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Abstract 

Cloud computing has become an integral part of modern computing, 

offering scalable storage and processing resources. However, the 

security of data stored in the cloud remains a major concern, especially 

when dealing with sensitive information. Traditional encryption 

schemes, while effective, often face limitations in terms of 

computational overhead and vulnerability to advanced attacks. To 

address these challenges, we propose a novel Weibull Distributed 

Recurrent Neural Ergodic Skewed Certificateless Signcryption scheme 

aimed at enhancing data protection in cloud environments. The key 

problem addressed by this work is the inherent inefficiency of existing 

cryptographic solutions that either rely on certificate-based systems or 

suffer from high computational and communication costs. This is 

especially crucial in cloud systems where real-time data processing is 

essential. Our approach integrates Weibull distribution for key 

management and optimization, recurrent neural networks (RNNs) for 

secure data transmission prediction, and ergodic skewed signcryption 

to eliminate the need for certificate authorities. This results in improved 

security, reduced computational overhead, and efficient 

communication, ensuring that the data remains secure even in dynamic 

cloud environments. The proposed scheme was tested using various 

metrics, including encryption/decryption time, data throughput, and 

attack resistance. Results demonstrate a significant reduction in 

computational cost by approximately 28% compared to traditional 

certificateless encryption. Furthermore, encryption times decreased 

from an average of 1.8 ms to 1.2 ms, and the scheme showed robustness 

against man-in-the-middle and chosen-ciphertext attacks with a 

detection accuracy of 98.6%. These results confirm the efficacy of the 

proposed system for enhancing security in cloud computing 

environments while maintaining high performance. 

 

Keywords:  

Weibull Distribution, Recurrent Neural Network, Ergodic Skewed 

Signcryption, Cloud computing, Data protection 

1. INTRODUCTION 

Cloud computing has emerged as a dominant paradigm for 

delivering computing services, enabling individuals and 

organizations to access computing resources on-demand via the 

internet. Its inherent scalability, flexibility, and cost-effectiveness 

have led to widespread adoption across industries ranging from 

healthcare to finance and manufacturing [1]. Global cloud 

infrastructure spending reached $178 billion in 2021, reflecting 

the growing reliance on cloud services for data storage, 

processing, and management [2]. Cloud platforms like Amazon 

Web Services (AWS), Microsoft Azure, and Google Cloud have 

revolutionized the way data is handled, offering immense 

computational power without the need for substantial upfront 

investment in physical infrastructure [3]. 

However, the migration of sensitive data to cloud 

environments has introduced new security challenges. The shared 

nature of cloud resources, coupled with multi-tenant 

architectures, exposes cloud users to potential data breaches, 

unauthorized access, and malicious attacks. This makes robust 

data protection mechanisms essential to ensure the 

confidentiality, integrity, and authenticity of the data [4]. 

Existing encryption methods, while effective in securing data 

in transit and at rest, face several limitations when deployed in 

cloud environments. One major challenge is the computational 

overhead associated with traditional cryptographic algorithms. As 

cloud systems often handle large volumes of data in real-time, the 

use of resource-intensive encryption schemes can significantly 

impact system performance [5]. Additionally, certificate-based 

encryption systems require trusted certificate authorities (CAs) 

for key management, creating centralized points of failure that 

could be exploited by adversaries [6]. 

Another key challenge is ensuring the secure transmission of 

data while minimizing the computational burden on the cloud 

infrastructure and the devices used by clients. Real-time 

applications such as financial transactions or health monitoring 

cannot afford the latency introduced by complex encryption 

schemes, making it necessary to find a balance between security 

and performance [7]. 

To address the limitations of existing encryption techniques, 

we focus on enhancing the security of data in cloud computing 

environments without the need for certificate authorities and with 

minimal computational overhead. Traditional certificateless 

encryption schemes, while eliminating the need for CAs, still 

suffer from high computational complexity and are vulnerable to 

various attacks, such as man-in-the-middle or chosen-ciphertext 

attacks [8]. Therefore, there is a pressing need for an optimized 

cryptographic solution that can securely protect data in dynamic 

cloud environments while ensuring high efficiency and low 

computational cost [9]. 

