
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

DOI: 10.21917/ijsc.2024.0479

3413

EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN

FOR PRECISION ENVIRONMENTAL MONITORING

A. Arun Kumar
Department of Electrical and Electronics Engineering, Ramco Institute of Technology, India

Abstract

Remote sensing has become a critical tool in environmental

monitoring, offering precise data collection over large areas. However,

traditional methods face challenges such as high computational costs

and lower accuracy in complex environments. The primary challenge

is optimizing data processing to improve accuracy and efficiency in

extracting valuable environmental information from remote sensing

data. This study proposes a novel approach combining Ant Colony

Optimization (ACO) and Region-based Convolutional Neural

Networks (RCNN) for enhanced precision in environmental

monitoring. ACO, inspired by the foraging behavior of ants, is used to

optimize the parameters and feature selection process. RCNN, a deep

learning model, is employed to detect and classify environmental

features from remote sensing imagery. The integration of ACO with

RCNN aims to enhance the model’s performance by selecting the most

relevant features and optimal parameters, thereby reducing

computational costs and improving accuracy. The proposed method

was tested on a dataset of satellite images for land cover classification.

The hybrid ACO-RCNN approach achieved a classification accuracy

of 93.2%, outperforming traditional methods by 8.7%, and reduced

computational time by 25%. These results demonstrate the efficacy of

the proposed method in precision environmental monitoring.

Keywords:

Remote Sensing, Ant Colony Optimization, RCNN, Environmental

Monitoring, Land Cover Classification

1. INTRODUCTION

Over the past few years, there has been a significant amount

of advancement in the realm of drone technology. In order to carry

out environmental monitoring, this article makes use of a drone to

capture images, and then it employs machine vision in order to

locate and identify the images that were taken. The process of

research in the field of image location and recognition

technologies frequently involves the identification of potential

targets and the derivation of insightful inferences from the image

data that has been obtained. Deep learning algorithms are being

used for an increasing variety of tasks that are performed daily.

These tasks include speech recognition, automatic translation,

image recognition, personalised recommendations, and include

many more applications. The convolution neural network is an

example of a type of deep learning approach that has found

widespread application in the field of image recognition.

The term “artificial neural network” (ANN) refers to a

collection of interconnected artificial neurons that uses

mathematical or computational models to process data. This type

of network is also sometimes referred to as a “simulated neural

network” [1]. The process of training artificial neural networks is

a statistical methodology in and of itself, and [2] proposed some

unique approaches to training such networks that could

potentially be advantageous. In [3] utilised a mix of artificial

neural networks and remote sensing in order to get a more

accurate image classification of urban environments that are

scattered and varied. In [4] provides an explanation of the physical

aspects that enable species identification through the utilisation of

computer image analysis, artificial neural networks, and feature

selection. This is accomplished by examining scientific data that

are biological in nature. The visual properties that were gathered

by the artificial neural network are utilised in the training process

of the multilayer perceptron network. The system that proposed

by the author of [5] devised for manually testing vehicles was

developed. Images that were taken at the entrance to the parking

lot are used by the system for the purpose of character

identification. After the images have been shot, they are converted

into digital formats that have been devised by researchers in order

to fulfil the requirements of artificial neural networks. The

numbered boards are used to extract the distinctive characteristics

of each character, which are derived from these forms. A

significant obstacle that must be overcome in the realm of digital

image processing is the process of image denoising. In the paper

[6] proposed the idea of conducting a comprehensive performance

review that makes use of a neural network in order to reduce

disruptions caused by noise. As a component of this procedure,

the system training pattern is derived from a subset of the

degraded image pixels. Additionally, the mean and median

statistical functions are utilised in order to compute the output

pixels of the neural network’s training pattern. Image

classification is a form of computational application that is

particularly prevalent in the healthcare industry and is utilised

extensively. In order to overcome the high convergence time and

accuracy concerns that are caused by high-precision artificial

neural networks (ANN), [7] created two novel neural networks:

the improved backpropagation neural network (MCPN) and the

improved Kohonen neural network (MKNN). In the course of his

experimental investigation of a variety of ANN-based image

compression techniques, [8] proposed a novel hybrid strategy that

makes use of multilayer perceptrons. This approach incorporates

both layering and adaptive tactics. In the paper [9] studied the use

of morphological and kinematic image features that were

processed by artificial neural networks (ANN) in order to

automatically detect and evaluate behavioural events on digital

video samples taken from rats put in open fields and extract image

features. This was done in order to accomplish the

aforementioned goals.

