniques of Bloom filters and Merkle Tree have 

been used for efficient querying of data. They define a bloom filter 

of the size of the query range and the exact blocks are directly 

accessed. Merkle trees help to determine the authenticity of the 

data. This system can be used in a wide variety of fields in daily 

life. Off-chain storage and computation in the form of a Hadoop 

Distributed File System (HDFS) have been proposed by Linoy et 

al. [23]. Their main idea was to provide a wide variety of efficient 

query support and easy dApp integration of their system. 

Przytarski et al. [24] discusses the complexities involved in 

querying a blockchain. It talks about how blockchain has come a 

long way from its inception in 2008 by Satoshi Nakamoto, where 

the focus was only on Bitcoin use. Today it has found its use in 

various fields like healthcare, supply chain, education, e-voting, 

etc. and emphasis has to be laid on the query aspects as well. For 

correct and faster diagnosis of a patient, a doctor may need a past 

medical history of the patient. For a land registration application, 

the land buyer may need access to the past ownership chain of the 

land he wants to buy. In Supply Chain related applications a 

product’s authenticity may be determined by tracing back its 

supply chain of deliveries, from whom and at what time the 

product was delivered in the delivery process to the actual patient. 

It describes the need for complex queries supporting framework 

in blockchain in various fields such as Health Data Management, 

Financial Accounting, Registries, Food Supply Chains, and E-

voting. 

Przytarski et al. [25] also discuss the concepts of an object-

based data model in blockchain and introduce Constant Objects 

and Expandable Objects. The paper concludes with the mention 

of state-of-the-art technologies such as some database that has 

blockchain properties such as BigchainDB [26], and some 

blockchain that have database properties such as blockchainDB 

[27]. 



SUVAM TAMANG et al.: AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL QUERY SUPPORT 

3508 

Li et. al. [28] talk about adding a query layer on top of an 

Ethereum blockchain. They raise the concern about the lack of 

developer-friendly APIs for accessing data from the blockchain. 

EtherQL provides highly efficient query primitives for analyzing 

Ethereum blockchain data. They have included range queries, and 

top-k queries, and also claim that their work can be integrated 

with other applications with high flexibility. Pratama et al. [25] is 

an extension to the work done by Li et al. [28] as discussed above. 

Their extension is in terms of the variety of queries supported. 

Their search parameters can have multiple parameters in a 

retrieval query. Apart from these multiple parameter extensions, 

their system also supports aggregrate queries that perform min, 

max, count, and sum operations and ranking queries that give 

results in ascending or descending as specified by the user. 

Han et al. [29] make it clear that an Ethereum node stores data 

in LevelDB and it is not suitable for query purposes as it stores 

data internally in the form of a Trie. The authors built the system 

using an embedded database SQLite. This paper very aptly 

describes standard transactions and smart contract transactions. 

The query manager uses SQLite to perform SQL queries. This 

method of query processing though improved efficiency and 

scalability but the queries supported were only SELECT and 

INSERT operations. 

Kaur et al. [30] have also discussed the querying ability using 

blockchain but with a private blockchain network using 

Hyperledger Fabric [31] and have not designed any query 

processing components as such. The data that they store is written 

to CouchDB, which is a key value store, and they perform queries 

from CouchDB. Peng et al. [32] gave another idea as to how a 

database can be populated as and when new data gets written to 

the blockchain. They have used MongoDB for this purpose. Their 

concern is that the query system is highly inefficient, and the 

authenticity of the query result is not very secure. They propose a 

Verifiable Query Layer where the database in the middle layer is 

not just filled with the relevant data but at the same time, a 

database fingerprint is maintained in the blockchain so that 

whenever a query request comes the authenticity of the database 

is first checked before the data fetch. This ensures that the data 

coming from the middleware layer is indeed valid. 

 

Fig.2. A Basic Schematic of the Proposed System 

4. PROPOSED SYSTEM 

The proposed system mainly consists of three main actors. The 

clinics, the doctors, and the patients. A clinic is at the top of the 

hierarchy. A doctor becomes a valid doctor only after he has been 

registered by a clinic. Similarly, a patient becomes a valid patient 

only if he has been registered into the system first, by a clinic, or 

by a valid doctor. Not all the queries for a clinic, doctor, or patient 

are the same. The details of the query supported will be discussed 

below. The Fig.2 shows a basic schematic of the proposed system. 