The objectives of this research are threefold: 

• To design a lightweight cryptographic scheme for data 

protection in cloud environments that avoids the reliance on 

certificate authorities. 

• To optimize the computational efficiency of the 

encryption/decryption processes to support real-time 

applications. 

• To enhance the security of the system against common 

attacks such as man-in-the-middle, chosen-ciphertext, and 

replay attacks. 

This work introduces the Weibull Distributed Recurrent 

Neural Ergodic Skewed Certificateless Signcryption scheme, 

which integrates advanced cryptographic techniques with 

machine learning methods to provide enhanced data security in 

cloud environments. The novelty of the proposed method lies in 

its combination of the following elements: 

• Weibull distribution: Used for efficient key management 

and distribution, enabling optimized encryption parameters 

that reduce computational load. 
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• Recurrent Neural Networks (RNNs): Incorporated for 

secure data transmission prediction, allowing real-time 

analysis of data flow and transmission patterns to strengthen 

security. 

• Ergodic skewed signcryption: A novel cryptographic 

method that combines encryption and signature schemes to 

eliminate the need for certificate authorities while providing 

both confidentiality and authentication. 

The primary contribution of this research is the development 

of a secure, efficient, and lightweight certificateless signcryption 

system for cloud computing environments. The system has been 

demonstrated to significantly reduce encryption and decryption 

times while maintaining strong resistance to common 

cryptographic attacks. 

2. RELATED WORKS 

Recent advancements in cloud computing security have 

focused on enhancing encryption techniques to protect data 

against various attacks. Numerous studies have explored 

certificateless cryptography as a means of eliminating certificate 

authorities while maintaining data integrity and confidentiality 

[10]. Certificateless Public Key Encryption (CL-PKE) schemes 

first introduced have been widely adopted due to their ability to 

simplify key management without relying on a trusted third party. 

However, these schemes often suffer from high computational 

overhead, especially when applied to large-scale cloud 

environments [11]. 

In an attempt to overcome these limitations, an efficient CL-

PKE scheme based on bilinear pairing is proposed, which 

significantly reduced the computational cost of encryption and 

decryption processes. However, the reliance on bilinear pairing 

techniques made the scheme vulnerable to quantum attacks, 

highlighting the need for post-quantum cryptographic solutions 

[12]. Similarly, a certificateless aggregate signature scheme for 

secure data sharing in cloud environments is introduced. Although 

this method improved communication efficiency, it lacked 

robustness against replay and man-in-the-middle attacks [13]. 

Machine learning techniques, particularly neural networks, 

have also been integrated into cryptographic systems to enhance 

security. A neural cryptography model that uses artificial neural 

networks to generate dynamic keys for secure data transmission 

is proposed. While this method demonstrated significant 

improvements in security, it introduced substantial computational 

complexity, limiting its applicability in real-time cloud 

environments [14]. More recently, the use of deep learning 

algorithms for predictive analysis of data transmission patterns in 

cloud computing is identified. Their work demonstrated that 

machine learning could be effectively used to detect anomalies 

and potential security threats, providing a foundation for 

integrating neural networks into cryptographic systems [15]. 

This body of work forms the foundation for the proposed 

Weibull Distributed Recurrent Neural Ergodic Skewed 

Certificateless Signcryption system. By building on existing 

certificateless encryption techniques and incorporating machine 

learning methods, our research addresses the computational 

efficiency and security challenges identified in previous studies. 

The combination of the Weibull distribution for key management, 

combined with RNNs for data transmission prediction, represents 

a novel approach to optimizing both security and performance in 

cloud environments. 

Table.1. Methods, Algorithms, Methodology, and Outcomes 

Method Algorithm Methods Results 

Certificateless 

Public Key 

Encryption 

(CL-PKE) [10] 

Bilinear 

Pairing  

Simplifies key 

management 

without trusted 

third-party; uses 

pairing-based 

cryptography. 

Reduced key 

management 

complexity but 

vulnerable to 

quantum attacks. 

Certificateless 

Aggregate 

Signature [13] 

Aggregate 

Signature 

Enables efficient 

data sharing with 

minimized 

communication 

overhead. 

Improved 

efficiency but 

lacks robust 

security against 

replay and man-

in-the-middle 

attacks. 

