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Abstract 

Early Mild Cognitive Impairment (EMCI) is a transitional phase 

between normal cognition (NC) and Alzheimer’s disease. Accurate 

detection of EMCI can be challenging due to its subtle manifestations. 

Traditional methods often struggle to differentiate EMCI from NC 

using neuropsychological tests alone, necessitating advanced 

techniques for effective classification. We employed Ensemble 

DenseNets to cluster a multi-modal dataset comprising 

neuropsychological tests and clinical data. Generalized Estimating 

Equations (GEE) were used to analyze changes over time across 

various cognitive tests. Our model demonstrated significant findings: 

MMSE showed a time effect (β = 0.151, p = 0.01) with a notable decline 

in EMCI compared to NC (β = -0.299, p = 0.001). STM also showed 

significant results (time β = 0.105, p < 0.001). In the CVVLT total recall 

test, a time effect (β = 1.263, p < 0.001) and a decline in EMCI (β = -

0.510, p = 0.003) were observed. The method effectively clustered 

EMCI with a high degree of accuracy, showcasing the robustness of 

Ensemble DenseNets for early detection. 
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1. INTRODUCTION 

The exponential growth of data in various domains has 

spurred advancements in machine learning and artificial 

intelligence, aiming to leverage this wealth of information for 

improved decision-making and predictive analytics [1]. In 

particular, the integration of sophisticated models and techniques 

in fields such as healthcare, finance, and agriculture has 

revolutionized our ability to extract meaningful insights from 

complex datasets. The advent of deep learning models, especially 

those involving ensemble methods and specialized architectures, 

has provided powerful tools for tackling these challenges [2]. 

In healthcare, for instance, accurate diagnosis and prognosis 

are critical for effective patient management. Early detection of 

conditions such as cognitive impairments can significantly impact 

treatment outcomes [3]. Similarly, in financial forecasting and 

risk management, precise predictive models are essential for 

minimizing risks and maximizing returns. Despite these 

advancements, numerous challenges persist in optimizing model 

performance and ensuring robustness across diverse scenarios [4]. 

One of the foremost challenges is achieving high accuracy and 

reliability across various types of data and conditions. Traditional 

models, while effective in many scenarios, often struggle with 

issues related to overfitting, dimensionality reduction, and 

generalization across different datasets. Additionally, the 

complexity of integrating various machine learning techniques 

into a cohesive framework poses significant difficulties. Ensuring 

that models are both computationally efficient and capable of 

handling large-scale data remains an ongoing concern [5]. 

Another critical challenge is the effective handling of 

multimodal data, which involves integrating and analyzing data 

from different sources and formats. Multimodal datasets can 

include a range of data types, from structured numerical data to 

unstructured text and images. Developing models that can 

seamlessly process and analyze such diverse data while 

maintaining high performance is a significant hurdle. 

In cognitive impairment diagnosis, traditional machine 

learning methods have shown limitations in handling the 

intricacies of multimodal data. Existing models often lack the 

capability to integrate various data types effectively, leading to 

suboptimal performance in identifying early signs of conditions 

like mild cognitive impairment (MCI). Moreover, there is a need 

for models that can handle large-scale datasets with varying 

characteristics, ensuring robust and accurate predictions. 

The problem addressed by this research is to develop a novel 

approach that enhances the accuracy and robustness of cognitive 

impairment diagnosis through advanced machine learning 

techniques. Specifically, the goal is to create a model that can 

effectively integrate and analyze multimodal data, leveraging 

ensemble methods and specialized neural network architectures. 

The primary objectives of this research are: 

• To design and implement a model that integrates various 

types of data, including numerical, textual, and image-based 

information, to improve diagnostic accuracy. 

• To enhance key performance metrics such as accuracy, 

precision, recall, and F1-score by leveraging advanced deep 

learning architectures and optimization techniques. 

• To create a framework that effectively handles and 

integrates multimodal data, overcoming limitations of 

traditional methods. 

• To assess the proposed model's performance through 

rigorous testing and comparison with existing methods, 

ensuring its robustness and reliability in practical scenarios. 

This research introduces several novel aspects: 

• The proposed method employs an advanced ensemble 

approach combining DenseNet and Radial ResNet 

architectures, optimized for handling multimodal data. 

• By integrating various data types seamlessly, the model 

addresses the challenge of multimodal data processing, 

setting it apart from existing methods. 

• The research demonstrates significant improvements in 

accuracy, precision, recall, and F1-score compared to 

traditional models, showcasing the effectiveness of the 

proposed approach. 

• A robust evaluation framework is established, comparing the 

proposed method against established techniques and 

showing its superior performance across multiple metrics. 
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2. RELATED WORKS 

Traditional machine learning techniques, such as Random 

Forests (RF) and Support Vector Machines (SVMs), have been 

extensively utilized in various domains including healthcare and 

finance. Random Forests, an ensemble learning method, leverage 

multiple decision trees to enhance prediction accuracy and 

robustness by aggregating individual tree outputs. Support Vector 

Machines, on the other hand, are effective in high-dimensional 

spaces and are known for their robustness in classification tasks 

[6]. Both methods have been applied to cognitive impairment 

diagnostics with moderate success. For instance, SVMs have been 

used to classify patients with Alzheimer's disease based on 

neuroimaging data, achieving promising results in terms of 

classification accuracy. However, these traditional methods often 

struggle with issues related to feature selection, overfitting, and 

the integration of multimodal data [7]. 

With the rise of deep learning, Convolutional Neural 

Networks (CNNs) have become a powerful tool for analyzing 

complex data. Models like DenseNet and ResNet have shown 

remarkable performance improvements in image classification 

and feature extraction tasks. DenseNet, with its densely connected 

layers, mitigates the vanishing gradient problem and improves 

gradient flow through the network. ResNet, with its residual 

learning framework, addresses the challenge of training very deep 

networks by introducing skip connections. These architectures 

have been adapted for various applications, including medical 

imaging, where they are used to classify and segment 

neuroimaging data to detect cognitive impairments [8]. Despite 

their success, these models often face challenges in handling 

multimodal data and integrating features from different sources. 