It shows that a clinic can register both the patient and the doctor 

whereas a doctor can register patients alone. Furthermore, the 

doctor takes the help of IPFS to store the actual patient record 

whereas the metadata information is stored in the blockchain. The 

clinics, doctors and patients can query the blockchain to retrieve 

relevant information to which they have access. 

4.1 CLINIC FUNCTIONALITIES 

In the three-role system of ours, the clinic is at the top of the 

hierarchy. Now let’s summarize some of the clinic functionalities 

as shown in the use case diagram. 

• Add Clinic: It handles the registration of clinics to the 

system. The inputs that need to be given for successfully 

registering a clinic to the system are clinic name, clinic 

metamask address, location, and password. 

• Check Clinic: This function gets called when the clinic logs 

in to the system. It takes input as the clinic’s metamask 

address, and password and performs a check in the 

blockchain whether a clinic exists with the same metamask 

address and password. Upon successful login, the clinic is 

routed to its dashboard. 

• Add Patient: The clinic uses this function to register a new 

patient to the system, only then is the patient a valid patient. 

The same patient cannot be added again. 

• Clinic Add Doctor: The clinic uses this function to register 

a new doctor to the system, only then is a valid doctor. The 

same doctor cannot be added again. 

• Get Registered Patients: Returns all the registered patients 

along with the department name of their registration. 

• Get Registered Doctors: Returns all the registered doctors 

along with the department name of their registration. 

• Get Registered Patients in a Department of a Clinic: 

Returns all the patients registered or getting treated in a 

specific department in a clinic. 

• Get Registered Doctors in a Department of a Clinic: 

Returns all the doctors belonging to a specific department in 

a clinic. 

• Doctor Natural Join Patient: Gives the clinic a single view 

of the doctors’ and the patients’ details. This operation 

returns records representing patients and doctors from the 

same department. 

4.2 DOCTOR FUNCTIONALITIES 

In our three-actor system, the doctor is in the middle of the 

hierarchy. Some of the available doctor queries and functionalities 

are as follows: 

• Add Patient: This function handles the registration of 

clinics to the system. The inputs that need to be given for 

successfully registering a patient to the system are the 

patient metamask address, patient name, clinic address, 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2024, VOLUME: 15, ISSUE: 02 

3509 

name of the registering department, and a new password to 

set up for the patient. 

• Check Doctor: This function gets called when the registered 

doctor logs in to the system. It takes input as the doctor’s 

metamask address, and password and performs a check in 

the blockchain whether a doctor exists with the same 

metamask address and password. Accordingly, the doctor 

will be routed to its dashboard or will be greeted with an 

error. 

• Doctor Add Record: This is the method for a doctor to add 

patient medical records, and metadata, into the blockchain. 

The input fields that need to be provided are IPFS CID of 

the patient’s actual record, patient metamask address, patient 

name, doctor name, doctor metamask address, symptoms 

shown by the patient, diagnosis as performed by the doctor, 

the department from the which the medical record has been 

added. 

• Get Registered Patients Records By ID: This is a query 

that a doctor can perform to find the medical records of a 

patient given the patient’s metamask address, provided that 

the address is a valid one. 

• Get Patient Records From Specific Date: This is a query 

that a doctor can perform to find the medical records of a 

patient given the patient’s metamask address and specific 

data (inclusive) after which the doctor would like to see the 

patient’s medical history, provided that the address and date 

is a valid one. 

• Group By Clause: This query can be used by the doctors to 

get a single view of the patient’s medical history by grouping 

a set of doctors who have treated a specific patient as doctors 

need to specify the patient metamask address when 

performing group by clause. 

4.3 PATIENT FUNCTIONALITIES 

• Check Patient: This function gets called when the 

registered patient logs in to the system. It takes input as the 

patient’s metamask address, and password and performs a 

check in the blockchain whether a patient exists with the 

same metamask address and password. Accordingly, the 

patient will be routed to its dashboard or will be greeted with 

an error. 

• Get Registered Clinics: Returns all the registered clinics in 

the system. 