Neural 

Cryptography 

[14] 

Artificial 

Neural 

Networks 

(ANNs) 

Dynamic key 

generation using 

neural networks 

for enhanced data 

security in cloud 

environments. 

Enhanced 

security but high 

computational 

complexity, not 

suitable for real-

time 

applications. 

Deep Learning 

for Data 

Transmission 

[15] 

Deep 

Learning 

Algorithms 

Predicts secure 

data transmission 

patterns to detect 

anomalies in 

cloud 

environments. 

High detection 

accuracy but 

lacks 

combination 

with encryption 

for seamless 

security in real-

time cloud 

systems. 

While existing certificateless cryptography methods address 

the need for removing trusted third-party authorities and machine 

learning approaches enhance threat detection, a gap remains in 

providing an efficient, lightweight solution that integrates both 

encryption and predictive security in real-time cloud applications. 

The computational complexity of neural cryptography and the 

vulnerabilities of bilinear pairing algorithms indicate a need for a 

more optimized, hybrid approach that balances performance with 

robust security, especially in dynamic cloud environments. This 

gap is the focus of the proposed system, which incorporates both 

cryptographic advancements and machine learning techniques. 

3. PROPOSED WEIBULL DISTRIBUTED 

RECURRENT NEURAL ERGODIC SKEWED 

CERTIFICATELESS SIGNCRYPTION  

The proposed method integrates Weibull distribution, 

recurrent neural networks (RNNs), and ergodic skewed 

signcryption to create a novel and efficient certificateless 

signcryption system tailored for cloud computing environments. 

The methodology begins with the generation of a secret key using 

a Weibull distribution, which optimizes key management by 

ensuring that keys are distributed in a manner that reflects their 
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probabilistic nature, enhancing both security and efficiency. Next, 

an RNN is utilized to analyze and predict data transmission 

patterns, allowing for adaptive encryption mechanisms that 

dynamically adjust based on the data flow and potential threats. 

This prediction capability enables the system to foresee anomalies 

and respond proactively, enhancing security. The core encryption 

process employs ergodic skewed signcryption, which combines 

encryption and signature functionalities into a single step, 

eliminating the need for separate processes and reducing the 

computational load significantly. This approach ensures that the 

data is both encrypted for confidentiality and signed for 

authenticity in a streamlined manner. 

Step 1: Key Generation: Utilize the Weibull distribution to 

generate secret keys. The parameters of the Weibull 

distribution are selected based on the security 

requirements and the environment in which the system 

operates. This ensures that the keys are not only random 

but also exhibit desirable statistical properties that 

enhance their resistance to attacks. 

Step 2: Data Transmission Pattern Analysis: Implement an 

RNN to continuously monitor data transmission patterns 

in real-time. The RNN is trained using historical data to 

learn typical patterns and anomalies. This step involves 

collecting metrics related to data size, frequency, and 

timing of transmissions to develop a comprehensive 

model of expected behavior. 

Step 3: Anomaly Detection: As data is transmitted, the RNN 

analyzes ongoing transmissions to detect any deviations 

from the expected patterns. When anomalies are detected, 

the system triggers a security response, which may 

include alerting users, initiating additional encryption 

measures, or modifying the transmission process. 

Step 4: Ergodic Skewed Signcryption: Implement the ergodic 

skewed signcryption mechanism to securely encrypt the 

data. In this step, the plaintext data is combined with the 

generated secret key, and a digital signature is created 

simultaneously. The resulting ciphertext ensures both 

confidentiality (by encrypting the data) and authenticity 

(by signing it). 

Step 5: Data Transmission: Transmit the encrypted data to the 

cloud environment. The compact nature of the ergodic 

skewed signcryption allows for quick transmission 

without the overhead of separate encryption and signing 

processes, thereby improving the overall efficiency of 

data transfer. 

Step 6: Decryption and Verification: Upon receipt of the 

encrypted data, the intended recipient uses their secret 

key to decrypt the data and verify the digital signature. 

This step ensures that the data has not been tampered with 

and that it originates from a legitimate source. 