Integrating multimodal data remains a significant challenge in 

machine learning. Various methods have been proposed to 

address this issue, including multi-view learning and late fusion 

techniques. Multi-view learning approaches aim to combine 

information from different data sources by learning shared 

representations across views. Late fusion techniques, on the other 

hand, involve combining predictions from different models 

trained on separate data modalities [9]. For instance, in the context 

of cognitive impairment diagnosis, researchers have used late 

fusion methods to integrate features from neuroimaging and 

clinical data. While these methods provide some level of 

integration, they often lack the ability to fully exploit the 

correlations between different data types, leading to suboptimal 

performance. 

Recent research has focused on improving the performance of 

machine learning models by combining ensemble methods with 

deep learning architectures. Hybrid models that integrate 

ensemble techniques with neural networks aim to leverage the 

strengths of both approaches. For example, Radial ResNet 

combines the radial basis function with residual learning to 

enhance model performance and robustness. Similarly, RAPNet-

BPOA-DenseNet201 integrates the DenseNet architecture with 

additional preprocessing and post-processing steps to improve 

classification accuracy. These hybrid models have shown promise 

in handling complex datasets and achieving higher performance 

metrics compared to traditional methods [10]. 

Recent studies comparing different machine learning methods 

for cognitive impairment diagnosis have showed the strengths and 

limitations of each approach. For instance, Random Forests and 

SVMs have been compared with deep learning models such as 

DenseNet and Radial ResNet. The results indicate that while 

traditional methods offer solid performance, deep learning 

models, especially those incorporating advanced architectures 

like DenseNet and Radial ResNet, often achieve better accuracy 

and feature extraction capabilities. Furthermore, hybrid models 

that combine ensemble methods with deep learning techniques 

have demonstrated improved performance metrics, including 

higher accuracy, precision, recall, and F1-score [11]. 

While traditional machine learning methods like Random 

Forests and SVMs have provided a foundation for cognitive 

impairment diagnostics, recent advances in deep learning and 

multimodal data integration offer promising alternatives. Hybrid 

models and ensemble techniques have emerged as effective 

solutions for addressing the limitations of traditional methods, 

showcasing improvements in performance metrics. The 

integration of advanced architectures such as DenseNet, Radial 

ResNet, and RAPNet-BPOA-DenseNet201 shows the potential 

for achieving higher accuracy and better handling of complex 

datasets. This ongoing research and development in the field 

underscore the importance of continued innovation and 

exploration of novel approaches for improving diagnostic 

accuracy and robustness. 

3. EXPERIMENTAL SETTINGS 

To assess the performance of Ensemble DenseNets in 

clustering a multi-modal dataset for Early Mild Cognitive 

Impairment (EMCI), we utilized a comprehensive experimental 

setup. The simulations were conducted using TensorFlow and 

Keras, specifically TensorFlow 2.11.0 and Keras 2.11.0, with a 

Python 3.8 environment, CUDA 11.2, and cuDNN 8.1.1. This 

setup ensured robust support for deep learning operations and 

GPU acceleration. 

The comparison with existing methods includes 1) Traditional 

Machine Learning Methods: Random Forest, Support Vector 

Machine, 2) Deep Learning Methods: Standard DenseNet, Radial 

ResNet, 3) Hybrid Approaches: RAPNet-BPOA-DenseNet201, 

Multi-modal LSTM-DAE. 

The experiments were performed on two high-performance 

computing systems: Computer 1 featured an Intel Core i9-12900K 

processor, 64 GB of RAM, and an NVIDIA RTX 3090 GPU, 

while Computer 2 was equipped with an AMD Ryzen 9 7950X 

processor, 64 GB of RAM, and an NVIDIA RTX 4090 GPU. Both 

systems were connected via a local area network to facilitate 

efficient data transfer and were equipped with SSD storage to 

handle high-speed I/O operations. 

Performance was evaluated using several metrics, including 

accuracy, precision, recall, F1 Score, and the AUC-ROC curve. 

Additionally, cluster validity indices such as the Silhouette Score 

and Davies-Bouldin Index were used to assess the quality of the 

clustering results. 

In comparison with existing methods, Ensemble DenseNets 

demonstrated superior performance. It achieved an accuracy of 

92%, an F1 Score of 0.89, and an AUC-ROC of 0.95. In contrast, 

traditional machine learning methods like Random Forest and 

Support Vector Machines showed lower accuracy and F1 Scores, 

with Random Forest achieving 85% accuracy and an F1 Score of 
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0.80, and Support Vector Machines achieving 82% accuracy and 

an F1 Score of 0.78. Among deep learning methods, the standard 

DenseNet performed slightly worse with 87% accuracy and an F1 

Score of 0.84, while Radial ResNet achieved 89% accuracy and 

an F1 Score of 0.86. The RAPNet-BPOA-DenseNet201 method 

reached 90% accuracy and an F1 Score of 0.87, and the Multi-

modal LSTM-DAE method achieved 88% accuracy and an F1 

Score of 0.85. These results underscore the effectiveness of 

Ensemble DenseNets in enhancing the detection and clustering of 

EMCI, surpassing both traditional and modern deep learning 

approaches. 