For the past few years, there has been a meteoric rise in the

use of drones. [10] The development of this technology has led to

improvements in a number of aspects, including payload capacity,

operational range, and hover stability. The difficulties associated

with estimating the image of a crossover drone were investigated

by the author [11], who utilised theoretical analysis and visual

description to do so. He then used simulation examples to

demonstrate that the rule is feasible. The findings indicate that the

regulations provide a means by which astronauts can manually

operate their vehicle during their missions. Through the utilisation

A ARUN KUMAR: EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN FOR PRECISION ENVIRONMENTAL MONITORING

3414

of stream image processing, [12] was able to validate the concept

of the walking drone by developing an item that possessed four

legs and could be picked up while the drone was in flight. It is

provided a description of a method that can be used to model the

tasks that are required to estimate critical flood-related metrics

[13]. This method involves the development and integration of

sensors that are based on a number of image processing

algorithms and their respective data management schemes. The

results of the experiment can be used to deduce its potential

applications in flood warning and forecasting systems, as well as

the problems that need to be fixed [14]-[15].

2. PROPOSED METHOD

2.1 ANT COLONY OPTIMIZATION (ACO)

ACO is a bio-inspired optimization technique that mimics the

foraging behavior of ants. In the context of remote sensing, ACO

is used to optimize the feature selection and parameter tuning

process for the RCNN model. Ants search for optimal paths,

which in this case, represent the best combination of features and

parameters that maximize classification accuracy.

2.2 REGION-BASED CONVOLUTIONAL NEURAL

NETWORKS (RCNN)

RCNN is a deep learning framework used for object detection

and classification. It involves three main steps:

• Region Proposal: Identifying potential regions in the image

that may contain objects.

• Feature Extraction: Using a Convolutional Neural

Network (CNN) to extract features from these regions.

• Classification: Classifying each region using a linear SVM

or another classifier.

2.3 ACO WITH RCNN

The integration process involves the following steps:

• Initial Population: Initialize a population of ants, each

representing a potential solution with a different set of

features and parameters.

• Evaluation: Each ant’s solution is evaluated using the

RCNN model on a training dataset, measuring the

classification accuracy.

• Pheromone Update: Update the pheromone levels based on

the accuracy of each solution. Higher accuracy solutions

deposit more pheromone.

• Solution Construction: Ants construct new solutions based

on pheromone trails, biased towards higher pheromone

levels, indicating better solutions.

• Iteration: Repeat the evaluation and pheromone update

steps for a predefined number of iterations or until

convergence.

Pseudocode:

Initialize parameters

num_ants = 50

num_iterations = 100

pheromone_decay = 0.1

alpha = 1

beta = 2

Initialize pheromone levels

pheromone = initialize_pheromone(num_features)

Main loop

for iteration in range(num_iterations):

 solutions = []

 # Each ant constructs a solution

 for ant in range(num_ants):

 solution = construct_solution(pheromone, alpha, beta)

 accuracy = evaluate_solution(solution, RCNN)

 solutions.append((solution, accuracy))

 # Update pheromone levels

 pheromone = pheromone_decay * pheromone

 for solution, accuracy in solutions:

 pheromone = update_pheromone(pheromone, solution,

accuracy)

 # Check for convergence (optional)

Best solution

best_solution = select_best_solution(solutions)

3. ACO FEATURE EXTRACTION PROCESS

Ant Colony Optimization (ACO) is inspired by the foraging

behavior of ants, which efficiently find the shortest paths to food

sources through indirect communication via pheromone trails. In

the context of feature extraction for remote sensing, ACO is

utilized to select the most relevant features from a potentially

large and complex dataset, improving the performance of the

subsequent machine learning models, such as RCNN.

• Initialization: The process begins with the initialization of

parameters, including the number of ants, the number of

iterations, the pheromone decay rate, and the parameters

alpha (α) and beta (β), which control the influence of

pheromone trails and heuristic information, respectively. An

initial pheromone level is assigned to each feature,

indicating the initial likelihood of selecting that feature.

• Solution Construction: Each ant constructs a solution,

which is a subset of features selected from the dataset. The

selection of features is probabilistic, guided by the

pheromone levels and heuristic information (e.g., feature

importance scores). The probability Pij of selecting feature j

by ant i is given by:

() ()
() ()

j j

ij

k kk F

P

 

 

 

 


=

 (1)

where τj is the pheromone level of feature j, ηj is the heuristic

value of feature j, and F is the set of all features.

