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Abstract 

Remote sensing has become a critical tool in environmental 

monitoring, offering precise data collection over large areas. However, 

traditional methods face challenges such as high computational costs 

and lower accuracy in complex environments. The primary challenge 

is optimizing data processing to improve accuracy and efficiency in 

extracting valuable environmental information from remote sensing 

data. This study proposes a novel approach combining Ant Colony 

Optimization (ACO) and Region-based Convolutional Neural 

Networks (RCNN) for enhanced precision in environmental 

monitoring. ACO, inspired by the foraging behavior of ants, is used to 

optimize the parameters and feature selection process. RCNN, a deep 

learning model, is employed to detect and classify environmental 

features from remote sensing imagery. The integration of ACO with 

RCNN aims to enhance the model’s performance by selecting the most 

relevant features and optimal parameters, thereby reducing 

computational costs and improving accuracy. The proposed method 

was tested on a dataset of satellite images for land cover classification. 

The hybrid ACO-RCNN approach achieved a classification accuracy 

of 93.2%, outperforming traditional methods by 8.7%, and reduced 

computational time by 25%. These results demonstrate the efficacy of 

the proposed method in precision environmental monitoring. 
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1. INTRODUCTION 

Over the past few years, there has been a significant amount 

of advancement in the realm of drone technology. In order to carry 

out environmental monitoring, this article makes use of a drone to 

capture images, and then it employs machine vision in order to 

locate and identify the images that were taken. The process of 

research in the field of image location and recognition 

technologies frequently involves the identification of potential 

targets and the derivation of insightful inferences from the image 

data that has been obtained. Deep learning algorithms are being 

used for an increasing variety of tasks that are performed daily. 

These tasks include speech recognition, automatic translation, 

image recognition, personalised recommendations, and include 

many more applications. The convolution neural network is an 

example of a type of deep learning approach that has found 

widespread application in the field of image recognition. 

The term “artificial neural network” (ANN) refers to a 

collection of interconnected artificial neurons that uses 

mathematical or computational models to process data. This type 

of network is also sometimes referred to as a “simulated neural 

network” [1]. The process of training artificial neural networks is 

a statistical methodology in and of itself, and [2] proposed some 

unique approaches to training such networks that could 

potentially be advantageous. In [3] utilised a mix of artificial 

neural networks and remote sensing in order to get a more 

accurate image classification of urban environments that are 

scattered and varied. In [4] provides an explanation of the physical 

aspects that enable species identification through the utilisation of 

computer image analysis, artificial neural networks, and feature 

selection. This is accomplished by examining scientific data that 

are biological in nature. The visual properties that were gathered 

by the artificial neural network are utilised in the training process 

of the multilayer perceptron network. The system that proposed 

by the author of [5] devised for manually testing vehicles was 

developed. Images that were taken at the entrance to the parking 

lot are used by the system for the purpose of character 

identification. After the images have been shot, they are converted 

into digital formats that have been devised by researchers in order 

to fulfil the requirements of artificial neural networks. The 

numbered boards are used to extract the distinctive characteristics 

of each character, which are derived from these forms. A 

significant obstacle that must be overcome in the realm of digital 

image processing is the process of image denoising. In the paper 

[6] proposed the idea of conducting a comprehensive performance 

review that makes use of a neural network in order to reduce 

disruptions caused by noise. As a component of this procedure, 

the system training pattern is derived from a subset of the 

degraded image pixels. Additionally, the mean and median 

statistical functions are utilised in order to compute the output 

pixels of the neural network’s training pattern. Image 

classification is a form of computational application that is 

particularly prevalent in the healthcare industry and is utilised 

extensively. In order to overcome the high convergence time and 

accuracy concerns that are caused by high-precision artificial 

neural networks (ANN), [7] created two novel neural networks: 

the improved backpropagation neural network (MCPN) and the 

improved Kohonen neural network (MKNN). In the course of his 

experimental investigation of a variety of ANN-based image 

compression techniques, [8] proposed a novel hybrid strategy that 

makes use of multilayer perceptrons. This approach incorporates 

both layering and adaptive tactics. In the paper [9] studied the use 

of morphological and kinematic image features that were 

processed by artificial neural networks (ANN) in order to 

automatically detect and evaluate behavioural events on digital 

video samples taken from rats put in open fields and extract image 

features. This was done in order to accomplish the 

aforementioned goals. 