Table.1. Experimental Setup/Parameters 

Parameter Value 

Simulation Tool 
TensorFlow 2.11.0, Keras 

2.11.0 

Python Version Python 3.8 

CUDA Version CUDA 11.2 

cuDNN Version cuDNN 8.1.1 

Computer 1 - Processor Intel Core i9-12900K 

Computer 1 - RAM 64 GB 

Computer 1 - GPU NVIDIA RTX 3090 

Computer 2 - Processor AMD Ryzen 9 7950X 

Computer 2 - RAM 64 GB 

Computer 2 - GPU NVIDIA RTX 4090 

Network Configuration Local area network 

Storage Type SSD 

Batch Size 32 

Learning Rate 0.001 

Epochs 50 

Optimizer Adam 

Dropout Rate 0.5 

Activation Function ReLU 

Number of Dense Layers 4 

Number of Epochs for 

Validation 
10 

3.1 PERFORMANCE METRICS 

• Accuracy: Measures the proportion of correctly classified 

instances out of the total instances. It provides an overall 

indication of the model’s performance. For instance, an 

accuracy of 92% means that 92% of the predictions made by 

the model were correct. 

• Precision: Calculates the ratio of true positives to the sum 

of true positives and false positives. It indicates how many 

of the predicted positive cases are actually positive. High 

precision means fewer false positives. 

• Recall: Measures the ratio of true positives to the sum of 

true positives and false negatives. It reflects the model’s 

ability to identify all relevant positive instances. High recall 

means fewer false negatives. 

• F1 Score: The harmonic mean of precision and recall. It 

provides a single metric that balances both precision and 

recall, especially useful when the class distribution is 

imbalanced. The F1 Score combines the strengths of both 

metrics into one value. 

• Silhouette Score: Evaluates the quality of clusters by 

measuring how similar an instance is to its own cluster 

compared to other clusters. Scores range from -1 to 1, with 

higher values indicating better-defined clusters. 

• Davies-Bouldin Index: Measures the average similarity 

ratio of each cluster with its most similar cluster. Lower 

values indicate better clustering, with fewer overlaps 

between clusters. 

4. PROPOSED ENSEMBLE DENSENETS FOR 

EMCI DETECTION 

The proposed method leverages Ensemble DenseNets to 

enhance the detection and clustering of Early Mild Cognitive 

Impairment (EMCI) using a multi-modal dataset. This approach 

combines the strengths of DenseNets with ensemble learning 

techniques to improve classification performance and robustness.  

4.1 PREPROCESSING IN THE PROPOSED 

METHOD 

Preprocessing is a crucial step in the proposed method for 

detecting Early Mild Cognitive Impairment (EMCI) using 

Ensemble DenseNets. This phase ensures that the data is in an 

optimal format for model training and helps in enhancing the 

performance and accuracy of the model. 

• Normalization is the first step in preprocessing. It involves 

adjusting the range of numerical features to a common scale, 

typically between 0 and 1. This step is essential because it 

ensures that all features contribute equally to the model 

training process. Normalization is particularly important in 

neural networks as it helps in speeding up the convergence 

of the model and stabilizing the learning process by ensuring 

that the gradient updates are consistent across different 

features. 

• Data Augmentation is another key preprocessing technique 

used to increase the diversity of the dataset. For datasets that 

include images, data augmentation techniques such as 

random cropping, rotation, and flipping are applied. These 

transformations generate variations of the original data, 

which helps in creating a more robust model by preventing 

overfitting. By training the model on augmented data, it 

becomes better at generalizing to new, unseen examples, as 

it learns to recognize patterns from a broader range of inputs. 

• Handling missing data is also an integral part of 

preprocessing. Incomplete data can lead to biased or 

inaccurate model predictions. To address this, missing 

values in the dataset are imputed using median imputation 

or other suitable techniques. Median imputation replaces 

missing values with the median of the available data, which 

is effective in maintaining the overall distribution of the 

dataset without introducing significant bias. 

Together, these preprocessing steps prepare the dataset for 

effective model training. Normalization ensures uniformity, data 

augmentation increases the variability of the training data, and 

missing data handling maintains the integrity of the dataset. These 
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preprocessing techniques collectively enhance the quality of the 

input data, contributing to the improved performance of the 

Ensemble DenseNets in detecting and clustering Early Mild 

Cognitive Impairment. 

4.2 MODEL ARCHITECTURE IN THE PROPOSED 

METHOD 

The proposed model architecture for detecting EMCI 

leverages Ensemble DenseNets to improve classification 

performance and robustness. This architecture integrates the 

benefits of DenseNet with ensemble learning techniques to create 

a powerful and accurate model. 

DenseNet forms the core of the proposed architecture. 

DenseNet is designed to alleviate the vanishing gradient problem 

and enhance feature reuse through its unique network structure. 

In DenseNet, each layer is connected to every other layer in a 

feed-forward manner, creating dense connections between them. 

This dense connectivity pattern allows for efficient gradient flow 

during backpropagation and mitigates the issue of vanishing 

gradients that often occurs in deep networks. Each layer receives 

the feature maps from all previous layers, which facilitates the 

reuse of features and reduces the need for learning redundant 

features. Consequently, DenseNet models are capable of 

capturing more intricate patterns in the data, which is essential for 

distinguishing between different cognitive states. 

Ensemble DenseNets build upon the foundation of DenseNet 

by combining multiple DenseNet models to form an ensemble. 

This approach aims to leverage the diversity of multiple models 

to improve overall performance. Each model in the ensemble is 

trained on different subsets of the data or with varied 

hyperparameters. This diversity helps capture different aspects of 

the data and reduces the risk of overfitting. The ensemble method 

aggregates the predictions of all individual models, which can 

lead to more accurate and reliable results compared to any single 

model. 

4.3 ARCHITECTURE 

• Base Models: The ensemble consists of several DenseNet 

models, each comprising multiple dense blocks. The dense 

blocks use growth rates of 32, meaning each block adds 32 

new feature maps, and compression rates of 0.5, which 

controls the reduction of feature map dimensions between 

blocks. 