• Evaluation: Once a subset of features is selected by an ant,

it is evaluated using a machine learning model, such as

RCNN, to determine its classification accuracy on a training

dataset. The performance of each ant’s solution is measured,

and this information is used to update the pheromone levels.

• Pheromone Update: The pheromone levels are updated

based on the quality of the solutions. Features that are part

of better-performing solutions receive higher pheromone

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3415

deposits, reinforcing the likelihood of their selection in

future iterations. This update process also includes a

pheromone decay to prevent premature convergence.

• Iteration and Convergence: The process iterates over

several cycles of solution construction, evaluation, and

pheromone update. Over time, the algorithm converges

towards an optimal or near-optimal subset of features that

maximize classification accuracy.

Fig.1. ACO

3.1 ALGORITHM

Step 1: Set the number of ants, number of iterations, pheromone

decay rate, alpha (α), and beta (β).

Step 2: Initialize pheromone levels for all features.

Step 3: For each ant, probabilistically select a subset of features

based on the current pheromone levels and heuristic

information.

Step 4: Calculate the probability of selecting each feature using

Pij.

Step 5: Evaluate the selected subset of features using RCNN to

measure classification accuracy.

Step 6: Store the performance metrics for each ant’s solution.

Step 7: Update the pheromone levels based on the performance

of each solution.

Step 8: Apply pheromone decay to avoid premature

convergence.

Step 9: Repeat steps 2 to 4 for a predefined number of iterations

or until convergence criteria are met.

Step 10: Identify the subset of features with the highest

classification accuracy as the optimal solution.

3.2 PSEUDOCODE

def ACO_feature_selection(num_ants, num_iterations,

pheromone_decay, alpha, beta, features, RCNN_model):

 # Initialize pheromone levels

 pheromone = initialize_pheromone(len(features))

 for iteration in range(num_iterations):

 solutions = []

 # Each ant constructs a solution

 for ant in range(num_ants):

 solution = []

 for feature in features:

 if select_feature(pheromone[feature], alpha, beta):

 solution.append(feature)

 accuracy = evaluate_solution(solution, RCNN_model)

 solutions.append((solution, accuracy))

 # Update pheromone levels

 pheromone = pheromone_decay * pheromone

 for solution, accuracy in solutions:

 pheromone = update_pheromone(pheromone, solution,

accuracy)

 # Optional: Check for convergence

 # Select best solution

 best_solution = select_best_solution(solutions)

 return best_solution

def select_feature(pheromone_level, alpha, beta):

 # Calculate the probability of selecting a feature

 probability = (pheromone_level ** alpha) * (heuristic_value

** beta)

 return random.random() < probability

def evaluate_solution(solution, RCNN_model):

 # Train and evaluate the RCNN model with the selected

features

 accuracy = train_and_evaluate_RCNN(solution,

RCNN_model)

 return accuracy

def update_pheromone(pheromone, solution, accuracy):

 # Increase pheromone levels for features in better solutions

 for feature in solution:

Initialize

Place each ant in a randomly chosen feature

Choose Next feature (For Each Ant)

more feature to visit

For Each Ant

Return to the initial cities

Update pheromone level using

the tour cost for each ant

Print Best tour

yes

No

Stopping

criteria

yes

No

A ARUN KUMAR: EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN FOR PRECISION ENVIRONMENTAL MONITORING

3416

 pheromone[feature] += accuracy

 return pheromone

def select_best_solution(solutions):

 # Identify the solution with the highest accuracy

 best_solution = max(solutions, key=lambda x: x[1])

 return best_solution[0]

4. RCNN CLASSIFICATION OF IMAGES

Region-based Convolutional Neural Networks (RCNN) is a

popular deep learning technique for object detection and

classification in images. RCNN combines region proposals with

convolutional neural networks to effectively identify and classify

objects within an image.

Fig.2. RCNN

• Region Proposal: The RCNN process begins with the

generation of region proposals. These proposals are potential

regions within an image that are likely to contain objects.

Selective Search, a popular region proposal method, is often

used to generate these regions. It efficiently combines

superpixels to form candidate region proposals, aiming to

balance between high recall and reduced computational

load.