• Get Registered Clinics by Location: Returns all the 

registered clinics in the system filtered by the location 

parameter as specified by the patient. This query is very 

helpful for the patients in the sense that a patient gets to 

know which clinics are available in the system. 

• Get Registered Doctors by Clinic Name: Returns all the 

registered doctors in the system filtered by the clinic name 

parameter as specified by the patient. This query helps 

patients to know all the available doctors as specified by the 

patient in a specific clinic of interest. 

• Get Registered Doctors by Clinic Name and Department: 

Returns all the registered doctors in the system filtered by 

the clinic name parameter, and doctor’s department as 

specified by the patient. 

5. EXPERIMENTS AND RESULTS 

5.1 APPROACHES EXPLORED AND 

IMPLEMENTED 

This section discuss the approaches that we have considered 

and implemented for this problem of performing query processing 

in the Ethereum blockchain for electronic health records. 

5.1.1 Linearly Scanning the Blockchain and Searching for the 

Required Data: 

The first approach carried out is the naive way of performing 

query processing. That is scanning through all the blocks in the 

blockchain and searching and accessing data that is relevant. This 

way of accessing the blockchain is not at all efficient as there are 

more than 400 million blocks and more than 100 million blocks 

already in the Polygon Mumbai test net and Goerli test net 

respectively and accessing them linearly doesn’t scale up to our 

needs. Thus as an approach to start with, we started with linearly 

scanning the blockchain and found that linearly scanning is not at 

all practical in reallife case scenarios. Because in order to satisfy 

just a single query, all the blocks need to be traversed which is 

highly time consuming and not practical for use cases like ours, 

which is a time-critical application. The Fig.3 below summarizes 

this approach. 

 

Fig.3. Linearly Scanning the Blockchain 

5.1.2 Scanning the Blockchain only from a Specific Block: 

The second approach would be to chop the blockchain. By 

chopping what we would mean to get data from the blockchain 

only from a user-specified block. Now how to identify the user-

specified block is based on the timestamp that the user inputs. The 

user would specify from which year onward block scanning 

should be performed. This will reduce the search space by some 

thousand blocks but will still not be very useful for real-time 

sensitive applications like our system. As the user needs to be very 

precise about from which date onwards he/she wants to start 

scanning the blocks we can’t really rely on this way of scanning 

the blocks as it is not very practical in real-life scenarios as shown 

in Fig.4. 

For both cases as mentioned above the overhead is going to 

increase as it is not just a matter of scanning each block, there may 

be a certain number of transactions within each block, and each 

of them also needs to be scanned and checked whether the 

transaction we found is the transaction of our interest. This is 

going to render our searching algorithm to O(kn), where k is the 

number of transactions in each block and n is the total number of 

blocks. In the worst-case scenario, this is inefficient especially 

when the number of records to be searched is huge in number. 



SUVAM TAMANG et al.: AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL QUERY SUPPORT 

3510 

 

Fig.4. Scanning from a specified block 

5.1.3 Using Database Alongside the Blockchain: 

The idea behind this approach is that instead of using 

blockchain alone for fetching data, we used a database for 

performing query processing. Now, how are we populating the 

database for this use? To answer this question we take the help of 

the event feature of smart contracts. An event is simply a signal 

that a smart contract emits to inform that some activity has 

happened in the blockchain. The events emitted are written to 

event logs in a special data structure. It is not feasible for smart 

contracts to read these values. The data relating to smart contracts 

are stored in the State Trie whereas events emitted are stored in 

the Transaction Receipt Trie. For us to be able to query event logs, 

we need to emit events with some parameter(s) set as indexed 

parameters, all other parameters are encoded as ABI encoded data 

portion of the logs. Events are also a form of a communication 

method in which a smart contract performs some function and the 

front end can subscribe to these events, by continuously listening 

to them to know in real-time any activity that has occurred in the 

blockchain. 

As and when a patient’s records are input into the blockchain, 

an event gets emitted. and we know the data has been successfully 

written to the blockchain. Now, we further read the parameters of 

the events emitted which will effectively contain the parameters 

written to the blockchain. These event parameters are then used 

to populate various database technologies that will be discussed 

below. After having populated the database we then compare the 

performance of the queries fired. The Fig.5 summarizes this 

approach. 