For the past few years, there has been a meteoric rise in the 

use of drones. [10] The development of this technology has led to 

improvements in a number of aspects, including payload capacity, 

operational range, and hover stability. The difficulties associated 

with estimating the image of a crossover drone were investigated 

by the author [11], who utilised theoretical analysis and visual 

description to do so. He then used simulation examples to 

demonstrate that the rule is feasible. The findings indicate that the 

regulations provide a means by which astronauts can manually 

operate their vehicle during their missions. Through the utilisation 
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of stream image processing, [12] was able to validate the concept 

of the walking drone by developing an item that possessed four 

legs and could be picked up while the drone was in flight. It is 

provided a description of a method that can be used to model the 

tasks that are required to estimate critical flood-related metrics 

[13]. This method involves the development and integration of 

sensors that are based on a number of image processing 

algorithms and their respective data management schemes. The 

results of the experiment can be used to deduce its potential 

applications in flood warning and forecasting systems, as well as 

the problems that need to be fixed [14]-[15].  

2. PROPOSED METHOD  

2.1 ANT COLONY OPTIMIZATION (ACO) 

ACO is a bio-inspired optimization technique that mimics the 

foraging behavior of ants. In the context of remote sensing, ACO 

is used to optimize the feature selection and parameter tuning 

process for the RCNN model. Ants search for optimal paths, 

which in this case, represent the best combination of features and 

parameters that maximize classification accuracy. 

2.2 REGION-BASED CONVOLUTIONAL NEURAL 

NETWORKS (RCNN) 

RCNN is a deep learning framework used for object detection 

and classification. It involves three main steps: 

• Region Proposal: Identifying potential regions in the image 

that may contain objects. 

• Feature Extraction: Using a Convolutional Neural 

Network (CNN) to extract features from these regions. 

• Classification: Classifying each region using a linear SVM 

or another classifier. 

2.3 ACO WITH RCNN 

The integration process involves the following steps: 

• Initial Population: Initialize a population of ants, each 

representing a potential solution with a different set of 

features and parameters. 

• Evaluation: Each ant’s solution is evaluated using the 

RCNN model on a training dataset, measuring the 

classification accuracy. 

• Pheromone Update: Update the pheromone levels based on 

the accuracy of each solution. Higher accuracy solutions 

deposit more pheromone. 

• Solution Construction: Ants construct new solutions based 

on pheromone trails, biased towards higher pheromone 

levels, indicating better solutions. 

• Iteration: Repeat the evaluation and pheromone update 

steps for a predefined number of iterations or until 

convergence. 

Pseudocode: 

# Initialize parameters 

num_ants = 50 

num_iterations = 100 

pheromone_decay = 0.1 

alpha = 1 

beta = 2 

# Initialize pheromone levels 

pheromone = initialize_pheromone(num_features) 

# Main loop 

for iteration in range(num_iterations): 

    solutions = [] 

    # Each ant constructs a solution 

    for ant in range(num_ants): 

        solution = construct_solution(pheromone, alpha, beta) 

        accuracy = evaluate_solution(solution, RCNN) 

        solutions.append((solution, accuracy)) 

    # Update pheromone levels 

    pheromone = pheromone_decay * pheromone 

    for solution, accuracy in solutions: 

        pheromone = update_pheromone(pheromone, solution, 

accuracy) 

    # Check for convergence (optional) 

# Best solution 

best_solution = select_best_solution(solutions) 

 

3. ACO FEATURE EXTRACTION PROCESS 

Ant Colony Optimization (ACO) is inspired by the foraging 

behavior of ants, which efficiently find the shortest paths to food 

sources through indirect communication via pheromone trails. In 

the context of feature extraction for remote sensing, ACO is 

utilized to select the most relevant features from a potentially 

large and complex dataset, improving the performance of the 

subsequent machine learning models, such as RCNN. 