• Feature Extraction: Once the region proposals are

generated, each region is cropped and resized to a fixed size

suitable for input into a Convolutional Neural Network

(CNN). The CNN extracts a fixed-length feature vector from

each region. This process leverages pre-trained CNNs like

AlexNet or VGG16 to extract rich and discriminative

features.

• Classification and Regression: The extracted feature

vectors are then fed into a set of fully connected layers for

classification. Each region is classified into one of the

predefined object categories or as background (non-object).

Simultaneously, a bounding box regression is performed to

refine the coordinates of the region proposals. The

classification score P(c∣Ri) for class ccc given region Ri is

obtained using a softmax function over the output of the

fully connected layers:

()

1

|
c

k

s

i C
s

k

e
P c R

e
=

=



where sc is the score for class c, and C is the total number of

classes.

• Non-Maximum Suppression (NMS): After classification

and bounding box regression, there may be multiple

overlapping proposals for the same object. Non-Maximum

Suppression (NMS) is applied to eliminate redundant

proposals, retaining only the most confident predictions.

• Output: The final output of the RCNN model includes the

class labels and refined bounding boxes for the detected

objects within the image. This output can be used for further

analysis or visualization.

4.1 ALGORITHM

Step 1: Generate region proposals using methods like Selective

Search.

Step 2: Crop and resize each region proposal to a fixed size.

Step 3: Extract feature vectors from each region using a pre-

trained CNN.

Step 4: Classify each region into object categories or

background.

Step 5: Perform bounding box regression to refine region

coordinates.

Step 6: Apply NMS to remove redundant proposals and retain

the most confident ones.

Step 7: Output the final class labels and bounding boxes for

detected objects.

4.2 PSEUDOCODE

def RCNN_classification(image, region_proposal_method,

CNN_model, classifier, bbox_regressor, NMS_threshold):

 # Step 1: Generate region proposals

 regions = region_proposal_method(image)

 # Step 2: Extract features from each region

 features = []

 for region in regions:

 cropped_region = crop_and_resize(region, image)

 feature_vector =

CNN_model.extract_features(cropped_region)

 features.append((region, feature_vector))

 # Step 3: Classify and regress bounding boxes

 results = []

 for region, feature_vector in features:

 class_scores = classifier.predict(feature_vector)

 class_label = np.argmax(class_scores)

 if class_label != background_label:

 bbox = bbox_regressor.predict(feature_vector)

 results.append((class_scores[class_label], class_label,

adjust_bbox(region, bbox)))

 # Step 4: Apply Non-Maximum Suppression (NMS)

 final_results = apply_NMS(results, NMS_threshold)

 # Step 5: Output final class labels and bounding boxes

 return final_results

def crop_and_resize(region, image):

 # Crop and resize region to fixed size

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3417

 cropped = image[region.y:region.y+region.height,

region.x:region.x+region.width]

 resized = resize(cropped, (fixed_height, fixed_width))

 return resized

def apply_NMS(results, threshold):

 # Apply Non-Maximum Suppression to remove redundant

bounding boxes

 sorted_results = sorted(results, key=lambda x: x[0],

reverse=True)

 final_results = []

 while sorted_results:

 best = sorted_results.pop(0)

 final_results.append(best)

 sorted_results = [r for r in sorted_results if IOU(best[2],

r[2]) < threshold]

 return final_results

def IOU(bbox1, bbox2):

 # Calculate Intersection over Union (IOU) of two bounding

boxes

 x1, y1, w1, h1 = bbox1

 x2, y2, w2, h2 = bbox2

 xi1 = max(x1, x2)

 yi1 = max(y1, y2)

 xi2 = min(x1+w1, x2+w2)

 yi2 = min(y1+h1, y2+h2)

 inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)

 bbox1_area = w1 * h1

 bbox2_area = w2 * h2

 union_area = bbox1_area + bbox2_area - inter_area

 return inter_area / union_area

4.3 EXPERIMENTAL RESULTS

Through the course of this experiment, a JPEG image was

taken. To carry out the simulation experiment for the aim of image

target placement and recognition, a model that is based on

convolutional neural networks is utilised. One of the functions of

the convolution neural network is the identification of certain

images. The three basic processes that are involved in the process

of image target localization and recognition are the segmentation

of the image, the extraction of features, and the classification of

objects. It is sufficient to concentrate on creating the architecture

of the network and tweaking the parameters of the network; the

network will automatically extract characteristics that are helpful

for classification and recognition as it is being trained. When it

comes to preprocessing images, very little attention is necessary.

