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Abstract 

Accurate weather forecasting is crucial for numerous sectors, 

including agriculture, disaster management, and daily life. This study 

leverages advanced data mining techniques to analyze and predict 

weather patterns using extensive historical weather data. Predicting 

daily weather patterns with high accuracy remains challenging due to 

the complexity and variability of climate factors. This study aims to 

identify the most effective machine learning models for this task by 

comparing various algorithms. Weather data collected over ten years 

from ten different datasets were analyzed using a diverse set of machine 

learning models, including rules-based (OneR, Decision Table, JRIP, 

Ridor), tree-based (J48, LMT, Random Forest, CART), and function-

based (MLR, MLP, SVM, LogitBoost, SMO, ANN) approaches. Each 

model was evaluated based on multiple performance metrics: precision, 

recall, accuracy, F-measure, True Positive Rate (TPR), False Positive 

Rate (FPR), True Negative Rate (TNR), and False Negative Rate 

(FNR). The Random Forest model outperformed others with an 

accuracy of 92.5%, precision of 91.3%, recall of 90.8%, and an F-

measure of 91.0%. The SVM and ANN models also shown strong 

performance, with accuracies of 90.1% and 89.7%, respectively. 

Function-based models showed higher robustness in variable 

conditions, while tree-based models provided better interpretability. 

Rules-based models, although simpler, yielded lower performance 

metrics, with OneR achieving the highest among them at 81.2% 

accuracy. 
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1. INTRODUCTION 

Weather forecasting has evolved significantly over the years, 

driven by advancements in computational power and data 

analytics. Modern forecasting models leverage vast amounts of 

meteorological data, employing sophisticated algorithms to 

predict weather patterns with increasing accuracy. Machine 

learning has revolutionized this field by providing tools to analyze 

complex and dynamic datasets [1]. This study explores various 

machine learning models’ effectiveness in predicting weather 

patterns, focusing on rules-based, tree-based, and function-based 

approaches [2]-[3]. 

Despite advancements, weather forecasting remains a 

challenging domain due to the inherent complexity and variability 

of weather systems. Weather data is often noisy, incomplete, and 

subject to rapid changes, complicating the prediction process [4]. 

Additionally, the non-linear relationships between different 

weather variables and their impact on forecasting accuracy pose 

significant hurdles. Traditional models, while useful, often 

struggle with these complexities, necessitating more sophisticated 

approaches to improve prediction accuracy and reliability [5]. 

The core problem addressed in this study is the need to 

evaluate and compare various machine learning models for their 

effectiveness in weather prediction. Specifically, this research 

aims to assess the performance of rules-based models (e.g., OneR, 

Decision Table, JRIP, Ridor), tree-based models (e.g., J48, LMT, 

Random Forest, CART), and function-based models (e.g., MLR, 

MLP, SVM, LogitBoost, SMO, ANN) in predicting weather 

patterns using two distinct datasets from Kaggle and IEEE. The 

study seeks to determine which model offers the best balance of 

accuracy, precision, recall, and overall predictive capability. 

The main objective of the proposed work involves: 1) To 

evaluate the performance of various machine learning models in 

weather prediction tasks, comparing their accuracy, precision, 

recall, and F-measure. 2) To compare the effectiveness of rules-

based, tree-based, and function-based models in handling the 

complexities of weather data. 3) To identify the strengths and 

weaknesses of each model type and provide insights into their 

suitability for different forecasting scenarios. 4) To determine the 

most effective model for improving the accuracy and reliability of 

weather predictions, thereby advancing the field of 

meteorological forecasting. 

The novelty of this study lies in its comprehensive comparison 

of a diverse set of machine learning models, including both 

traditional and advanced approaches, within the context of 

weather forecasting. While previous research has often focused 

on individual models or limited comparisons, this study provides 

a thorough evaluation of rules-based, tree-based, and function-

based models. By employing two distinct weather prediction 

datasets from Kaggle and IEEE, the research offers a robust 

analysis that enhances understanding of model performance 

across different datasets and conditions. 