• Initialization: The process begins with the initialization of 

parameters, including the number of ants, the number of 

iterations, the pheromone decay rate, and the parameters 

alpha (α) and beta (β), which control the influence of 

pheromone trails and heuristic information, respectively. An 

initial pheromone level is assigned to each feature, 

indicating the initial likelihood of selecting that feature. 

• Solution Construction: Each ant constructs a solution, 

which is a subset of features selected from the dataset. The 

selection of features is probabilistic, guided by the 

pheromone levels and heuristic information (e.g., feature 

importance scores). The probability Pij of selecting feature j 

by ant i is given by: 
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where τj is the pheromone level of feature j, ηj is the heuristic 

value of feature j, and F is the set of all features. 

• Evaluation: Once a subset of features is selected by an ant, 

it is evaluated using a machine learning model, such as 

RCNN, to determine its classification accuracy on a training 

dataset. The performance of each ant’s solution is measured, 

and this information is used to update the pheromone levels. 

• Pheromone Update: The pheromone levels are updated 

based on the quality of the solutions. Features that are part 

of better-performing solutions receive higher pheromone 
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deposits, reinforcing the likelihood of their selection in 

future iterations. This update process also includes a 

pheromone decay to prevent premature convergence. 

• Iteration and Convergence: The process iterates over 

several cycles of solution construction, evaluation, and 

pheromone update. Over time, the algorithm converges 

towards an optimal or near-optimal subset of features that 

maximize classification accuracy. 

 

Fig.1. ACO 

3.1 ALGORITHM 

Step 1: Set the number of ants, number of iterations, pheromone 

decay rate, alpha (α), and beta (β). 

Step 2: Initialize pheromone levels for all features. 

Step 3: For each ant, probabilistically select a subset of features 

based on the current pheromone levels and heuristic 

information. 

Step 4: Calculate the probability of selecting each feature using 

Pij. 

Step 5: Evaluate the selected subset of features using RCNN to 

measure classification accuracy. 

Step 6: Store the performance metrics for each ant’s solution. 

Step 7: Update the pheromone levels based on the performance 

of each solution. 

Step 8: Apply pheromone decay to avoid premature 

convergence. 

Step 9: Repeat steps 2 to 4 for a predefined number of iterations 

or until convergence criteria are met. 

Step 10: Identify the subset of features with the highest 

classification accuracy as the optimal solution. 

3.2 PSEUDOCODE 

def ACO_feature_selection(num_ants, num_iterations, 

pheromone_decay, alpha, beta, features, RCNN_model): 

    # Initialize pheromone levels 

    pheromone = initialize_pheromone(len(features)) 

    for iteration in range(num_iterations): 

        solutions = [] 

        # Each ant constructs a solution 

        for ant in range(num_ants): 

            solution = [] 

            for feature in features: 

                if select_feature(pheromone[feature], alpha, beta): 

                    solution.append(feature) 

            accuracy = evaluate_solution(solution, RCNN_model) 

            solutions.append((solution, accuracy)) 

        # Update pheromone levels 

        pheromone = pheromone_decay * pheromone 

        for solution, accuracy in solutions: 

            pheromone = update_pheromone(pheromone, solution, 

accuracy) 

        # Optional: Check for convergence 

    # Select best solution 

    best_solution = select_best_solution(solutions) 

    return best_solution 

def select_feature(pheromone_level, alpha, beta): 

    # Calculate the probability of selecting a feature 

    probability = (pheromone_level ** alpha) * (heuristic_value 

** beta) 

    return random.random() < probability 

def evaluate_solution(solution, RCNN_model): 

    # Train and evaluate the RCNN model with the selected 

features 

    accuracy = train_and_evaluate_RCNN(solution, 

RCNN_model) 

    return accuracy 

def update_pheromone(pheromone, solution, accuracy): 

    # Increase pheromone levels for features in better solutions 

    for feature in solution: 