 

Fig.5. Using Database for Querying 

5.1.4 Using Database as an Index: 

Another approach that was considered was to use some kind 

of indexing technique such as storing the information of our 

interest in a database, MongoDB, to be specific. Here by 

information of our interest, it is meant that the transaction hash 

and the block number of transactions committed by the user using 

the web3 library which is an Application Programming Interface 

(API) to interact with the Ethereum blockchain. This will again 

significantly reduce the search time as it becomes a matter of 

storing the block number in which the information of our interest 

is stored in the database and then later when fetching the data we 

perform a lookup in the database first, find the appropriate block 

numbers and directly go and hit those particular blocks and 

retrieve the relevant information. This is one more approach to 

performing query processing which is not quite an efficient 

approach. Again, the performance of this approach was compared 

with the smart contracts. The Fig.6 summarizes this approach. 

 

Fig.6. Using Database as an Index for Querying 

5.1.5 Using Smart Contracts: 

The final approach that we took was to use Smart Contracts 

(SCs) alone for storing data and fetching data from the 

blockchain. These structures are stored in the blockchain using 

solidity data structures and then are used and manipulated based 

on the logic of the function invoked. The actual patient data which 

is the JSON files will be encrypted using a dummy key that acts 

as the patient’s private key and is stored in IPFS. Now unless the 

doctors or any clinicians have access to this private key, won’t be 

able to make anything out of the file and hence won’t be able to 

view the patient’s records unless granted by the patient himself. 

The state change functions consume gas and the user invoking the 

function pays for it whereas for performing any query processing 

no gas cost needs to be paid as it just results in the invoking of 

view functions in the contract. 

5.2 PERFORMANCE EVALUATION 

5.2.1 System Specifications: 

For the most part of the work, the Ubuntu desktop was used. 

The system specifications are as follows: 

• OS Name: Ubuntu 22.10 LTS (Jammy Jellyfish). 

• OS Type: 64 bit. 

• Memory: 16.0 GiB. 

• Processor: Intel Core i5-4670 × 4. 

• Hardware Model: Dell Inc. OptiPlex 9020. 

• Disk Capacity: 1.0 TB 

The Table.1 summarizes all the tools used for this project 

along with their specifications. 

5.2.2 Results and Discussion: 

Firstly, a comparative study was made for a single SQL query: 

select * from patients where patient-id = “some-meta mask-

address” using four different storage entities. 

• MongoDB 

• MySQL 

• BigchainDB 

• Blockchain (Smart Contracts) 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2024, VOLUME: 15, ISSUE: 02 

3511 

The analysis was carried out such that a single type of query 

was fired initially followed by a mixed type of query. The number 

of queries fired increased from 1 to 10,000. When the number of 

queries was less, the database technologies tended to perform 

better but when the number of queries increased the smart 

contracts showed much better execution time. To perform the 

above-mentioned analysis, we have used axios npm library to 

make HTTP requests to the database backend servers. To invoke 

methods of the smart contract, i.e. for the blockchain backend we 

have made use of the web3 library. 

Table.1. Version table 

Tool Used Version 

Truffle v5.6.5 

Ganache v7.5.0 

NodeJS v18.16.0 

Metamask v10.28.3 

Solidity v0.5.16 

Web3.js v1.7.4 

IPFS ipfs version 0.16.0 

MySQL Ver 8.0.32 

MongoDB db version 6.0.5 

BigchainDB v2.2.2 

ReactJS v18.2.0 

Docker Docker version 23.0.4, build f480fb1 

Locust v2.15.1 

• Case 1(a): The number of records stored was limited to 100. 

A single type of query being fired into the system, meaning, 

a query of the form select * from patients where patient-id= 

“some-patient-meta maskaddress”. Here “some-patient-

meta mask-address” has been kept identical in all the query 

files. This is what we mean by a single type of query. The 

queries eventually increased in numbers from 1 to 10K 

queries and the performance has been summarized in Fig.7. 

 

Fig.7. Scenario when a single type of queries used 

• Case 1(b): The number of records stored was limited to 100. 