Consequently, the fundamental objective of the simulation

technique is to gain an understanding of the recognition effect of

the system. With sixteen convolution kernels, the visual data that

is input is 128 x 128 x 3, and the output is 128 x 128 x 16 after the

3 x 3 convolution kernel has been applied. In accordance with the

6*n convolution, divide the total size of the data by 2 for each of

the n learning modules. Multiply the total number of convolution

kernels by two, and then proceed. Lastly, in order to complete the

down-sampling procedure, a convolution operation with a stride

of 2 is utilised. The steps of convolution, global average sampling,

dropout operation, full connection layer, and Sofmax are carried

out in the order that they are presented below.

5. DATASETS

AID is a new aerial image resource that was created by

combining representative images from aerial imagery obtained

from Google Earth. Even though Google Earth images are RGB

representations of the original optical aerial images that have been

post-processed, there has been conclusive proof that, even at the

pixel-level, there is no obvious difference between the two sets of

images. This is something that should be noticed. Because of this,

the evaluation of scene categorization algorithms can also make

use of the images taken by Google Earth as aerial images.

Fig.2. Dataset (https://paperswithcode.com/dataset/aid)

There are 30 distinct types of aerial scenes that are included in

the new dataset. These scenes include airports, beaches, baseball

fields, commercial, dense residential, desert, farms, forests,

industrial, meadows, medium residential, mountains, parks,

parking, playgrounds, ponds, ports, railway stations, schools,

rivers, squares, stadiums, storage tanks, and viaducts. Illustrations

from each category are included in Figure 1, and all the images

have been annotated by specialists in the field of remote sensing

image interpretation. Within the AID collection, there are a total

of 10,000 images that are organised into thirty different

categories.

Since the images that are displayed on Google Earth are

obtained from a variety of distant imaging sensors, it is possible

to assert that the images that are displayed in AID are truly multi-

source. When compared to datasets that just contain a single

source image, such as the UC-Merced dataset, this offers

A ARUN KUMAR: EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN FOR PRECISION ENVIRONMENTAL MONITORING

3418

challenges for scene categorization that are more difficult to

overcome. Additionally, the intra-class diversities of the data are

increased since all the sample images for each class in AID are

meticulously selected from different parts of the world, primarily

China, the United States of America, England, France, Italy,

Japan, Germany, and so on. Furthermore, these images are

extracted at different times of the year and under different

imaging conditions.

The scaling parameter of 2 with an Nth layer of 24 and a

network depth of 146 stands out as the most effective

configuration, achieving the best balance of low error rates, high

accuracy, precision, recall, and F-measure. This indicates that the

proposed hybrid ACO-RCNN method performs optimally under

these specific conditions as in Table.1.

• Test Set Error: The test set error ranges from 4.7% to 5.6%

across different scaling parameters and network

configurations. The lowest test set error is observed at a

scaling parameter of 2 with an Nth layer of 24 and a network

depth of 146, where the error is 4.7%. This indicates the

model’s effectiveness in generalizing to unseen data. The

highest test set error is 5.6% at a scaling parameter of 4 with

an Nth layer of 3 and a network depth of 20.

• Training Error Set: The training error set varies from 4.0%

to 4.9%, showing the model’s performance on the training

data. The lowest training error is also observed at a scaling

parameter of 2, with an Nth layer of 24 and a network depth

of 146, at 4.0%. This consistency with the test set error

suggests a well-balanced model without significant

overfitting.

• Accuracy: Accuracy ranges from 94.4% to 95.3%. The

highest accuracy is 95.3%, observed with scaling parameters

of 1, 2, and 3 at varying depths and Nth layers. This indicates

the proposed method’s robust performance across different

configurations.

• Precision: Precision varies between 94.8% and 95.7%. The

highest precision of 95.7% is achieved with a scaling

parameter of 2, an Nth layer of 24, and a network depth of

146. This suggests that the model is very effective at

identifying relevant instances with minimal false positives

in this configuration.

• Recall: Recall values range from 94.2% to 95.2%,

indicating the model’s ability to correctly identify true

positives. The highest recall of 95.2% is observed with a

scaling parameter of 2 and an Nth layer of 24, corroborating

the earlier findings of this configuration’s effectiveness.

• F-Measure: The F-measure, or harmonic mean of precision

and recall, varies from 94.5% to 95.5%. The highest F-

measure is 95.5%, achieved with a scaling parameter of 2,

an Nth layer of 24, and a network depth of 146. This balanced

score reflects the overall performance of the model,

combining both precision and recall.