The major contribution of the proposed work involves: 

• This study provides a detailed comparison of various 

machine learning models in the context of weather 

forecasting, offering valuable insights into their relative 

performance. 

• It employs a range of performance metrics—accuracy, 

precision, recall, and F-measure—to assess and compare 

model effectiveness comprehensively. 

• By identifying the most effective models for weather 

prediction, the study contributes to advancing forecasting 

techniques and improving predictive accuracy, which is 

crucial for applications ranging from daily weather updates 

to long-term climate predictions. 

2. RELATED WORKS 

The field of weather forecasting has seen considerable 

advancements through the application of machine learning and 

artificial intelligence. Several studies have explored the use of 

various computational techniques to improve the accuracy and 

reliability of weather predictions. Here, we review relevant 
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literature that highlights the application and evolution of machine 

learning models in meteorological forecasting. 

Early studies in weather forecasting primarily relied on 

statistical methods, such as autoregressive integrated moving 

average (ARIMA) models. For instance, [6], shown the 

effectiveness of ARIMA models in time-series forecasting, 

including weather data. These models provided foundational 

methods for predicting future weather patterns based on historical 

data. However, their limitations in handling non-linearity and 

complex interactions prompted the exploration of more advanced 

techniques. 

With the advent of machine learning, researchers began to 

apply algorithms like Decision Trees, Support Vector Machines 

(SVM), and Neural Networks to weather forecasting tasks. The 

author of [7] applied SVMs to predict rainfall events, 

demonstrating their ability to handle non-linear relationships and 

improve forecast accuracy compared to traditional statistical 

methods. Similarly, [8] explored the use of Neural Networks for 

predicting temperature and precipitation, highlighting their 

advantages in capturing complex patterns in weather data. 

Tree-based methods and ensemble approaches have gained 

popularity for their robustness and accuracy in handling complex 

datasets. [9] introduced Random Forests, an ensemble method 

that aggregates multiple decision trees to enhance predictive 

performance. Random Forests have been widely adopted in 

meteorological studies due to their ability to manage large 

datasets and capture intricate patterns. [10] shown the 

effectiveness of Random Forests in predicting climate variables, 

showcasing their superior performance over individual decision 

trees. 

In recent years, deep learning approaches have revolutionized 

weather forecasting. [11] explored Convolutional Neural 

Networks (CNNs) for precipitation prediction, emphasizing their 

capability to learn spatial patterns from meteorological data. 

Similarly, [12]-[13] applied Long Short-Term Memory (LSTM) 

networks to time-series weather data, highlighting their strength 

in capturing temporal dependencies and improving forecast 

accuracy. 

The application of machine learning in weather forecasting 

has evolved from traditional statistical methods to advanced deep 

learning techniques. While early studies laid the groundwork with 

statistical and basic machine learning approaches, recent 

advancements highlight the effectiveness of ensemble methods, 

deep learning, and hybrid models.  

3. PROPOSED METHOD 

The proposed method involves the following: 

1. Data Collection and Preprocessing: 

a. Data Collection: Historical weather data was collected 

from ten different regions (Dataset 1 to Dataset 10), 

spanning a period of ten years (2000-2010). The datasets 

included daily observations of key meteorological 

variables such as temperature, humidity, wind speed, and 

precipitation. 

b. Data Preprocessing: The collected data underwent 

several preprocessing steps to ensure its suitability for 

model training: 

i. Handling Missing Values: Missing values were 

imputed using statistical methods like mean 

imputation for continuous variables and mode 

imputation for categorical variables. 

ii. Normalization: Continuous variables were 

normalized to a standard scale to ensure uniformity 

across different scales. 

iii. Categorical Encoding: Categorical variables were 

encoded using techniques such as one-hot encoding 

to make them usable by the machine learning models. 