A Mixed kind of query was fired. By mix, we mean a file of 

queries that contains queries such as select * from patients 

where patient-id=“some-patient-meta mask-address” but 

here “some-patient-meta maskaddress” keeps changing in 

all the query files. This is what we mean by a mixed type of 

query. The queries eventually increased in numbers from 1 

to 10K queries and the performance has been summarized in 

Fig.8. 

 

Fig.8. Scenario when mixed type of queries used 

• Case 2: The analysis for this case was carried out only for 

mixed kinds of queries as discussed above. The number of 

records stored in the system has increased to 500. The 

performance of MySQL, MongoDB, BigchainDB, and 

smart contracts have been summarized in Fig.9. The number 

of queries was less the databases as well as bigchainDB gave 

better execution times whereas when the number of queries 

increased then it was the smart contract that provided us with 

better results. 

 

Fig.9. Mixed Queries fired when 500 records were stored Now 

in all the figures that we see, we can see that when 

The second half of the analysis consists of the comparisons of 

performances between the smart contracts and the database index. 

Let us go through all the scenarios that we have considered for 

this analysis part. 

• Scenario 1: The data quantity in the blockchain is limited to 

one or a few records. When a single type of query is fired: 

select * from patients where patient-id 

=0xD42D954A5aC1fa52706d26Cc26FaDBA5cfC8f773 

(this is a dummy metamask address of the patient). The 

Fig.10 shows the outcome. 

 

Fig.10. DB Index VS Smart Contracts Single Query Type 



SUVAM TAMANG et al.: AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL QUERY SUPPORT 

3512 

• Scenario 2: The data quantity in the blockchain is limited to 

one or a few records. When a mix of queries was fired. The 

Fig.11 shows the outcome. 

 

Fig.11. DB Index VS Smart Contracts Mixed Query Type 

• Scenario 3: When the amount of data stored in the 

blockchain is increased to many records specifically to 100 

records. When a single type of query is fired. The Fig.13 

shows the outcome. 

• Scenario 4: When the amount of data stored in the 

blockchain is increased to many records specifically to 100 

records. When a mixed type of query is fired. The Fig.13 

shows the outcome. 

Now let us see the throughput as given by the smart contracts 

and by using the database as an index. These are the average of 

all the throughput measurements that we took. The Fig.14 

summarizes the throughput measurements made. The Fig.15 

summarizes the latency measurements made. If we see both the 

throughput and latency measurements, we find smart contracts 

outperforming various other methodologies in every aspect of our 

measurements. 

 

Fig.12. DB Index VS Smart Contracts Single Query Type 

 

Fig.13 DB Index VS Smart Contracts Mixed Query Type 

 

Fig.14. Throughput Comparison 

 

Fig.15. Latency Comparison 

6. CONCLUSION 

In this paper, we study the problem of efficient query 

processing in the Ethereum blockchain. We gave a detailed survey 

of the existing literature first for the existing EHR system in the 

blockchain and later followed by the existing query processing 

paradigms available using blockchain. We also explained how 

some of the literature truly aligns with the problem of our interest 

and how they differ as well. To handle the issue of inefficiencies 

creeping in because of linearly scanning the blockchain, we used 

a method that doesn’t scan the blocks from the starting block but 

only from the block as specified by the user. Linear scanning from 

a specific block, also was not a practical approach, as it was too 

block number dependent and can cause havoc if the user first 

doesn’t get the block number right, again quite an impractical 

approach for a sensitive application like ours. We cannot expect 

either the clinics, doctors, or patients to remember the block 

numbers for using our system. Another approach that we came up 

with was to use the database as an index to the blockchain. The 

performance of this approach was quite reasonable, although we 

explored one approach that could give better results than this 

approach. One more approach was to use blockchain as the main 

storage layer, but at the same time populating the database so that 

we use the query facility provided by the database itself to 

perform query processing. The final approach that we had 

considered was to use smart contract alone for performing query 

processing with the front-end taking care of the query semantics 

and invoking appropriate SC functions. Finally, we proposed a 

decentralized application that can perform SQL Query processing 

for three actors, clinics, doctors, and patients with a very simple 

user interface. With the system specifications that we had and 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2024, VOLUME: 15, ISSUE: 02 

3513 

with the tools we used, we found that the approach based on smart 

contracts performed much better in almost all aspects, such as 

execution time, throughput, and latency irrespective of the 

multiple approaches that we had taken. 