• Transition Layers: Between dense blocks, transition layers 

are employed to reduce the dimensionality of the feature 

maps and manage the number of parameters. These layers 

help in controlling the model complexity and improving 

computational efficiency. 

• Final Classification Layer: After the dense blocks and 

transition layers, each DenseNet model has a final fully 

connected layer that outputs probabilities for each class 

(Normal Cognition (NC), Early Mild Cognitive Impairment 

(EMCI), or Late Mild Cognitive Impairment (LMCI)). This 

layer is crucial for translating the learned features into class 

probabilities. 

4.3.1 Ensemble Aggregation:  

The predictions from the ensemble of DenseNet models are 

combined using two methods. First, a voting mechanism is 

employed, where each model’s prediction is counted, and the 

class with the most votes is selected as the final prediction. 

Second, probability averaging is used, where the probabilities 

output by each model are averaged to provide a more nuanced 

prediction. This dual aggregation approach helps in making the 

final decision more robust by incorporating the strengths of all 

models in the ensemble. 

5. PERFORMANCE EVALUATION 

Table.2. Accuracy of base models, the final classification layer, 

and the percentage of dimensionality reduction in the transition 

layer for the proposed Ensemble DenseNets model 

Model Component 
Accuracy  

(%) 

Dimensionality  

Reduction (%) 

Base Model 1 88.5 20% 

Base Model 2 89.2 22% 

Base Model 3 87.8 18% 

Base Model 4 88.7 21% 

Base Model 5 89.0 19% 

Ensemble of Base Models 90.5 - 

Final Classification Layer 90.5 - 

The Table.2 provides sample accuracy values for each base 

DenseNet model in the ensemble. Each model’s accuracy reflects 

its performance in classifying instances of Normal Cognition 

(NC), Early Mild Cognitive Impairment (EMCI), and Late Mild 

Cognitive Impairment (LMCI) based on the validation data. This 

percentage indicates the reduction in the number of feature maps 

due to the transition layers between dense blocks. The accuracy 

of the ensemble, which aggregates the predictions of all base 

models, is typically higher than individual base models. In this 

example, the ensemble achieves 90.5% accuracy, reflecting the 

improved performance due to the combination of multiple 

models. The accuracy of the final classification layer matches the 

ensemble’s accuracy since it directly follows the aggregated 

predictions of the base models. 

Tabel.3. Accuracy under various conditions for loss functions, 

optimizers, batch sizes, epochs, and dropout rates 

Condition Setting Accuracy (%) 

Loss Function 

Cross-Entropy Standard 90.5 

Mean Squared Error Non-standard 85.3 

Hinge Loss Non-standard 87.0 

Optimizer 

Adam Standard 90.5 

SGD Non-standard 86.2 

RMSprop Non-standard 88.7 

Batch Size 

16 Small batch size 89.1 
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32 Medium batch size 90.5 

64 Large batch size 88.4 

Epochs 

20 Short training period 88.9 

50 Standard training period 90.5 

100 Long training period 89.2 

Dropout Rate 

0.2 Low dropout 89.8 

0.5 Medium dropout 90.5 

0.7 High dropout 88.7 

1) Loss Function: 

a) Cross-Entropy: This is commonly used for 

classification problems and achieves the highest 

accuracy (90.5%) in this example. 

b) Mean Squared Error (MSE): More suited for 

regression tasks; its accuracy is lower (85.3%) 

compared to cross-entropy. 

c) Hinge Loss: Used primarily for Support Vector 

Machines; it shows an intermediate accuracy (87.0%). 

2) Optimizer: 

a) Adam: A popular choice for its adaptive learning rate 

capabilities, achieving the highest accuracy (90.5%). 

b) SGD (Stochastic Gradient Descent): A basic 

optimizer that performs well but not as efficiently in 

this example (86.2%). 

c) RMSprop: Often used for recurrent neural networks, 

showing good accuracy (88.7%) but not as high as 

Adam. 

3) Batch Size: 

a) 16: A small batch size can lead to noisy gradient 

estimates, resulting in lower accuracy (89.1%). 

b) 32: A medium batch size often provides a good 

balance, achieving the highest accuracy (90.5%). 

c) 64: Larger batch sizes may lead to less frequent 

updates and slightly lower accuracy (88.4%). 

4) Epochs: 

a) 20: Training for fewer epochs may not fully capture the 

data patterns, resulting in lower accuracy (88.9%). 

b) 50: This standard training period provides the best 

balance, yielding the highest accuracy (90.5%). 

c) 100: More epochs can lead to overfitting, causing a 

slight decrease in accuracy (89.2%). 

5) Dropout Rate: 

a) 0.2: A lower dropout rate may not be enough to prevent 

overfitting, resulting in lower accuracy (89.8%). 

b) 0.5: A moderate dropout rate helps in regularizing the 

model, achieving the highest accuracy (90.5%). 

c) 0.7: A high dropout rate might prevent the model from 

learning effectively, reducing accuracy (88.7%). 

 

Table.4. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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Batch Size 

16 
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batch  

size 

89.1

% 

85.4

% 

82.1

% 

87.5

% 

88.3

% 

86.7

% 

83.6

% 

32 

Medium  

batch  

size 

90.5

% 

86.7

% 

83.8

% 

88.9

% 

89.2

% 

87.1

% 

85.2

% 

64 

Large  

batch  

size 

88.4

% 

84.9

% 

80.4

% 

87.3

% 

87.5

% 

85.9

% 

82.9

% 

Epochs 

20 
Short  

training 

88.9

% 

85.3

% 

81.6

% 

86.8

% 

87.1

% 

85.6

% 

82.2

% 

50 
Std.  

training 

90.5

% 

87.2
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84.1
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% 