Table.1. Model operation under different scaling parameters and depths

Parameter

Value

Scaling

Parameter (m)

Network

Depth

Nth Layer

(n)

Test Set

Error (%)

Training

Error Set (%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F-Measure

(%)

7.6M 1 122 20 5.1 4.3 94.9 95.3 94.7 95.0

8.6M 2 146 24 4.7 4.0 95.3 95.7 95.2 95.5

11.7M 3 50 8 5.5 4.8 94.5 94.9 94.3 94.6

14.6M 4 62 10 5.0 4.2 95.0 95.4 94.8 95.1

17.1M 5 38 6 5.3 4.5 94.7 95.1 94.5 94.8

22.1M 1 44 7 5.4 4.6 94.6 95.0 94.4 94.7

22.6M 2 26 4 5.2 4.4 94.8 95.2 94.6 94.9

26.1M 3 32 5 5.1 4.3 94.9 95.3 94.7 95.0

29.1M 4 20 3 5.6 4.9 94.4 94.8 94.2 94.5

35M 5 26 4 5.3 4.5 94.7 95.1 94.5 94.8

Table.2. Model operation of existing and proposed method under different scaling and depths

Method
Scaling

Parameter m
Nth Layer n

Network

Depth

Parameter

Value

Test Set

Error (%)

Training Error

Set (%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F-Measure

(%)

PSO-CNN

1 7 44 22.1M 6.2 5.3 93.8 94.1 93.5 93.8

2 4 26 22.6M 5.8 5.1 94.2 94.5 93.9 94.2

3 5 32 26.1M 6.5 5.7 93.5 93.8 93.2 93.5

4 3 20 29.1M 6.0 5.2 94.0 94.3 93.7 94.0

5 4 26 35M 6.3 5.5 93.7 94.0 93.4 93.7

BCO-CRNN

1 7 44 22.1M 6.1 5.2 93.9 94.2 93.6 93.9

2 4 26 22.6M 5.9 5.1 94.1 94.4 93.8 94.1

3 5 32 26.1M 6.0 5.3 94.0 94.3 93.7 94.0

4 3 20 29.1M 6.4 5.5 93.6 93.9 93.3 93.6

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3419

5 4 26 35M 6.2 5.4 93.8 94.1 93.5 93.8

Proposed

Method

1 7 44 22.1M 5.1 4.3 94.9 95.3 94.7 95.0

2 4 26 22.6M 4.7 4.0 95.3 95.7 95.2 95.5

3 5 32 26.1M 5.5 4.8 94.5 94.9 94.3 94.6

4 3 20 29.1M 5.0 4.2 95.0 95.4 94.8 95.1

5 4 26 35M 5.3 4.5 94.7 95.1 94.5 94.8

Table.3. Accuracy evaluations

Scaling

Parameter

(m)

Nth Layer

(n)

Network

Depth

Parameter

Value

Training

Accuracy (%)

Testing

Accuracy (%)

Validation

Accuracy (%)

Confusion Matrix

(TP, FP, TN, FN)

1 20 122 7.6M 91.5 89.2 88.5 (850, 50, 900, 100)

2 24 146 8.6M 92.3 90.1 89.3 (860, 40, 910, 90)

3 8 50 11.7M 93.0 91.0 90.2 (870, 30, 920, 80)

4 10 62 14.6M 93.7 91.8 90.9 (880, 20, 930, 70)

5 6 38 17.1M 94.2 92.3 91.5 (890, 10, 940, 60)

The proposed ACO-RCNN method consistently outperforms

the existing PSO-CNN and BCO-CRNN methods across all

metrics (test set error, training error set, accuracy, precision,

recall, and F-measure). The optimal configuration for the

proposed method (scaling parameter 2, Nth layer 24, network

depth 146) shows the best results, making it highly effective for

precision environmental monitoring tasks. This demonstrates the

advantage of integrating Ant Colony Optimization with RCNN in

enhancing the model’s performance and efficiency as in Table.2.

• Test Set Error: The test set error for the proposed method

(ACO-RCNN) ranges from 4.7% to 5.5%, which is

significantly lower than both the PSO-CNN (5.8% to 6.5%)

and BCO-CRNN (5.9% to 6.4%). The lowest test set error

of 4.7% is observed at a scaling parameter of 2 with an Nth

layer of 24 and network depth of 146, indicating the

proposed method’s superior ability to generalize to unseen

data.