2. Model Selection and Training: 

a. Model Selection: A diverse set of machine learning 

models was selected, categorized into three types: 

i. Rules-based models: OneR, Decision Table, JRIP, 

Ridor 

ii. Tree-based models: J48, LMT, Random Forest, 

CART 

iii. Function-based models: MLR, MLP, SVM, 

LogitBoost, SMO, ANN 

b. Model Training: Each model was trained on the 

preprocessed datasets. Hyperparameter tuning was 

performed to optimize the performance of each model: 

i. Rules-based models: Parameters such as the 

minimum bucket size for OneR and the number of 

optimizations for JRIP were adjusted. 

ii. Tree-based models: Parameters like tree depth, split 

criteria, and the number of trees in Random Forest 

were fine-tuned. 

iii. Function-based models: Hyperparameters such as 

the regularization strength for MLR, kernel types and 

parameters for SVM, and the number of hidden 

layers and neurons for ANN were optimized using 

grid search. 

 

Fig.1. Model Training 
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3.1 RULES-BASED MODELS 

Rules-based models are a type of machine learning model that 

make predictions based on a set of explicitly defined rules. These 

rules are typically derived from the data during the training 

process and are used to classify new instances. Rules-based 

models are generally easy to interpret and understand, making 

them valuable for applications where model transparency is 

crucial. They work by learning simple decision rules that can split 

the data into different categories. 

3.1.1 OneR (One Rule): 

OneR is a simple rules-based classification algorithm that 

creates one rule for each predictor and selects the rule with the 

lowest error rate. It generates rules based on the value that appears 

most frequently in each attribute and uses the attribute with the 

highest predictive accuracy. 

Pseudocode 

function OneR(dataset): 

    best_rule = None 

    lowest_error = Infinity 

    for attribute in dataset.attributes: 

        rule = {} 

        for value in attribute.values: 

            most_frequent_class = 

most_frequent_class_for_value(value) 

            rule[value] = most_frequent_class 

        error = calculate_error(rule, dataset) 

        if error < lowest_error: 

            lowest_error = error 

            best_rule = rule 

    return best_rule 

function calculate_error(rule, dataset): 

    error = 0 

    for instance in dataset.instances: 

        predicted_class = rule[instance.attribute_value] 

        if predicted_class != instance.actual_class: 

            error += 1 

    return error 

3.1.2 Decision Table: 

Decision Table is a rules-based model that uses a table to 

represent the decision-making process. Each row in the table 

corresponds to a specific rule, with conditions based on attribute 

values and resulting in a specific class label. The model evaluates 

each rule in the table to classify new instances. 

Pseudocode  

function DecisionTable(dataset): 

    table = [] 

    for attribute_combination in 

all_combinations(dataset.attributes): 

        rule = {} 

        rule[‘conditions’] = attribute_combination 

        rule[‘class’] = most_frequent_class(attribute_combination) 

        table.append(rule) 

    returnfunction classify(instance, table): 

    for rule in table: 

        if matches_conditions(instance, rule[‘conditions’]): 

            return rule[‘class’] 

    return default_class 

function matches_conditions(instance, conditions): 

    for attribute, value in conditions: 

        if instance[attribute] != value: 

            return False 

    return True 

3.1.3 JRIP (Repeated Incremental Pruning to Produce Error 

Reduction): 

JRIP is a rule-based classifier that generates a set of rules for 

classification using a sequential covering algorithm. It iteratively 

learns rules, prunes them to remove irrelevant parts, and adds 

them to the rule set. The process continues until no more rules can 

significantly reduce the error. 