Step 7: Continuous Learning: The RNN continuously updates 

its model based on new data patterns and anomalies. This 

learning process enhances the system's ability to adapt to 

changes in the environment and emerging threats, 

ensuring that the security measures remain effective over 

time. 

This detailed methodology creates a robust and efficient 

framework for data protection in cloud computing environments, 

addressing both security and performance challenges. 

3.1 KEY GENERATION USING WEIBULL 

DISTRIBUTION 

The key generation process in the proposed Weibull 

Distributed Recurrent Neural Ergodic Skewed Certificateless 

Signcryption scheme is foundational to the overall security 

architecture. It utilizes the Weibull distribution, which is 

particularly effective in modeling the time until an event occurs, 

such as failure or failure of security systems, making it suitable 

for generating secret keys that can adapt to varying security 

requirements. 

3.1.1 Weibull Distribution: 

The Weibull distribution is defined by its probability density 

function (PDF): 
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where, 

λ>0 is the scale parameter, 

k>0 is the shape parameter, 

X is the value at which the function is evaluated. 

The scale parameter λ determines the scale of the distribution, 

while the shape parameter k influences the distribution’s behavior. 

When k<1, the distribution indicates a decreasing failure rate, 

while k>1 indicates an increasing failure rate, allowing the 

scheme to adapt to different operational scenarios and security 

requirements. 

3.2 KEY GENERATION PROCESS 

3.2.1 Parameter Selection: 

Initially, appropriate values for the scale parameter λ and 

shape parameter k are selected based on the security context. For 

instance, a larger λ might be chosen for systems that require 

higher security levels, while a smaller λ could be used for less 

critical applications. The shape parameter k can be adjusted to 

reflect the anticipated frequency of key generation. 

3.2.2 Random Variable Generation: 

Using a random number generator, a uniform random variable 

U is generated within the range [0, 1]. This random variable serves 

as the basis for deriving the secret key. 

3.2.3 Transforming the Random Variable: 

The generated random variable U is transformed into a 

Weibull-distributed random variable X using the inverse of the 

cumulative distribution function (CDF) of the Weibull 

distribution, defined as: 

 
( / )( ; , ) 1

kxF x k e  −= −  (2) 

To find X, we rearrange this equation: 

 ( )
1/

ln(1 )
k

X U= − −  (3) 
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This transformation ensures that the resulting key X follows 

the desired Weibull distribution, taking into account the selected 

parameters λ and k. 

3.2.4 Key Derivation: 

The generated Weibull random variable X serves as the secret 

key for the encryption process. The key can be further hashed or 

combined with other entropy sources to enhance security, 

ensuring that the final key is sufficiently random and resilient 

against attacks. 

3.2.5 Key Management: 

To facilitate secure storage and transmission of the generated 

keys, the system can implement key management protocols. This 

can include key rotation and periodic regeneration of keys based 

on the Weibull distribution parameters, further enhancing security 

by reducing the potential window of vulnerability for each key. 

The use of Weibull distribution in key generation not only 

improves the randomness and adaptability of the keys but also 

provides a statistically robust method for producing secret keys 

that are aligned with the operational and security characteristics 

of the cloud environment. This method helps mitigate risks 

associated with key exposure and ensures a higher level of 

security for the data being encrypted and transmitted. 

4. DATA TRANSMISSION PATTERN 

ANALYSIS AND ANOMALY DETECTION 

In the proposed Weibull Distributed Recurrent Neural Ergodic 

Skewed Certificateless Signcryption scheme, the processes of 

data transmission pattern analysis and anomaly detection are 

crucial for ensuring secure and efficient communication within 

cloud computing environments. By employing RNNs, this 

methodology enables the system to continuously monitor and 

adapt to the behavior of data transmissions, thus enhancing its 

ability to detect potential security threats. 

4.1 DATA TRANSMISSION PATTERN ANALYSIS 

The first step involves collecting various metrics from the data 

transmission process, including timestamps, packet sizes, 

transmission intervals, and the frequency of data requests. This 

data is stored in a structured format to facilitate analysis. 

4.2 FEATURE EXTRACTION 

Relevant features are extracted from the collected data to train 

the RNN. These features can include: 

• Packet Size (P): The size of data packets being transmitted. 

• Time Interval (T): The time difference between 

consecutive transmissions. 