REFERENCES 

[1] R.S. Evans, “Electronic Health Records: then Now and in 

the Future”, Yearbook of Medical Informatics, Vol. 25, No. 

1, pp. 48-61, 2016. 

[2] “An Act”, Available at 

https://www.govinfo.gov/content/pkg/PLAW-

111publ5/html/ PLAW-111publ5.htm, Accessed in 2023. 

[3] J.S.S.D. Sharma and A. Rohatgi, “The Ayushman Bharat 

Digital Mission: Making of India’s Digital Health Story”, 

CSI Transactions on ICT, Vol. 11, pp. 3-9, 2023. 

[4] K. Wisner, A. Lyndon and C. Chesla, “The Electronic 

Health Record’s Impact on Nurses Cognitive Work: An 

Integrative Review”, International Journal of Nursing 

Studies, Vol. 94, No. 3, pp. 1-12, 2019. 

[5] M. Mehrtak, S. Seyed Alinaghi and M. Mohsseni Pour, 

“Security Challenges and Solutions using Healthcare Cloud 

Computing”, Vol. 14, No. 4, pp. 1-8, 2021. 

[6] M. Mazurek, D. Strzałka, A. Wolny Dominiak and M. 

Woodbury Smith, “Electronic Health Record Breaches as 

Social Indicators”, Social Indicators Research, Vol. 141, pp. 

861-871, 2019. 

[7] S. Argaw, N. Bempong-Ahun, B. Eshaya-Chauvin and A. 

Flahault, “The State of Research on Cyberattacks Against 

Hospitals and Available Best Practice Recommendations: A 

Scoping Review”, BMC Medical Informatics and Decision 

Making, Vol. 19, No. 1, 2019. 

[8] Q. Yao, X. Han, X.K. Ma, Y.F. Xue, Y.J. Chen and J.S. Li, 

“Cloud based Hospital Information System as a Service for 

Grassroots Healthcare Institutions”, Journal of Medical 

Systems, Vol. 38, pp. 1-7, 2014. 

[9] M. Reisman, “EHRs: The Challenge of Making Electronic 

Data Usable and Interoperable”, Journal for Formulary 

Management, Vol. 42, pp. 572-575, 2017. 

[10] N. Menachemi and T.H. Collum, “Benefits and Drawbacks 

of Electronic Health Record Systems”, Risk Management 

and Healthcare Policy, Vol. 45, pp. 47-55, 2011. 

[11] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash 

System”, Decen Tralized Business Review, pp. 1-9, 2008. 

[12] D. Cosset, “Blockchain: What is in a Block?”, Available at 

https://dev.to/damcosset/ blockchain-what-is-in-a-block-

48jo, Accessed in 2017. 

[13] A.A. Monrat, O. Schelen and K. Andersson, “A Survey of 

Blockchain from the Perspectives of Applications, 

Challenges and Opportunities”, IEEE Access, Vol. 7, pp. 

117134-117151, 2019. 

[14] V. Buterin, “A Next-Generation Smart Contract and 

Decentralized Application Platform”, Available at 

https://github.com/ethereum/wiki/wiki/White-Paper, 

Accessed in 2014. 

[15] N. Szabo, “Smart Contracts: Building Blocks for Digital 

Markets”, Extropy: The Journal of Transhumanist Thought, 

Vol. 18, No. 2, pp. 28-33, 1996. 

[16] E.Y. Daraghmi, Y.A. Daraghmi and S.M. Yuan, “Medchain: 

A Design of a Blockchain-based System for Medical 

Records Access and Permissions Management”, IEEE 

Access, Vol. 7, pp. 164 595-164 613, 2019. 

[17] K. Shuaib, J. Abdella, F. Sallabi and M.A. Serhani, “Secure 

Decen Tralized Electronic Health Records Sharing System 

based on Blockchains”, Journal of King Saud University-

Computer and Information Sciences, Vol. 34, No. 8, pp. 

5045-5058, 2022. 