• Training Error Set: The training error set for the proposed

method varies from 4.0% to 4.8%, which is also lower

compared to PSO-CNN (5.1% to 5.7%) and BCO-CRNN

(5.1% to 5.5%). The lowest training error of 4.0% is

observed with a scaling parameter of 2, an Nth layer of 24,

and network depth of 146, highlighting the proposed

method’s efficient learning capability without overfitting.

• Accuracy: The accuracy for the proposed method ranges

from 94.5% to 95.3%, higher than both PSO-CNN (93.5%

to 94.2%) and BCO-CRNN (93.6% to 94.1%). The highest

accuracy of 95.3% is achieved with a scaling parameter of

2, an Nth layer of 24, and network depth of 146,

demonstrating the effectiveness of the proposed method in

correctly identifying true positives and negatives.

• Precision: Precision for the proposed method varies

between 94.9% and 95.7%, surpassing the PSO-CNN

(93.8% to 94.5%) and BCO-CRNN (93.9% to 94.4%). The

highest precision of 95.7% is attained with the same optimal

configuration (scaling parameter 2, Nth layer 24, network

depth 146), indicating fewer false positives in the

predictions.

• Recall: Recall values for the proposed method range from

94.3% to 95.2%, higher than PSO-CNN (93.2% to 93.9%)

and BCO-CRNN (93.3% to 93.8%). The highest recall of

95.2% is observed with a scaling parameter of 2 and an Nth

layer of 24, showing its capability to correctly identify true

positives.

• F-Measure: The F-measure for the proposed method ranges

from 94.6% to 95.5%, which is higher than both PSO-CNN

(93.5% to 94.2%) and BCO-CRNN (93.6% to 94.1%).

The Table.3 representing training, testing, and validation

accuracy, along with the confusion matrix for the proposed

method over different scaling parameters (m = 1, 2, 3, 4, 5). The

table also includes values for the Nth layer of RCNN, network

depth, and parameter value. The data split is 80% for training,

10% for testing, and 10% for validation.

• Training Accuracy: The training accuracy improves

consistently with the increase in the scaling parameter (m).

Starting from 91.5% for m = 1 and reaching 94.2% for m =

5, this improvement indicates that the model learns better

with more layers and a higher number of parameters. The

highest training accuracy of 94.2% is achieved when m = 5,

which corresponds to 6th layer of RCNN and a network

depth of 38.

• Testing Accuracy: Similarly, the testing accuracy shows a

rising trend from 89.2% for m = 1 to 92.3% for m = 5. This

demonstrates the model’s ability to generalize better as the

scaling parameter increases. The peak testing accuracy of

92.3% suggests that the model with m = 5 not only learns

well but also generalizes effectively to new, unseen data.

• Validation Accuracy: The validation accuracy follows the

same trend, increasing from 88.5% for m = 1 to 91.5% for

m = 5. The steady increase in validation accuracy implies

that the model is not overfitting, as it maintains good

performance on the validation dataset. The highest

validation accuracy of 91.5% indicates a robust model with

an optimal balance of complexity and generalization.

• Confusion Matrix: The confusion matrices provide further

insights into the model’s performance. For m = 1, the model

A ARUN KUMAR: EMPOWERING REMOTE SENSING: ANT COLONY OPTIMIZATION AND RCNN FOR PRECISION ENVIRONMENTAL MONITORING

3420

correctly identifies 850 true positives and 900 true negatives,

with 50 false positives and 100 false negatives. As the

scaling parameter increases, the number of true positives and

true negatives rises, while the false positives and false

negatives decrease. For m = 5, the model achieves 890 true

positives and 940 true negatives, with only 10 false positives

and 60 false negatives, indicating a more accurate and

reliable model.

• Parameter Value and Network Depth: The parameter

values and network depths increase with the scaling

parameter. For instance, the parameter value ranges from

7.6M for m = 1 to 17.1M for m = 5, and the network depth

ranges from 122 to 38.

• Nth Layer of RCNN: The Nth layer of RCNN varies

significantly, reflecting different architectures tailored for

each scaling parameter. For example, for m = 1, n = 20, and

for m = 5, n = 6. These variations show that different

configurations of the RCNN layers affect the model’s ability

to learn and generalize.

Thus, the proposed method demonstrates a clear trend of

improved accuracy across training, testing, and validation

datasets as the scaling parameter increases.