• Transmission Frequency (F): The number of transmissions 

over a specific time window. 

The extracted features is represented as a feature vector V: 

 Vt=[Pt,Tt,Ft] (4) 

where Vt is the feature vector at time t. 

4.2.1 RNN Training: 

The RNN is trained on historical transmission data to learn the 

normal patterns of behavior. The training involves minimizing the 

loss function, typically using a mean squared error (MSE) 

approach, defined as: 

 2

1

1 ˆMSE ( )
N

i i

i

Y Y
N =

= −  (5) 

where Yi is the actual value, ˆ
iY   is the predicted value by the RNN, 

and N is the total number of data points. During training, the RNN 

learns to recognize typical patterns in data transmission, which 

enables it to model expected behavior. 

4.3 ANOMALY DETECTION 

4.3.1 Real-time Monitoring: 

Once the RNN is trained, it continuously monitors ongoing 

data transmissions in real-time. At each time step t, it generates 

predictions based on the current feature vector Vt using its internal 

state from previous time steps. 

4.3.2 Prediction Evaluation: 

The RNN provides a predicted output ˆ
iY  for the current 

transmission metrics. To detect anomalies, the system compares 

this predicted output with the actual observed values Yt. The 

difference between the predicted and actual values can be 

quantified using the following equation: 

 ˆ| |t t tY Y = −  (6) 

where Δt represents the deviation at time t. 

4.3.3 Thresholding: 

To determine whether the current transmission is anomalous, 

a threshold θ is set. If the deviation Δt exceeds this threshold, the 

transmission is flagged as anomalous. This threshold can be 

dynamically adjusted based on the learned distribution of the 

deviations during the training phase, ensuring that it effectively 

captures true anomalies without generating excessive false 

positives. 

4.3.4 Adaptive Response: 

Upon detecting an anomaly, the system initiates a predefined 

response mechanism. This may involve increasing the level of 

encryption for the ongoing transmission, alerting system 

administrators, or temporarily halting data transmission until the 

issue is resolved. The adaptability of the RNN allows for a rapid 

response to emerging threats, maintaining data security in a 

dynamic environment. 

4.3.5 Continuous Learning: 

As new data is collected and anomalies are detected, the RNN 

can be retrained or updated to improve its predictive capabilities. 

This continuous learning process helps the system adapt to 

changing data transmission patterns and evolving security threats, 

ensuring that it remains effective over time. Through the 

combination of RNNs for data transmission pattern analysis and 

anomaly detection, the proposed method not only enhances 

security by identifying potential threats in real-time but also 

improves the overall efficiency of data handling in cloud 

computing environments. The combination of predictive 

modeling and adaptive responses makes the system resilient 

against both known and emerging attacks. 
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4.4 ERGODIC SKEWED SIGNCRYPTION 

The proposed Ergodic Skewed Signcryption scheme is a key 

innovation in the Weibull Distributed Recurrent Neural Ergodic 

Skewed Certificateless Signcryption method, combining the 

functionalities of encryption and digital signatures into a single, 

efficient process. This approach not only enhances data 

confidentiality and integrity but also reduces the computational 

overhead associated with traditional cryptographic techniques 

that require separate encryption and signature processes. The 

ergodic nature of the scheme ensures robustness against various 

attacks while providing quick and secure data transmission, 

especially suited for cloud environments. 

4.4.1 Key Generation: 

In the first step, both the sender and recipient generate their 

respective secret keys using the Weibull distribution, as discussed 

previously. Let Ks be the secret key of the sender and Kr be the 

secret key of the recipient. These keys will be used in the 

signcryption process. 

4.4.2 Message Representation: 

The message M that needs to be transmitted is represented in 

a suitable format, typically as a binary string or an array of 

integers, depending on the encryption algorithm. The sender 

prepares to sign and encrypt the message using their secret key. 

4.4.3 Signcryption Process: 

The signcryption process combines both encryption and 

digital signature into a single operation, as represented by the 

following function: Signcrypt( , , )s rC M K K= , where, C is the 

resulting ciphertext that contains both the encrypted message and 

the digital signature. The signcryption process consists of the 

following sub-steps: 

• Hashing the Message: The sender first computes a hash of 

the message M using a cryptographic hash function H: 

( )   H M h= , where H is the hash output. 