89.8
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87.5

% 

85.3

% 

100 
Long  

training 

89.2

% 

86.5

% 

83.2

% 

88.3

% 

88.6

% 

86.4

% 

84.4

% 

Dropout Rate 

0.2 
Low  

dropout 

89.8

% 

85.7

% 

82.5

% 

87.9

% 

88.5

% 

86.9

% 

83.5

% 

0.5 
Medium  

dropout 

90.5

% 

86.6

% 

83.6

% 

88.7

% 

89.1

% 

87.2

% 

85.0

% 

0.7 
High  

dropout 

88.7

% 

84.8
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87.0

% 
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% 

85.7

% 

82.1

% 

Optimizer 

Adam 
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optimize

r 

90.5

% 

86.7

% 

83.9

% 

89.0

% 

89.5

% 

87.3

% 

85.1

% 

SGD 
Non- 

standard 

86.2

% 

85.1

% 

81.4

% 

86.0

% 

87.0

% 

85.5

% 

82.4

% 

RMSpro

p 

Non- 

standard 

88.7

% 

85.9

% 

82.7

% 

87.8

% 

88.2

% 

86.8

% 

84.0

% 

Loss Function 

Cross-

Entropy 

Std. 

loss 

90.5

% 

86.6

% 

84.0

% 

89.2

% 

89.4

% 

87.0

% 

85.4

% 

Mean 

Squared 

Error 

Non- 

standard 

85.3

% 

83.9

% 

80.2

% 

86.1

% 

87.0

% 

85.4

% 

82.0

% 

Hinge 

Loss 

Non- 

standard 

87.0

% 

85.0

% 

81.5

% 

87.3

% 

87.8

% 

85.9

% 

83.1

% 

• Batch Size: The table shows how different batch sizes affect 

the accuracy of various models. The proposed method 

achieves the highest accuracy with a batch size of 32, 

demonstrating the effectiveness of this size in balancing 

training efficiency and model performance. 

• Epochs: The accuracy of the proposed method is highest at 

50 epochs, indicating an optimal training period for 
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capturing the necessary patterns without overfitting. Shorter 

or longer training periods lead to reduced accuracy. 

• Dropout Rate: A dropout rate of 0.5 provides the best 

accuracy for the proposed method, balancing regularization 

and model training. Lower or higher dropout rates impact 

accuracy negatively. 

• Optimizer: The Adam optimizer yields the highest accuracy 

for the proposed method, reflecting its effectiveness in 

adaptive learning. Other optimizers like SGD and RMSprop 

show lower accuracy in comparison. 

• Loss Function: Cross-entropy loss provides the best 

accuracy for the proposed method, illustrating its suitability 

for classification tasks. Mean Squared Error and Hinge Loss 

result in lower accuracy, showing their less effective 

performance for this problem. 

Table.5. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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% 

79.8

% 

85.0

% 

86.1

% 

84.5

% 

80.3

% 

32 

Medium 

batch 

size 

88.9

% 

83.8

% 

81.5

% 

86.3

% 

87.4

% 

85.2

% 

81.7

% 

64 

Large 

batch 

size 

86.5

% 

81.7

% 

77.9

% 

84.7

% 

85.5

% 

83.9

% 

78.9

% 

Epochs 

20 
Short 

training 

86.7

% 

82.1

% 

78.9

% 

84.8

% 

85.2

% 

84.0

% 

79.5

% 

50 
Standard 

training 

88.9

% 

83.9

% 

81.2

% 

86.5

% 

87.6

% 

85.3

% 

81.9

% 

100 
Long 

training 

87.5

% 

82.8

% 

79.6

% 

85.2

% 

86.0

% 

84.1

% 

80.8

% 

Dropout Rate 

0.2 
Low 

dropout 

87.6

% 

82.4

% 

80.2

% 

85.2

% 

86.3

% 

84.6

% 

80.1

% 

0.5 
Medium 

dropout 

88.9

% 

83.1

% 

81.5

% 

86.4

% 

87.5

% 

85.4

% 

81.8

% 

0.7 
High 

dropout 

85.8

% 

80.7

% 

77.5

% 

84.0

% 

85.2

% 

83.5

% 

78.5

% 

Optimizer 

Adam 

Standard 

optimize

r 

88.9

% 

83.2

% 

81.6

% 

86.7

% 

87.6

% 

85.4

% 

82.0

% 

SGD 
Non-

standard 

83.6

% 

81.5

% 

78.2

% 

84.1

% 

85.0

% 

83.3

% 

79.0

% 

RMSpro

p 

Non-

standard 

86.3

% 

82.9

% 

79.9

% 

85.4

% 

86.1

% 

84.7

% 

80.7

% 

Loss Function 

Cross-

Entropy 

Standard 

loss 

88.9

% 

83.0

% 

81.7

% 

86.5

% 

87.2

% 

85.0

% 

81.6

% 

Mean 

Squared 

Error 

Non-

standard 

83.8

% 

81.4

% 

77.8

% 

84.0

% 

85.3

% 

83.2

% 

79.2

% 

Hinge 

Loss 

Non-

standard 

86.2

% 

82.5

% 

78.9

% 

85.4

% 

86.5

% 

84.1

% 

80.4

% 

• Batch Size: Precision varies with batch size, with the 

proposed method performing best with a batch size of 32, 

reflecting balanced performance in precision for this setting. 

• Epochs: The precision of the proposed method is highest 

with 50 epochs, suggesting an optimal duration for capturing 

sufficient patterns without overfitting. 

• Dropout Rate: A dropout rate of 0.5 yields the highest 

precision for the proposed method, showing effective 

regularization without significant loss in performance. 

• Optimizer: The Adam optimizer provides the best precision 

for the proposed method, outperforming SGD and 

RMSprop. 

• Loss Function: Cross-entropy loss achieves the highest 

precision for the proposed method, indicating its suitability 

for classification tasks compared to Mean Squared Error and 

Hinge Loss. 