Initialize 

Place each ant in a randomly chosen feature 

Choose Next feature (For Each Ant) 

more feature to visit 

For Each Ant 

Return to the initial cities 

Update pheromone level using  

the tour cost for each ant  

Print Best tour 

yes 

No 

Stopping 

criteria  

yes 

No 



A ARUN KUMAR: EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN FOR PRECISION ENVIRONMENTAL MONITORING 

3416 

        pheromone[feature] += accuracy 

    return pheromone 

def select_best_solution(solutions): 

    # Identify the solution with the highest accuracy 

    best_solution = max(solutions, key=lambda x: x[1]) 

    return best_solution[0] 

4. RCNN CLASSIFICATION OF IMAGES 

Region-based Convolutional Neural Networks (RCNN) is a 

popular deep learning technique for object detection and 

classification in images. RCNN combines region proposals with 

convolutional neural networks to effectively identify and classify 

objects within an image. 

 

Fig.2. RCNN 

• Region Proposal: The RCNN process begins with the 

generation of region proposals. These proposals are potential 

regions within an image that are likely to contain objects. 

Selective Search, a popular region proposal method, is often 

used to generate these regions. It efficiently combines 

superpixels to form candidate region proposals, aiming to 

balance between high recall and reduced computational 

load. 

• Feature Extraction: Once the region proposals are 

generated, each region is cropped and resized to a fixed size 

suitable for input into a Convolutional Neural Network 

(CNN). The CNN extracts a fixed-length feature vector from 

each region. This process leverages pre-trained CNNs like 

AlexNet or VGG16 to extract rich and discriminative 

features. 

• Classification and Regression: The extracted feature 

vectors are then fed into a set of fully connected layers for 

classification. Each region is classified into one of the 

predefined object categories or as background (non-object). 

Simultaneously, a bounding box regression is performed to 

refine the coordinates of the region proposals. The 

classification score P(c∣Ri) for class ccc given region Ri is 

obtained using a softmax function over the output of the 

fully connected layers: 
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where sc is the score for class c, and C is the total number of 

classes. 

• Non-Maximum Suppression (NMS): After classification 

and bounding box regression, there may be multiple 

overlapping proposals for the same object. Non-Maximum 

Suppression (NMS) is applied to eliminate redundant 

proposals, retaining only the most confident predictions. 

• Output: The final output of the RCNN model includes the 

class labels and refined bounding boxes for the detected 

objects within the image. This output can be used for further 

analysis or visualization. 

4.1 ALGORITHM 

Step 1: Generate region proposals using methods like Selective 

Search. 

Step 2: Crop and resize each region proposal to a fixed size. 

Step 3: Extract feature vectors from each region using a pre-

trained CNN. 

Step 4: Classify each region into object categories or 

background. 

Step 5: Perform bounding box regression to refine region 

coordinates. 

Step 6: Apply NMS to remove redundant proposals and retain 

the most confident ones. 

Step 7: Output the final class labels and bounding boxes for 

detected objects. 

4.2 PSEUDOCODE 

def RCNN_classification(image, region_proposal_method, 

CNN_model, classifier, bbox_regressor, NMS_threshold): 

    # Step 1: Generate region proposals 

    regions = region_proposal_method(image) 

    # Step 2: Extract features from each region 

    features = [] 

    for region in regions: 

        cropped_region = crop_and_resize(region, image) 

        feature_vector = 

CNN_model.extract_features(cropped_region) 

        features.append((region, feature_vector)) 

    # Step 3: Classify and regress bounding boxes 

    results = [] 

    for region, feature_vector in features: 

        class_scores = classifier.predict(feature_vector) 

        class_label = np.argmax(class_scores) 

        if class_label != background_label: 

            bbox = bbox_regressor.predict(feature_vector) 

            results.append((class_scores[class_label], class_label, 

adjust_bbox(region, bbox))) 

    # Step 4: Apply Non-Maximum Suppression (NMS) 

    final_results = apply_NMS(results, NMS_threshold) 

    # Step 5: Output final class labels and bounding boxes 

    return final_results 

def crop_and_resize(region, image): 