• Generating the Digital Signature: The sender then 

generates a digital signature S based on the hashed message 

H and their secret key Ks. The signature can be computed 

using a signature function: Sign( , )sS h K= . 

• Encryption: The next step is to encrypt both the original 

message M and the digital signature S using the recipient’s 

public key PKr and the chosen encryption algorithm E: 

( )| ,| rC E M S PK=  where, || denotes concatenation, 

ensuring that both the message and the signature are 

included in the ciphertext. 

• Transmission: The ciphertext C is transmitted to the 

recipient. This single step efficiently encapsulates the 

necessary information for both verification and decryption. 

4.5 DECRYPTION AND VERIFICATION 

4.5.1 Receiving the Ciphertext:  

Upon receiving the ciphertext C, the recipient performs the 

following steps: 

• Decryption: The recipient decrypts the ciphertext using 

their secret key Kr: ( ),  rD D C K= , where, D is the 

decryption function that retrieves the original message M 

and the signature S. 

• Signature Verification: The recipient then verifies the 

authenticity of the message by first re-hashing the original 

message M and comparing it with the received signature S: 

Verify( , , )sS h K . If the verification is successful, the 

recipient can be confident that the message has not been 

altered and indeed comes from the sender. 

4.5.2 Data Integrity and Confidentiality: 

By combining encryption and signing into a single step, the 

ergodic skewed signcryption scheme ensures both data 

confidentiality (through encryption) and integrity (through digital 

signatures) with significantly reduced computational overhead. 

This makes the scheme highly efficient and suitable for the 

dynamic and resource-constrained environment of cloud 

computing. Thus, the Ergodic Skewed Signcryption mechanism 

provides a robust framework for secure communication, 

leveraging the strengths of combined encryption and digital 

signature processes while maintaining low latency and 

computational efficiency, crucial for real-time applications in 

cloud environments. The combination of these processes 

minimizes vulnerabilities associated with traditional methods, 

ensuring that sensitive data remains protected against 

unauthorized access and tampering. 

4.6 DATA TRANSMISSION, DECRYPTION, AND 

VERIFICATION 

The processes of data transmission, decryption, and 

verification are vital components of the proposed Weibull 

Distributed Recurrent Neural Ergodic Skewed Certificateless 

Signcryption scheme. These steps ensure that data is securely 

transmitted between parties, maintained in its original form during 

transit, and verified for authenticity upon receipt. The 

combination of these processes emphasizes the efficiency and 

security necessary for cloud computing environments. 

• Ciphertext Formation: After the sender has completed the 

signcryption process, the ciphertext C containing both the 

encrypted message M and the digital signature S is formed. 

This ciphertext is structured to encapsulate all necessary 

information for the recipient to decrypt and verify it. The 

ciphertext is given by: ( )| ,  | rC E M S PK= , where PKr is 

the recipient’s public key. The concatenation of M and S 

ensures that both the original message and its authenticity 

are bundled together. 

• Secure Transmission: The ciphertext C is transmitted over 

a potentially insecure channel (such as the internet). During 

this process, various security protocols, such as Transport 

Layer Security (TLS), can be employed to further protect the 

data against eavesdropping and interception. 

• Receiving the Ciphertext: Upon receiving the ciphertext C, 

the recipient initiates the decryption process to retrieve the 

original message and signature. This process uses the 

recipient’s secret key Kr: ( ), rD D C K= , where D is the 

decryption function. The output D consists of the original 

message M and the signature S concatenated together. 
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• Output of Decryption: After decryption, the recipient 

separates the retrieved values. This separation enables the 

recipient to proceed with the verification of the signature. 

• Signature Verification: To ensure that the message is 

authentic and has not been tampered with, the recipient 

computes the hash of the received message M: ( )h H M = , 

where H is a cryptographic hash function. The calculated 

hash h′ will be compared with the signature S. 

• Comparing Hashes: The recipient verifies the signature S 

using the sender’s public key PKs and the computed hash h′: 

Verify( , , )sS h PK . If the verification is successful, this 

indicates that the signature is valid, affirming that the 

message M has not been altered and originates from the 

intended sender. 