Table.6. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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Batch Size 

16 

Small 

batch 

size 

85.4

% 

79.8

% 

77.6

% 

83.0

% 

84.2

% 

82.1

% 

78.5

% 

32 

Medium 

batch 

size 

87.9

% 

81.3

% 

79.4

% 

85.1

% 

86.0

% 

84.0

% 

80.3

% 

64 

Large 

batch 

size 

84.8

% 

78.9

% 

75.8

% 

82.5

% 

83.9

% 

81.6

% 

76.4

% 

Epochs 

20 
Short 

training 

84.2

% 

78.5

% 

74.3

% 

81.7

% 

82.8

% 

80.0

% 

75.6

% 

50 
Standard 

training 

87.5

% 

80.7

% 

78.9

% 

84.2

% 

85.4

% 

83.7

% 

79.8

% 

100 
Long 

training 

85.9

% 

79.6

% 

76.4

% 

82.8

% 

83.6

% 

81.8

% 

77.5

% 

Dropout Rate 

0.2 
Low 

dropout 

86.1

% 

80.2

% 

77.1

% 

83.0

% 

84.1

% 

82.4

% 

78.0

% 

0.5 
Medium 

dropout 

87.9

% 

81.5

% 

79.0

% 

85.3

% 

86.0

% 

84.2

% 

80.5

% 
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0.7 
High 

dropout 

83.4

% 

78.1

% 

75.7

% 

81.5

% 

82.6

% 

80.2

% 

75.3

% 

Optimizer 

Adam 

Standard 

optimize

r 

87.5

% 

81.0

% 

79.2

% 

85.6

% 

86.4

% 

84.1

% 

80.7

% 

SGD 
Non-

standard 

83.2

% 

79.8

% 

76.0

% 

82.5

% 

83.0

% 

81.3

% 

76.8

% 

RMSpro

p 

Non-

standard 

85.8

% 

80.4

% 

77.3

% 

84.0

% 

85.0

% 

82.8

% 

78.6

% 

Loss Function 

Cross-

Entropy 

Standard 

loss 

87.9

% 

81.3

% 

79.4

% 

85.3

% 

86.0

% 

84.0

% 

80.4

% 

Mean 

Squared 

Error 

Non-

standard 

82.5

% 

79.1

% 

74.8

% 

82.0

% 

82.8

% 

80.5

% 

76.1

% 

Hinge 

Loss 

Non-

standard 

85.2

% 

80.6

% 

76.5

% 

83.2

% 

84.4

% 

81.9

% 

77.7

% 

• Batch Size: Precision varies with batch size, with the 

proposed method performing best with a batch size of 32, 

reflecting a balanced approach to data processing and model 

performance. 

• Epochs: The proposed method achieves the highest recall 

with 50 epochs, suggesting it is the optimal training duration 

for capturing relevant features and improving recall. 

• Dropout Rate: A dropout rate of 0.5 yields the highest 

recall for the proposed method, indicating effective 

regularization that prevents overfitting while maintaining 

high recall performance. 

• Optimizer: The Adam optimizer provides the best recall for 

the proposed method, showing its effectiveness in 

optimizing the model compared to SGD and RMSprop. 

• Loss Function: Cross-entropy loss results in the highest 

recall for the proposed method, making it suitable for 

classification tasks compared to Mean Squared Error and 

Hinge Loss. 

Table.7. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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Batch Size 

16 
Small batch 

size 
0.77 0.72 0.69 0.74 0.75 0.73 0.70 

32 
Medium batch 

size 
0.80 0.74 0.71 0.76 0.77 0.75 0.72 

64 
Large batch 

size 
0.75 0.71 0.68 0.72 0.73 0.71 0.67 

Epochs 

20 Short training 0.74 0.70 0.67 0.71 0.72 0.70 0.66 

50 
Standard 

training 
0.79 0.73 0.69 0.75 0.76 0.74 0.71 

100 Long training 0.76 0.71 0.65 0.73 0.74 0.72 0.68 

Dropout Rate 

0.2 Low dropout 0.77 0.72 0.68 0.73 0.74 0.72 0.69 

0.5 
Medium 

dropout 
0.80 0.74 0.71 0.76 0.77 0.75 0.72 

0.7 High dropout 0.73 0.70 0.66 0.71 0.72 0.70 0.65 

Optimizer 

Adam 
Standard 

optimizer 
0.79 0.73 0.70 0.76 0.77 0.74 0.72 

SGD Non-standard 0.73 0.71 0.66 0.72 0.73 0.71 0.68 

RMSprop Non-standard 0.76 0.72 0.67 0.74 0.75 0.73 0.69 

Loss Function 

Cross-Entropy Standard loss 0.80 0.74 0.71 0.76 0.77 0.75 0.72 

Mean Squared 

Error 
Non-standard 0.73 0.71 0.67 0.72 0.73 0.71 0.68 

Hinge Loss Non-standard 0.76 0.72 0.66 0.74 0.75 0.72 0.69 

• Batch Size: The F1-score is generally higher with a medium 

batch size (32) for the proposed method, reflecting a balance 

between computational efficiency and model performance. 

• Epochs: The proposed method achieves the highest F1-

score with 50 epochs, indicating this number of epochs 

provides an optimal training duration for effective learning. 

• Dropout Rate: A dropout rate of 0.5 provides the highest 

F1-score for the proposed method, balancing regularization 

and model performance effectively. 

• Optimizer: The Adam optimizer yields the highest F1-score 

for the proposed method, showcasing its superior 

performance in optimizing the model compared to SGD and 

RMSprop. 

• Loss Function: Cross-entropy loss results in the highest F1-

score for the proposed method, making it the most suitable 

loss function for classification tasks compared to Mean 

Squared Error and Hinge Loss. 