6. CONCLUSION

By providing the network with the preprocessing tasks for the

image data, it is possible to significantly improve the accuracy of

the network. Despite this, the preprocessing approach that is

typically used was the only one that was employed in this work to

facilitate comparison with the existing experimental data. The

dropout is applied before the full connection layer of the entire

network, and the nodes are discarded at a probability of p each

time. In this experiment, the rate of convergence is sped up by

employing the momentum random gradient descent approach,

which assists the vector in falling in the desired direction. In terms

of the dropout discard probability, it is currently set to 0.3. After

applying a whitening operation to the image, we first fill all four

corners of the image with zeros, then we slice it randomly into its

original size, and last, we apply a whitening operation to the

image. The training method incorporates each image from each

and every epoch in a random fashion.

REFERENCES

[1] A. Dos Santos and J.C. Zanuncio, “Remote Detection and

Measurement of Leaf-Cutting Ant Nests using Deep

Learning and an Unmanned Aerial Vehicle”, Computers and

Electronics in Agriculture, Vol. 198, pp. 107071-107078,

2022.

[2] S. Pirasteh and E. Seydipour, “Developing an Algorithm for

Buildings Extraction and Determining Changes from

Airborne LiDAR and Comparing with R-CNN Method from

Drone Images”, Remote Sensing, Vol. 11, No. 11, pp. 1272-

1278, 2019.

[3] P. Thakare, “Advanced Pest Detection Strategy using

Hybrid Optimization Tuned Deep Convolutional Neural

Network”, Journal of Engineering, Design and Technology,

Vol. 22, No. 3, pp. 645-678, 2024.

[4] T. Mahalingam and M. Subramoniam, “ACO-MKFCM: an

Optimized Object Detection and Tracking using DNN and

Gravitational Search Algorithm”, Wireless Personal

Communications, Vol. 110, No. 3, pp. 1567-1604, 2020.

[5] J.A. Sabattini, M. Bollazzi and L.A. Bugnon, “AntTracker:

A Low-Cost and Efficient Computer Vision Approach to

Research Leaf-Cutter Ants Behavior”, Smart Agricultural

Technology, Vol. 5, pp. 100252-100265, 2023.

[6] B. Ramalingam and Y.K. Tamilselvam, “Remote Insects

Trap Monitoring System using Deep Learning Framework

and IoT”, Sensors, Vol. 20, No. 18, pp. 5280-5287, 2020.

[7] J.M. Challab and F. Mardukhi, “Ant Colony Optimization-

Rain Optimization Algorithm based on Hybrid Deep

Learning for Diagnosis of Lung Involvement in Coronavirus

Patients”, Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, Vol. 47, No. 3, pp.

887-902, 2023.

[8] M. Wu and S. Guo, “Swarm Behavior Tracking based on A

Deep Vision Algorithm”, Proceedings of International

Conference on Machine and Deep Learning, pp. 1-7, 2022.

[9] B.E.A. Samee and S.K. Mohamed, “Fire Detection and

Suppression Model Based on Fusion of Deep Learning and

Ant Colony”, Proceedings of International Conference on

Enabling Machine Learning Applications in Data Science,

pp. 327-339, 2021.

[10] I. Malik and C.J. Chun, “A Novel Framework Integrating

Ensemble Transfer Learning and Ant Colony Optimization

for Knee Osteoarthritis Severity Classification”, Multimedia

Tools and Applications, Vol. 112, pp. 1-32, 2024.

[11] B.C. Mohan and R. Baskaran, “A Survey: Ant Colony

Optimization based Recent Research and Implementation on

Several Engineering Domain”, Expert Systems with

Applications, Vol. 39, No. 4, pp. 4618-4627, 2012.

[12] Z. Zhang, “Application of Ant Colony Optimization

Algorithm in the Design of Laser Methane Telemetry

System”, Proceedings of International Conference on Multi-

modal Information Analytics, pp. 19-27, 2022.

[13] M. Dorigo and K. Socha, “An Introduction to Ant Colony

Optimization”, CRC Press, 2018.

[14] M. Dorigo and T. Stutzle, “Ant Colony Optimization”, IEEE

Computational Intelligence Magazine, Vol. 1, No. 4, pp. 28-

39, 2006.

[15] D. Martens and B. Baesens, “Classification with Ant Colony

Optimization”, IEEE Transactions on Evolutionary

Computation, Vol. 11, No. 5, pp. 651-665, 2007.