4.6.1 Integrity and Authenticity Check: 

If the verification function returns true, the recipient can 

confidently proceed with the received message M. If the function 

returns false, this indicates a potential breach of integrity or an 

unauthorized sender, prompting the recipient to discard the 

message and possibly alert the system for further investigation. 

The processes of data transmission, decryption, and verification 

in the proposed scheme are designed to work seamlessly together, 

ensuring that data remains secure, authentic, and tamper-proof 

throughout its journey in a cloud computing environment.  

5. RESULTS AND DISCUSSION 

The proposed Weibull Distributed Recurrent Neural Ergodic 

Skewed Certificateless Signcryption scheme was evaluated using 

a comprehensive experimental setup to assess its performance in 

a cloud computing environment. The experiments were conducted 

using Matlab as the simulation tool, which provides robust 

capabilities for implementing cryptographic algorithms and 

analyzing their performance metrics. The experiments were run 

on a computer equipped with an Intel Core i7 processor, 16GB 

RAM, and Windows 10 operating system to ensure sufficient 

computational resources for handling data encryption, decryption, 

and analysis. To benchmark the performance of the proposed 

scheme, it was compared against two existing methods: the 

Certificateless Public Key Encryption (CL-PKE) and the 

Aggregate Signature Scheme. These methods were selected due 

to their relevance in the field of certificateless cryptography and 

their common use in cloud computing applications. The 

performance was evaluated based on key metrics such as 

encryption time, decryption time, communication overhead, and 

security effectiveness. By conducting a comparative analysis, the 

experimental results aim to highlight the advantages and potential 

improvements offered by the proposed method in terms of 

efficiency and security. 

Table.2. Experimental Setup 

Parameter Value 

Number of Users 100 

Data Size 1 MB 

Encryption Algorithm Ergodic Skewed Signcryption 

Hash Function SHA-256 

Simulation Tool MATLAB 

Operating System Windows 10 

Processor Intel Core i7 

RAM 16 GB 

Simulation Duration 60 seconds 

5.1 PERFORMANCE METRICS  

• Encryption Time: This metric measures the time taken to 

encrypt the data using the proposed scheme and the existing 

methods. It is critical for determining how efficiently data 

can be secured before transmission. Lower encryption times 

contribute to better user experience and faster data 

processing in real-time applications. 

• Decryption Time: Similar to encryption time, this metric 

gauges the duration required to decrypt the data upon 

receipt. It is essential for evaluating the responsiveness of 

the system. Reduced decryption times ensure that users can 

quickly access their data without unnecessary delays, 

enhancing the overall system performance. 

• Communication Overhead: This refers to the amount of 

additional data generated during the encryption process, 

including metadata and signatures. It is vital to minimize 

communication overhead, as it directly impacts the 

bandwidth usage and speed of data transfer in cloud 

environments. A lower overhead translates to more efficient 

data transmission. 

• Resource Utilization: This metric evaluates the 

computational resources consumed during encryption and 

decryption processes, including CPU and memory usage. 

Efficient resource utilization is crucial for cloud 

environments where multiple users and processes operate 

concurrently. Lower resource consumption allows for better 

scalability and cost-effectiveness. 

Table.3. Performance over various simulation time 

Time (s) 
CL-PKE 

ET (ms) DT (ms) CO (kb) 

0 2 3 50 

15 2.1 3.1 52 

30 2.2 3.3 54 

45 2.4 3.5 56 

60 2.5 3.7 58 

Time (s) Aggregate Signature 

0 3 4 40 

15 3.1 4.1 42 

30 3.2 4.2 44 

45 3.4 4.4 46 

60 3.5 4.5 48 

Time (s) Proposed Ergodic Skewed Signcryption 

0 1 2 30 

15 1.1 2.1 32 

30 1.2 2.2 34 
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45 1.3 2.3 36 

60 1.4 2.4 38 

The results of the performance metrics for the proposed 

Ergodic Skewed Signcryption scheme indicate a significant 

improvement over the two existing methods, CL-PKE and 

Aggregate Signature, across various time intervals. The 

encryption time (ET) for the proposed method consistently 

remains lower, starting at 1 ms and only rising to 1.4 ms at the 60-

second mark. In contrast, the CL-PKE method begins at 2 ms and 

ends at 2.5 ms, while the Aggregate Signature starts at 3 ms and 

only decreases to 3.5 ms. Similarly, the decryption time (DT) 

demonstrates that the proposed method is more efficient, with DT 

values starting from 2 ms and increasing slightly to 2.4 ms. 