[18] S. Rouhani, L. Butterworth, A.D. Simmons, D.G. Humphery 

and R. Deters, “Medichain TM: a Secure Decentralized 

Medical Data Asset Management System”, Proceedings of 

International Conference on Internet of Things and IEEE 

Green Computing and Communications and IEEE Cyber, 

Physical and Social Computing and IEEE Smart Data, pp. 

1533-1538, 2018. 

[19] A. Azaria, A. Ekblaw, T. Vieira and A. Lippman, “Medrec: 

using Blockchain for Medical Data Access and Permission 

Management”, Proceedings of International Conference on 

Open and Big Data, pp. 25-30, 2016. 

[20] A. Shahnaz, U. Qamar and A. Khalid, “Using Blockchain 

for Electronic Health Records”, IEEE Access, Vol. 7, pp. 

147782-147795, 2019. 

[21] S. Bragagnolo, H. Rocha, M. Denker and S. Ducasse, 

“Ethereum Query Language”, Proceedings of IEEE/ACM 

International Workshop on Emerging Trends in Software 

Engineering for Blockchain, pp. 1-8, 2018. 

[22] C. Xu, C. Zhang and J. Xu, “Vchain: Enabling Verifiable 

Boolean Range Queries Over Blockchain Databases”, 

Proceedings of International Conference on Management of 

Data Association for Computing Machinery, pp. 141-158, 

2019. 

[23] S. Linoy, H. Mahdikhani, S. Ray, R. Lu, N. Stakhanova and 

A. Ghor-bani, “Scalable Privacy-Preserving Query 

Processing Over Ethereum Blockchain”, Proceedings of 

International Conference on Blockchain, pp. 398-404, 2019. 

[24] D. Przytarski, C. Stach, C. Gritti and B. Mitschang, “Query 

Processing in Blockchain Systems: Current State and Future 

Challenges”, Future Internet, Vol. 14, No. 1, pp. 1-6, 2021. 

[25] F.A. Pratama and K. Mutijarsa, “Query Support for Data 

Processing and Analysis on Ethereum Blockchain”, 

Proceedings of International Symposium on Electronics and 

Smart Devices, pp. 1-5, 2018. 

[26] T. McConaghy, M. O’Conner, R. Sarry, N. Bennet and E. 

Marvici, “BigchainDB 2.0 the Blockchain Database”, 

Available at 

https://www.bigchaindb.com/whitepaper/bigchaindb-

whitepaper.pdf, Accessed in 2018. 

[27] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann and R. 

Ramamurthy, “BlockchainDB: A Shared Database on 

Blockchains”, Proceedings of International Conference on 

VLDB Endowment, Vol. 12, pp. 1597-1609, 2019. 

[28] Y. Li, K. Zheng, Y. Yan, Q. Liu and X. Zhou, “EtherQL a 

Query Layer for Blockchain System”, Proceedings of 

International Conference on Database Systems for 

Advanced Applications, 2017, pp. 556-567, 2017. 

[29] J. Han, H. Kim, H. Eom, J. Coignard, K. Wu and Y. Son, 

“Enabling SQL Query Processing for Ethereum-based 

Blockchain Systems”, Proceedings of International 

Conference on Web Intelligence, Mining and Semantics, pp. 

1-7, 2019. 



SUVAM TAMANG et al.: AN ETHEREUM-BASED ELECTRONIC HEALTH RECORD SYSTEM WITH SQL QUERY SUPPORT 

3514 

[30] J. Kaur, R. Rani and N. Kalra, “Blockchain-based 

Framework for Secured Storage Sharing and Querying of 

Electronic Healthcare Records”, Concurrency and 

Computation: Practice and Experience, Vol. 33, No. 20, 

2021. 

[31] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. 

Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman 

and Y. Manevich, “Hyperledger Fabric: A Distributed 

Operating System for Permissioned Blockchains”, 

Proceedings of 13th Conference on EuroSys, pp. 1-15, 2018. 

[32] Z. Peng, H. Wu, B. Xiao and S. Guo, “VQL: Providing 

Query Efficiency and Data Authenticity in Blockchain 

Systems”, Proceedings of International Conference on Data 

Engineering, pp. 1-6, 2019. 

[33] GitHub repository: https://github.com/Tamang-

Suvam/QueryBCCode/tree/master/finaldApp 

 