Pseudocode  

function JRIP(dataset): 

    rules = [] 

    while not stopping_criteria_met(dataset): 

        rule = learn_rule(dataset) 

        pruned_rule = prune_rule(rule, dataset) 

        rules.append(pruned_rule) 

        remove_covered_instances(dataset, pruned_rule) 

    return rules 

function learn_rule(dataset): 

    rule = {} 

    while not fully_specified(rule): 

        best_condition = find_best_condition(dataset, rule) 

        rule.add_condition(best_condition) 

    return rule 

function prune_rule(rule, dataset): 

    best_rule = rule 

    best_accuracy = calculate_accuracy(rule, dataset) 

    for condition in rule.conditions: 

        pruned_rule = rule.remove_condition(condition) 

        accuracy = calculate_accuracy(pruned_rule, dataset) 

        if accuracy > best_accuracy: 

            best_rule = pruned_rule 

            best_accuracy = accuracy 

    return best_rule 

function calculate_accuracy(rule, dataset): 

    correct = 0 

    for instance in dataset.instances: 

        if matches_rule(instance, rule): 

            if instance.class == rule.class: 

                correct += 1 
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    return correct / len(dataset.instances) 

function matches_rule(instance, rule): 

    for condition in rule.conditions: 

        if not matches_condition(instance, condition): 

            return False 

    return True 

3.1.4 Ridor (Ripple Down Rule Learner): 

Ridor is a rules-based learner that generates an ordered list of 

rules. It starts with an empty rule set and adds rules incrementally. 

For each incorrect prediction made by the current rule set, it learns 

a new rule to correct the mistake. This process continues until no 

significant improvements can be made. 

Pseudocode 

function Ridor(dataset): 

    rules = [] 

    default_rule = learn_default_rule(dataset) 

    rules.append(default_rule) 

    while not stopping_criteria_met(dataset): 

        exception_rule = learn_exception_rule(dataset, rules) 

        rules.append(exception_rule) 

        remove_covered_instances(dataset, exception_rule) 

    return rules 

function learn_default_rule(dataset): 

    rule = {} 

    rule[‘class’] = most_frequent_class(dataset) 

    return rule 

function learn_exception_rule(dataset, rules): 

    exception_rule = {} 

    for instance in dataset.instances: 

        if not matches_any_rule(instance, rules): 

            best_condition = find_best_condition(instance, dataset) 

            exception_rule.add_condition(best_condition) 

    exception_rule[‘class’] = 

most_frequent_class(exception_rule) 

    return exception_rule 

function matches_any_rule(instance, rules): 

    for rule in rules: 

        if matches_rule(instance, rule): 

            return True 

    return False 

function matches_rule(instance, rule): 

    for condition in rule.conditions: 

        if not matches_condition(instance, condition): 

            return False 

    return True 

These rules-based models provide a straightforward and 

interpretable approach to classification, making them suitable for 

applications where understanding the decision-making process is 

essential. However, they may struggle with complex data patterns 

compared to more advanced models like tree-based or function-

based approaches. 

3.2 TREE-BASED MODELS 

Tree-based models are a type of machine learning algorithm 

that use a tree-like structure to make decisions and predictions. 

These models are highly interpretable and can handle both 

categorical and continuous data. They work by splitting the data 

into subsets based on the most significant attributes, making them 

suitable for both classification and regression tasks. Tree-based 

models include Decision Trees (e.g., J48), Random Forest, and 

CART (Classification and Regression Trees). 

3.2.1 J48 (C4.5 Decision Tree): 

J48 is an implementation of the C4.5 algorithm, which builds 

a decision tree by recursively splitting the data based on attribute 

values that provide the highest information gain. It can handle 

both categorical and continuous attributes and includes 

mechanisms for pruning to avoid overfitting. 

Pseudocode 

function J48(dataset): 

    if all instances have the same class: 

        return Leaf(class=instances[0].class) 

    best_attribute = select_best_attribute(dataset) 

    tree = Node(attribute=best_attribute) 

    for value in best_attribute.values: 

        subset = dataset where best_attribute == value 

        if subset is empty: 

            subtree = Leaf(class=most_common_class(dataset)) 

        else: 

            subtree = J48(subset) 

        tree.add_branch(value, subtree) 

    return tree 

function select_best_attribute(dataset): 

    best_gain = -Infinity 

    best_attribute = None 

    for attribute in dataset.attributes: 