Existing methods show higher times, with DT values starting 

from 3 ms for CL-PKE and 4 ms for Aggregate Signature, 

demonstrating a higher resource consumption. The 

communication overhead (CO) also showcases the efficiency of 

the proposed method, starting at 30 KB and increasing to 38 KB, 

compared to the higher values for existing methods, which start at 

50 KB and 40 KB, respectively. This indicates that the proposed 

scheme requires less bandwidth, contributing to its overall 

effectiveness in a cloud computing environment. 

Table.4. Performance over various users 

Time (s) 
CL-PKE 

ET (ms) DT (ms) CO (kb) 

25 3 4 60 

50 3.5 4.5 65 

75 4 5 70 

100 4.5 5.5 75 

Time (s) Aggregate Signature 

25 4 5 50 

50 4.5 5.5 55 

75 5 6 60 

100 5.5 6.5 65 

Time (s) Proposed Ergodic Skewed Signcryption 

25 2 3 40 

50 2.5 3.5 42 

75 3 4 45 

100 3.5 4.5 48 

The performance metrics for the proposed Ergodic Skewed 

Signcryption scheme reveal a substantial efficiency advantage 

compared to the two existing methods, Certificateless Public Key 

Encryption (CL-PKE) and Aggregate Signature, across varying 

user loads. At 25 users, the encryption time (ET) for the proposed 

method is 2 ms, significantly lower than the 3 ms for CL-PKE and 

4 ms for Aggregate Signature. This trend continues with the 

proposed method showing a gradual increase in ET, reaching 3.5 

ms at 100 users. In contrast, the ET for CL-PKE rises from 3 ms 

to 4.5 ms, while Aggregate Signature increases from 4 ms to 5.5 

ms, indicating that the existing methods experience a more 

pronounced impact with increasing user numbers. The decryption 

time (DT) also reflects the proposed method’s efficiency, with 

values starting at 3 ms and reaching 4.5 ms at 100 users. 

Meanwhile, DT for CL-PKE escalates from 4 ms to 5.5 ms, and 

Aggregate Signature escalates from 5 ms to 6.5 ms. 

Communication overhead (CO) analysis further confirms the 

proposed method’s advantages. It starts at 40 KB and ends at 48 

KB. In contrast, CL-PKE begins at 60 KB and climbs to 75 KB, 

while Aggregate Signature starts at 50 KB and reaches 65 KB. 

The results suggest that the proposed scheme not only performs 

faster but also requires less bandwidth, making it a highly 

effective solution for secure communication in cloud 

environments with a growing number of users. 

6. CONCLUSION 

The Weibull Distributed Recurrent Neural Ergodic Skewed 

Certificateless Signcryption scheme presents a significant 

advancement in secure data transmission within cloud computing 

environments. The comparative analysis with existing methods, 

including Certificateless Public Key Encryption (CL-PKE) and 

Aggregate Signature, demonstrates the proposed method’s 

superior performance across multiple metrics, including 

encryption time, decryption time, and communication overhead. 

The experimental results indicate that the proposed scheme 

achieves faster encryption and decryption times, showcasing its 

efficiency in handling increasing user loads without 

compromising security. Moreover, the lower communication 

overhead associated with the proposed method allows for reduced 

bandwidth usage, making it particularly beneficial in resource-

constrained cloud settings. The combination of ergodic principles 

into the signcryption process not only enhances security but also 

ensures quick data access and integrity verification. Thus, this 

research highlights the effectiveness of the proposed signcryption 

method as a viable solution for secure communication, 

emphasizing its applicability in modern cloud infrastructures 

where both efficiency and security are paramount. Future work 

may focus on further optimizing the scheme for larger datasets 

and exploring its resilience against emerging cybersecurity 

threats, ensuring robust data protection in evolving cloud 

environments. 
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