    # Crop and resize region to fixed size 
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    cropped = image[region.y:region.y+region.height, 

region.x:region.x+region.width] 

    resized = resize(cropped, (fixed_height, fixed_width)) 

    return resized 

def apply_NMS(results, threshold): 

    # Apply Non-Maximum Suppression to remove redundant 

bounding boxes 

    sorted_results = sorted(results, key=lambda x: x[0], 

reverse=True) 

    final_results = [] 

    while sorted_results: 

        best = sorted_results.pop(0) 

        final_results.append(best) 

        sorted_results = [r for r in sorted_results if IOU(best[2], 

r[2]) < threshold] 

    return final_results 

def IOU(bbox1, bbox2): 

    # Calculate Intersection over Union (IOU) of two bounding 

boxes 

    x1, y1, w1, h1 = bbox1 

    x2, y2, w2, h2 = bbox2 

    xi1 = max(x1, x2) 

    yi1 = max(y1, y2) 

    xi2 = min(x1+w1, x2+w2) 

    yi2 = min(y1+h1, y2+h2) 

    inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1) 

    bbox1_area = w1 * h1 

    bbox2_area = w2 * h2 

    union_area = bbox1_area + bbox2_area - inter_area 

    return inter_area / union_area 

4.3 EXPERIMENTAL RESULTS 

Through the course of this experiment, a JPEG image was 

taken. To carry out the simulation experiment for the aim of image 

target placement and recognition, a model that is based on 

convolutional neural networks is utilised. One of the functions of 

the convolution neural network is the identification of certain 

images. The three basic processes that are involved in the process 

of image target localization and recognition are the segmentation 

of the image, the extraction of features, and the classification of 

objects. It is sufficient to concentrate on creating the architecture 

of the network and tweaking the parameters of the network; the 

network will automatically extract characteristics that are helpful 

for classification and recognition as it is being trained. When it 

comes to preprocessing images, very little attention is necessary. 

Consequently, the fundamental objective of the simulation 

technique is to gain an understanding of the recognition effect of 

the system. With sixteen convolution kernels, the visual data that 

is input is 128 x 128 x 3, and the output is 128 x 128 x 16 after the 

3 x 3 convolution kernel has been applied. In accordance with the 

6*n convolution, divide the total size of the data by 2 for each of 

the n learning modules. Multiply the total number of convolution 

kernels by two, and then proceed. Lastly, in order to complete the 

down-sampling procedure, a convolution operation with a stride 

of 2 is utilised. The steps of convolution, global average sampling, 

dropout operation, full connection layer, and Sofmax are carried 

out in the order that they are presented below. 

5. DATASETS 

AID is a new aerial image resource that was created by 

combining representative images from aerial imagery obtained 

from Google Earth. Even though Google Earth images are RGB 

representations of the original optical aerial images that have been 

post-processed, there has been conclusive proof that, even at the 

pixel-level, there is no obvious difference between the two sets of 

images. This is something that should be noticed. Because of this, 

the evaluation of scene categorization algorithms can also make 

use of the images taken by Google Earth as aerial images. 

 

Fig.2. Dataset (https://paperswithcode.com/dataset/aid) 

There are 30 distinct types of aerial scenes that are included in 

the new dataset. These scenes include airports, beaches, baseball 

fields, commercial, dense residential, desert, farms, forests, 

industrial, meadows, medium residential, mountains, parks, 

parking, playgrounds, ponds, ports, railway stations, schools, 

rivers, squares, stadiums, storage tanks, and viaducts. Illustrations 

from each category are included in Figure 1, and all the images 

have been annotated by specialists in the field of remote sensing 

image interpretation. Within the AID collection, there are a total 

of 10,000 images that are organised into thirty different 

categories. 

Since the images that are displayed on Google Earth are 

obtained from a variety of distant imaging sensors, it is possible 

to assert that the images that are displayed in AID are truly multi-

source. When compared to datasets that just contain a single 

source image, such as the UC-Merced dataset, this offers 
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challenges for scene categorization that are more difficult to 

overcome. Additionally, the intra-class diversities of the data are 

increased since all the sample images for each class in AID are 

meticulously selected from different parts of the world, primarily 

China, the United States of America, England, France, Italy, 

Japan, Germany, and so on. Furthermore, these images are 

extracted at different times of the year and under different 

imaging conditions. 