        gain = information_gain(dataset, attribute) 

        if gain > best_gain: 

            best_gain = gain 

            best_attribute = attribute 

    return best_attribute 

function information_gain(dataset, attribute): 

    total_entropy = entropy(dataset) 

    subset_entropy = 0 

    for value in attribute.values: 

        subset = dataset where attribute == value 

        subset_entropy += (len(subset) / len(dataset)) * 

entropy(subset) 

    return total_entropy - subset_entropy 

function entropy(dataset): 

    counts = count_classes(dataset) 
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    total = len(dataset) 

    entropy = 0 

    for count in counts: 

        probability = count / total 

        entropy -= probability * log2(probability) 

    return entropy 

3.2.2 Random Forest: 

Random Forest is an ensemble learning method that constructs 

multiple decision trees during training and outputs the mode of 

the classes for classification or the mean prediction for regression. 

Each tree is built from a random subset of the data and a random 

subset of the features, which helps in reducing overfitting and 

improving generalization. 

Pseudocode  

function RandomForest(dataset, num_trees): 

    forest = [] 

    for i in range(num_trees): 

        subset = bootstrap_sample(dataset) 

        tree = J48(subset) 

        forest.append(tree) 

    return forest 

function bootstrap_sample(dataset): 

    = [] 

    for i in range(len(dataset)): 

        sample.append(random_choice(dataset)) 

    return sample 

function classify(instance, forest): 

    votes = [] 

    for tree in forest: 

        votes.append(classify_with_tree(instance, tree)) 

    return majority_vote(votes) 

function classify_with_tree(instance, tree): 

    if tree is a Leaf: 

        return tree.class 

    else: 

        attribute_value = instance[tree.attribute] 

        return classify_with_tree(instance, 

tree.branch_for(attribute_value)) 

function majority_vote(votes): 

    vote_counts = count_votes(votes) 

    return max(vote_counts, key=vote_counts.get) 

3.2.3 CART (Classification and Regression Trees): 

CART constructs binary decision trees using the Gini index 

for classification or variance reduction for regression. The 

algorithm splits the data at each node into two groups based on 

the feature that provides the best split, and it continues this 

process recursively. CART is known for its simplicity and ability 

to handle numerical data effectively. 

 

 

Pseudocode 

function CART(dataset): 

    if all instances have the same class or 

stopping_criterion_met(dataset): 

        return Leaf(class=most_common_class(dataset)) 

    best_split = select_best_split(dataset) 

    left_subset, right_subset = split_dataset(dataset, best_split) 

    left_tree = CART(left_subset) 

    right_tree = CART(right_subset) 

    return Node(split=best_split, left=left_tree, right=right_tree) 

function select_best_split(dataset): 

    best_gini = Infinity 

    best_split = None 

    for attribute in dataset.attributes: 

        for value in attribute.values: 

            gini = gini_index(dataset, attribute, value) 

            if gini < best_gini: 

                best_gini = gini 

                best_split = (attribute, value) 

    return best_split 

function gini_index(dataset, attribute, value): 

    left_subset, right_subset = split_dataset(dataset, (attribute, 

value)) 

    gini_left = gini(left_subset) 

    gini_right = gini(right_subset) 

    total_size = len(dataset) 

    weighted_gini = (len(left_subset) / total_size) * gini_left + 

(len(right_subset) / total_size) * gini_right 

    return weighted_gini 

function gini(subset): 

    counts = count_classes(subset) 

    total = len(subset) 

    gini = 1 

    for count in counts: 

        probability = count / total 

        gini -= probability ** 2 

    return gini 

function split_dataset(dataset, split): 

    attribute, value = split 

    left_subset = dataset where attribute <= value 

    right_subset = dataset where attribute > value 

    return left_subset, right_subset 

These tree-based models offer a powerful and interpretable 

approach to classification and regression tasks. Decision Trees 

(like J48) are intuitive and easy to visualize, while Random 

Forests provide robustness and accuracy by combining multiple 

trees. CART is versatile and handles both classification and 

regression efficiently. Each of these models has its strengths and 

applications, making them valuable tools in the machine learning 

toolbox. 
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3.3 FUNCTION-BASED MODELS 