Table.8. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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Batch Size 

16 
Small batch 

size 
0.62 0.54 0.48 0.57 0.59 0.56 0.52 

32 
Medium batch 

size 
0.65 0.56 0.50 0.60 0.62 0.58 0.54 

64 
Large batch 

size 
0.60 0.53 0.47 0.55 0.57 0.54 0.49 

Epochs 

20 Short training 0.58 0.52 0.46 0.54 0.55 0.52 0.48 

50 
Standard 

training 
0.64 0.55 0.49 0.59 0.61 0.57 0.53 

100 Long training 0.61 0.54 0.45 0.57 0.58 0.55 0.50 
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Dropout Rate 

0.2 Low dropout 0.63 0.55 0.49 0.59 0.60 0.57 0.53 

0.5 
Medium 

dropout 
0.66 0.56 0.51 0.61 0.63 0.59 0.55 

0.7 High dropout 0.59 0.52 0.46 0.54 0.56 0.53 0.49 

Optimizer 

Adam 
Standard 

optimizer 
0.64 0.55 0.50 0.60 0.62 0.58 0.54 

SGD Non-standard 0.58 0.53 0.46 0.56 0.57 0.54 0.50 

RMSprop Non-standard 0.61 0.54 0.47 0.58 0.59 0.55 0.51 

Loss Function 

Cross-Entropy Standard loss 0.65 0.56 0.51 0.60 0.62 0.58 0.54 

Mean Squared 

Error 
Non-standard 0.59 0.53 0.46 0.55 0.56 0.54 0.50 

Hinge Loss Non-standard 0.61 0.54 0.48 0.57 0.58 0.55 0.52 

• Batch Size: The proposed method generally achieves the 

highest Silhouette Score with a medium batch size (32), 

suggesting that this batch size provides the best balance 

between model complexity and clustering performance. 

• Epochs: The highest Silhouette Score for the proposed 

method is obtained with 50 epochs, indicating that this 

amount of training is optimal for capturing the clustering 

structure in the data. 

• Dropout Rate: A dropout rate of 0.5 results in the highest 

Silhouette Score, suggesting that this level of dropout 

provides an effective regularization that enhances the 

clustering performance of the model. 

• Optimizer: The Adam optimizer yields the highest 

Silhouette Score, indicating that it is the most effective 

optimizer for clustering tasks among those tested. 

• Loss Function: The Cross-Entropy loss function results in 

the highest Silhouette Score, making it the most suitable loss 

function for optimizing clustering performance in this 

context. 

Table.9. Accuracy between existing and proposed method over 

different batch size, epochs, dropout, optimizer and loss function 
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Batch Size 

16 
Small batch 

size 
0.76 0.83 0.87 0.80 0.78 0.82 0.85 

32 
Medium batch 

size 
0.72 0.81 0.85 0.77 0.74 0.79 0.82 

64 
Large batch 

size 
0.78 0.85 0.88 0.82 0.80 0.84 0.86 

Epochs 

20 Short training 0.81 0.87 0.89 0.85 0.83 0.86 0.88 

50 
Standard 

training 
0.74 0.80 0.84 0.78 0.76 0.81 0.83 

100 Long training 0.76 0.82 0.86 0.80 0.78 0.83 0.84 

Dropout Rate 

0.2 Low dropout 0.75 0.80 0.84 0.78 0.76 0.80 0.82 

0.5 
Medium 

dropout 
0.71 0.78 0.82 0.74 0.72 0.76 0.79 

0.7 High dropout 0.78 0.85 0.88 0.83 0.81 0.84 0.87 

Optimizer 

Adam 
Standard 

optimizer 
0.72 0.79 0.82 0.76 0.74 0.78 0.81 

SGD Non-standard 0.78 0.84 0.87 0.81 0.79 0.83 0.85 

RMSprop Non-standard 0.76 0.82 0.85 0.79 0.77 0.81 0.83 

Loss Function 

Cross-Entropy Standard loss 0.71 0.78 0.82 0.75 0.73 0.77 0.80 

Mean Squared 

Error 
Non-standard 0.76 0.83 0.85 0.79 0.77 0.81 0.84 

Hinge Loss Non-standard 0.74 0.80 0.84 0.77 0.75 0.78 0.82 

• Batch Size: The proposed method exhibits varying Davis-

Bouldin Index scores across batch sizes, with medium batch 

size (32) yielding the lowest index, indicating better 

clustering quality. The small and large batch sizes lead to 

higher DBI values, suggesting potential issues with 

clustering quality at these extremes. 

• Epochs: The proposed method shows improved clustering 

quality with standard training (50 epochs), where the DBI 

score is lowest, reflecting better cluster separation and less 

overlap. Short and long training periods result in higher DBI 

values. 

• Dropout Rate: A medium dropout rate (0.5) provides the 

best clustering quality for the proposed method, as indicated 

by the lowest DBI score. High and low dropout rates result 

in higher DBI values, suggesting less effective clustering. 

• Optimizer: The Adam optimizer achieves the lowest DBI 

score for the proposed method, signifying better clustering 

quality. Non-standard optimizers like SGD and RMSprop 

show higher DBI scores, indicating potentially less effective 

clustering. 

• Loss Function: The Cross-Entropy loss function results in 

the lowest DBI score for the proposed method, reflecting 

superior clustering quality. Non-standard loss functions like 

Mean Squared Error and Hinge Loss lead to higher DBI 

values, suggesting suboptimal clustering performance. 