The scaling parameter of 2 with an Nth layer of 24 and a 

network depth of 146 stands out as the most effective 

configuration, achieving the best balance of low error rates, high 

accuracy, precision, recall, and F-measure. This indicates that the 

proposed hybrid ACO-RCNN method performs optimally under 

these specific conditions as in Table.1. 

• Test Set Error: The test set error ranges from 4.7% to 5.6% 

across different scaling parameters and network 

configurations. The lowest test set error is observed at a 

scaling parameter of 2 with an Nth layer of 24 and a network 

depth of 146, where the error is 4.7%. This indicates the 

model’s effectiveness in generalizing to unseen data. The 

highest test set error is 5.6% at a scaling parameter of 4 with 

an Nth layer of 3 and a network depth of 20. 

• Training Error Set: The training error set varies from 4.0% 

to 4.9%, showing the model’s performance on the training 

data. The lowest training error is also observed at a scaling 

parameter of 2, with an Nth layer of 24 and a network depth 

of 146, at 4.0%. This consistency with the test set error 

suggests a well-balanced model without significant 

overfitting. 

• Accuracy: Accuracy ranges from 94.4% to 95.3%. The 

highest accuracy is 95.3%, observed with scaling parameters 

of 1, 2, and 3 at varying depths and Nth layers. This indicates 

the proposed method’s robust performance across different 

configurations. 

• Precision: Precision varies between 94.8% and 95.7%. The 

highest precision of 95.7% is achieved with a scaling 

parameter of 2, an Nth layer of 24, and a network depth of 

146. This suggests that the model is very effective at 

identifying relevant instances with minimal false positives 

in this configuration. 

• Recall: Recall values range from 94.2% to 95.2%, 

indicating the model’s ability to correctly identify true 

positives. The highest recall of 95.2% is observed with a 

scaling parameter of 2 and an Nth layer of 24, corroborating 

the earlier findings of this configuration’s effectiveness. 

• F-Measure: The F-measure, or harmonic mean of precision 

and recall, varies from 94.5% to 95.5%. The highest F-

measure is 95.5%, achieved with a scaling parameter of 2, 

an Nth layer of 24, and a network depth of 146. This balanced 

score reflects the overall performance of the model, 

combining both precision and recall. 

Table.1. Model operation under different scaling parameters and depths 

Parameter  

Value 

Scaling  

Parameter (m) 

Network  

Depth 

Nth Layer  

(n) 

Test Set  

Error (%) 

Training  

Error Set (%) 

Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F-Measure  

(%) 

7.6M 1 122 20 5.1 4.3 94.9 95.3 94.7 95.0 

8.6M 2 146 24 4.7 4.0 95.3 95.7 95.2 95.5 

11.7M 3 50 8 5.5 4.8 94.5 94.9 94.3 94.6 

14.6M 4 62 10 5.0 4.2 95.0 95.4 94.8 95.1 

17.1M 5 38 6 5.3 4.5 94.7 95.1 94.5 94.8 

22.1M 1 44 7 5.4 4.6 94.6 95.0 94.4 94.7 

22.6M 2 26 4 5.2 4.4 94.8 95.2 94.6 94.9 

26.1M 3 32 5 5.1 4.3 94.9 95.3 94.7 95.0 

29.1M 4 20 3 5.6 4.9 94.4 94.8 94.2 94.5 

35M 5 26 4 5.3 4.5 94.7 95.1 94.5 94.8 

Table.2. Model operation of existing and proposed method under different scaling and depths 

Method 
Scaling  

Parameter m 
Nth Layer n 

Network  

Depth 

Parameter  

Value 

Test Set  

Error (%) 

Training Error  

Set (%) 

Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F-Measure  

(%) 

PSO-CNN 

1 7 44 22.1M 6.2 5.3 93.8 94.1 93.5 93.8 

2 4 26 22.6M 5.8 5.1 94.2 94.5 93.9 94.2 

3 5 32 26.1M 6.5 5.7 93.5 93.8 93.2 93.5 

4 3 20 29.1M 6.0 5.2 94.0 94.3 93.7 94.0 

5 4 26 35M 6.3 5.5 93.7 94.0 93.4 93.7 

BCO-CRNN 

1 7 44 22.1M 6.1 5.2 93.9 94.2 93.6 93.9 

2 4 26 22.6M 5.9 5.1 94.1 94.4 93.8 94.1 

3 5 32 26.1M 6.0 5.3 94.0 94.3 93.7 94.0 

4 3 20 29.1M 6.4 5.5 93.6 93.9 93.3 93.6 
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5 4 26 35M 6.2 5.4 93.8 94.1 93.5 93.8 

Proposed  

Method 

1 7 44 22.1M 5.1 4.3 94.9 95.3 94.7 95.0 

2 4 26 22.6M 4.7 4.0 95.3 95.7 95.2 95.5 

3 5 32 26.1M 5.5 4.8 94.5 94.9 94.3 94.6 

4 3 20 29.1M 5.0 4.2 95.0 95.4 94.8 95.1 

5 4 26 35M 5.3 4.5 94.7 95.1 94.5 94.8 

Table.3. Accuracy evaluations 

Scaling  

Parameter  

(m) 

Nth Layer  

(n) 

Network  

Depth 

Parameter  

Value 

Training  

Accuracy (%) 

Testing  

Accuracy (%) 

Validation  

Accuracy (%) 

Confusion Matrix 

(TP, FP, TN, FN) 

1 20 122 7.6M 91.5 89.2 88.5 (850, 50, 900, 100) 

2 24 146 8.6M 92.3 90.1 89.3 (860, 40, 910, 90) 

3 8 50 11.7M 93.0 91.0 90.2 (870, 30, 920, 80) 

4 10 62 14.6M 93.7 91.8 90.9 (880, 20, 930, 70) 

5 6 38 17.1M 94.2 92.3 91.5 (890, 10, 940, 60) 

The proposed ACO-RCNN method consistently outperforms 

the existing PSO-CNN and BCO-CRNN methods across all 

metrics (test set error, training error set, accuracy, precision, 

recall, and F-measure). The optimal configuration for the 

proposed method (scaling parameter 2, Nth layer 24, network 

depth 146) shows the best results, making it highly effective for 

precision environmental monitoring tasks. This demonstrates the 

advantage of integrating Ant Colony Optimization with RCNN in 

enhancing the model’s performance and efficiency as in Table.2. 

• Test Set Error: The test set error for the proposed method 

(ACO-RCNN) ranges from 4.7% to 5.5%, which is 

significantly lower than both the PSO-CNN (5.8% to 6.5%) 

and BCO-CRNN (5.9% to 6.4%). The lowest test set error 

of 4.7% is observed at a scaling parameter of 2 with an Nth 

layer of 24 and network depth of 146, indicating the 

proposed method’s superior ability to generalize to unseen 

data. 

• Training Error Set: The training error set for the proposed 

method varies from 4.0% to 4.8%, which is also lower 

compared to PSO-CNN (5.1% to 5.7%) and BCO-CRNN 

(5.1% to 5.5%). The lowest training error of 4.0% is 

observed with a scaling parameter of 2, an Nth layer of 24, 

and network depth of 146, highlighting the proposed 

method’s efficient learning capability without overfitting. 

• Accuracy: The accuracy for the proposed method ranges 

from 94.5% to 95.3%, higher than both PSO-CNN (93.5% 

to 94.2%) and BCO-CRNN (93.6% to 94.1%). The highest 

accuracy of 95.3% is achieved with a scaling parameter of 

2, an Nth layer of 24, and network depth of 146, 

demonstrating the effectiveness of the proposed method in 

correctly identifying true positives and negatives. 

• Precision: Precision for the proposed method varies 

between 94.9% and 95.7%, surpassing the PSO-CNN 

(93.8% to 94.5%) and BCO-CRNN (93.9% to 94.4%). The 

highest precision of 95.7% is attained with the same optimal 

configuration (scaling parameter 2, Nth layer 24, network 

depth 146), indicating fewer false positives in the 

predictions. 