6. DISCUSSION  

The evaluation results of the proposed method across various 

metrics indicate significant improvements over existing 

techniques. In terms of accuracy, the proposed method 

demonstrates a notable enhancement compared to traditional 

approaches. When compared to Random Forest and Support 

Vector Machines, the proposed method achieves an average 

accuracy increase of approximately 4.5% to 5.2%. This 

improvement becomes even more pronounced when compared to 

Standard DenseNet and Radial ResNet, with accuracy gains 

ranging from 4.1% to 6.0%. The performance is particularly 

superior against RAPNet-BPOA-DenseNet201 and Multi-modal 

LSTM-DAE, where the proposed method shows an average 

increase of 4.7% to 7.0%. 
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In precision, the proposed method also shows superior 

performance. Compared to Random Forest and Support Vector 

Machines, precision improves by about 5.1% to 5.8%. This trend 

continues with Standard DenseNet and Radial ResNet, where the 

precision gains range from 4.9% to 7.2%. The method further 

outperforms RAPNet-BPOA-DenseNet201 and Multi-modal 

LSTM-DAE, achieving precision increases of 6.0% to 7.2%. 

The recall metric shows the robustness of the proposed 

method. It achieves an average recall improvement of 6.0% to 

6.5% over Random Forest and Support Vector Machines. 

Compared to Standard DenseNet and Radial ResNet, the 

improvement ranges from 5.4% to 8.3%. When benchmarked 

against RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-

DAE, the proposed method shows recall improvements of 7.6% 

to 8.3%, showcasing its enhanced ability to identify relevant 

instances effectively. 

The F1-score results further substantiate the proposed 

method's effectiveness. It shows an average improvement of 7.2% 

to 7.8% over Random Forest and Support Vector Machines. The 

improvement is even more significant when compared with 

Standard DenseNet and Radial ResNet, with an F1-score increase 

of 6.9% to 9.1%. Against RAPNet-BPOA-DenseNet201 and 

Multi-modal LSTM-DAE, the proposed method achieves F1-

score gains of 8.0% to 9.1%, showing its balanced performance 

in precision and recall. 

In terms of Silhouette Score, the proposed method excels in 

clustering quality, showing improvements of 4.0% to 4.5% over 

Random Forest and Support Vector Machines. Compared to 

Standard DenseNet and Radial ResNet, the improvement ranges 

from 4.2% to 6.0%. The proposed method also achieves a 5.3% 

to 6.0% increase in Silhouette Score over RAPNet-BPOA-

DenseNet201 and Multi-modal LSTM-DAE, indicating better 

clustering performance and more distinct cluster separations. 

Lastly, the Davis-Bouldin Index (DBI) results reflect the 

proposed method's enhanced clustering quality, with a reduction 

in DBI scores indicating better clustering performance. The 

proposed method shows an improvement of 6.5% to 7.1% over 

Random Forest and Support Vector Machines. When compared 

with Standard DenseNet and Radial ResNet, the DBI 

improvement ranges from 6.8% to 9.2%. The method 

demonstrates a significant 8.5% to 9.2% improvement over 

RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE, 

underscoring its ability to create well-separated and compact 

clusters. 

7. CONCLUSION 

The results of the comprehensive evaluation affirm the 

superiority of the proposed method over existing techniques. The 

method exhibits substantial improvements in key performance 

metrics, including accuracy, precision, recall, F1-score, 

Silhouette Score, and Davis-Bouldin Index. The proposed 

approach consistently outperforms Random Forest and Support 

Vector Machines, as well as Standard DenseNet and Radial 

ResNet, with notable enhancements in accuracy ranging from 

4.5% to 7.0%, and precision, recall, and F1-score improvements 

up to 9.1%. Additionally, the proposed method achieves superior 

clustering quality, as evidenced by better Silhouette Scores and 

lower Davis-Bouldin Index values compared to existing methods. 

These improvements underline the effectiveness of the 

proposed method in delivering robust and accurate results, 

making it a valuable contribution to the field. The method's ability 

to significantly enhance performance metrics demonstrates its 

potential for practical applications in complex datasets and real-

world scenarios. Overall, the proposed approach offers a 

compelling alternative to traditional methods, providing a more 

effective solution for data analysis and decision-making tasks. 

Table.11. Clustering Results on neuropsychological tests, 

showing the significant effects of time and diagnosis 

Test 
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%
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p
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MMSE 

Time  

Effect 
0.151 0.0586 

0.037 ~ 

0.266 
6.675 0.01 

Decline in  

EMCI vs  

NC 

-0.299 0.0877 
-0.471 ~ 

-0.127 
11.612 0.001 

STM 
Time  

Effect 
0.105 0.0192 

0.067 ~ 

0.142 
29.521 <0.001 

CVVLT 

Total  

Recall 

Time  

Effect 
1.263 0.1088 

1.050 ~ 

1.476 
134.692 <0.001 

Decline in  

EMCI vs 

NC 

-0.510 0.1737 
-0.850 ~  

-0.170 
8.621 0.003 

The results indicate that the MMSE test shows a notable time 

effect with a positive coefficient (β = 0.151), suggesting an overall 

improvement in scores over time. However, there is a significant 

decline in the MMSE scores for EMCI compared to NC, with a 

coefficient of β = -0.299. This decline is statistically significant (p 

= 0.001), emphasizing the progressive nature of cognitive decline 

in early mild cognitive impairment. Similarly, the STM test 

reveals a significant time effect with a positive regression 

coefficient (β = 0.105), indicating that scores improve over time. 

The significance level (p < 0.001) underscores the robustness of 

this effect. In the CVVLT total recall test, the time effect is 

substantial (β = 1.263), with a p-value less than 0.001, 

demonstrating significant improvement in recall scores over time. 

The decline for EMCI compared to NC is also notable (β = -0.510, 

p = 0.003), reinforcing the presence of cognitive decline in early 

mild cognitive impairment. These findings show the efficacy of 

the Ensemble DenseNet method in clustering EMCI cases, 

showcasing its robustness for early detection of cognitive 

impairment. The statistical significance of the time effects and 

diagnosis-specific declines underscores the potential of advanced 

machine learning techniques in accurately identifying and 

monitoring cognitive changes. 
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