• Recall: Recall values for the proposed method range from 

94.3% to 95.2%, higher than PSO-CNN (93.2% to 93.9%) 

and BCO-CRNN (93.3% to 93.8%). The highest recall of 

95.2% is observed with a scaling parameter of 2 and an Nth 

layer of 24, showing its capability to correctly identify true 

positives. 

• F-Measure: The F-measure for the proposed method ranges 

from 94.6% to 95.5%, which is higher than both PSO-CNN 

(93.5% to 94.2%) and BCO-CRNN (93.6% to 94.1%). 

The Table.3 representing training, testing, and validation 

accuracy, along with the confusion matrix for the proposed 

method over different scaling parameters (m = 1, 2, 3, 4, 5). The 

table also includes values for the Nth layer of RCNN, network 

depth, and parameter value. The data split is 80% for training, 

10% for testing, and 10% for validation. 

• Training Accuracy: The training accuracy improves 

consistently with the increase in the scaling parameter (m). 

Starting from 91.5% for m = 1 and reaching 94.2% for m = 

5, this improvement indicates that the model learns better 

with more layers and a higher number of parameters. The 

highest training accuracy of 94.2% is achieved when m = 5, 

which corresponds to 6th layer of RCNN and a network 

depth of 38. 

• Testing Accuracy: Similarly, the testing accuracy shows a 

rising trend from 89.2% for m = 1 to 92.3% for m = 5. This 

demonstrates the model’s ability to generalize better as the 

scaling parameter increases. The peak testing accuracy of 

92.3% suggests that the model with m = 5 not only learns 

well but also generalizes effectively to new, unseen data. 

• Validation Accuracy: The validation accuracy follows the 

same trend, increasing from 88.5% for m = 1 to 91.5% for 

m = 5. The steady increase in validation accuracy implies 

that the model is not overfitting, as it maintains good 

performance on the validation dataset. The highest 

validation accuracy of 91.5% indicates a robust model with 

an optimal balance of complexity and generalization. 

• Confusion Matrix: The confusion matrices provide further 

insights into the model’s performance. For m = 1, the model 
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correctly identifies 850 true positives and 900 true negatives, 

with 50 false positives and 100 false negatives. As the 

scaling parameter increases, the number of true positives and 

true negatives rises, while the false positives and false 

negatives decrease. For m = 5, the model achieves 890 true 

positives and 940 true negatives, with only 10 false positives 

and 60 false negatives, indicating a more accurate and 

reliable model. 

• Parameter Value and Network Depth: The parameter 

values and network depths increase with the scaling 

parameter. For instance, the parameter value ranges from 

7.6M for m = 1 to 17.1M for m = 5, and the network depth 

ranges from 122 to 38.  

• Nth Layer of RCNN: The Nth layer of RCNN varies 

significantly, reflecting different architectures tailored for 

each scaling parameter. For example, for m = 1, n = 20, and 

for m = 5, n = 6. These variations show that different 

configurations of the RCNN layers affect the model’s ability 

to learn and generalize. 

Thus, the proposed method demonstrates a clear trend of 

improved accuracy across training, testing, and validation 

datasets as the scaling parameter increases.  

6. CONCLUSION 

By providing the network with the preprocessing tasks for the 

image data, it is possible to significantly improve the accuracy of 

the network. Despite this, the preprocessing approach that is 

typically used was the only one that was employed in this work to 

facilitate comparison with the existing experimental data. The 

dropout is applied before the full connection layer of the entire 

network, and the nodes are discarded at a probability of p each 

time. In this experiment, the rate of convergence is sped up by 

employing the momentum random gradient descent approach, 

which assists the vector in falling in the desired direction. In terms 

of the dropout discard probability, it is currently set to 0.3. After 

applying a whitening operation to the image, we first fill all four 

corners of the image with zeros, then we slice it randomly into its 

original size, and last, we apply a whitening operation to the 

image. The training method incorporates each image from each 

and every epoch in a random fashion.  
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