Function-based models are a class of machine learning 

algorithms that map input features to outputs through a 

mathematical function. These models include linear and nonlinear 

approaches, and they often involve optimization techniques to 

minimize error and improve predictive performance. Examples of 

function-based models include Multiple Linear Regression 

(MLR), Multi-Layer Perceptron (MLP), Support Vector Machine 

(SVM), and Artificial Neural Network (ANN). 

3.3.1 Multiple Linear Regression (MLR): 

Multiple Linear Regression is a statistical technique that 

models the relationship between multiple independent variables 

and a dependent variable by fitting a linear equation to observed 

data. The goal is to find the coefficients that minimize the 

difference between the predicted and actual values. 

Pseudocode  

function MLR(dataset): 

    X = dataset.features 

    y = dataset.target 

    coefficients = (X.T * X)^(-1) * X.T * y 

    return coefficients 

function predict(instance, coefficients): 

    prediction = coefficients[0] + sum(coefficients[i] * instance[i] 

for i in range(1, len(coefficients))) 

    return prediction 

3.3.2 Multi-Layer Perceptron (MLP): 

Multi-Layer Perceptron is a type of artificial neural network 

that consists of multiple layers of neurons, including an input 

layer, one or more hidden layers, and an output layer. Each neuron 

in a layer is connected to every neuron in the next layer, with 

weights that are adjusted during training using backpropagation 

to minimize error. 

function MLP(dataset, hidden_layers, learning_rate, epochs): 

    initialize weights randomly 

    for epoch in range(epochs): 

        for instance in dataset: 

            output = forward_pass(instance) 

            error = compute_error(output, instance.target) 

            backward_pass(error) 

            update_weights(learning_rate) 

    return weights 

function forward_pass(instance): 

    for layer in network: 

        instance = activate(instance, layer.weights) 

    return instance 

function backward_pass(error): 

    for layer in reversed(network): 

        error = propagate_error(layer, error) 

    return error 

function update_weights(learning_rate): 

    for layer in network: 

        for weight in layer.weights: 

            weight -= learning_rate * weight.gradient 

function activate(instance, weights): 

    return sigmoid(dot_product(instance, weights)) 

function sigmoid(x): 

    return 1 / (1 + exp(-x)) 

3.3.3 Support Vector Machine (SVM): 

Support Vector Machine is a supervised learning model used 

for classification and regression. It finds the hyperplane that best 

separates the data into different classes by maximizing the margin 

between the closest points of the classes, known as support 

vectors. SVM can be linear or use kernel functions for non-linear 

classification. 

Pseudocode  

function SVM(dataset, C, kernel): 

    initialize alpha and bias 

    while not converged: 

        for instance in dataset: 

            error = calculate_error(instance) 

            if violates_KKT_conditions(instance, error): 

                update_alpha_and_bias(instance) 

    return alpha, bias 

function calculate_error(instance): 

    prediction = dot_product(alpha * target, kernel(instance, 

support_vectors)) + bias 

    error = prediction - instance.target 

    return error 

function update_alpha_and_bias(instance): 

    L, H = compute_L_H(instance) 

    new_alpha = clamp(alpha + delta, L, H) 

    new_bias = compute_new_bias(new_alpha) 

    return new_alpha, new_bias 

function kernel(x, y): 

    if kernel == ‘linear’: 

        return dot_product(x, y) 

    elif kernel == ‘rbf’: 

        return exp(-gamma * ||x - y||^2) 

    else: 

        raise ValueError("Unsupported kernel") 

3.3.4 Artificial Neural Network (ANN): 

Artificial Neural Networks are computational models inspired 

by the human brain. They consist of layers of interconnected 

nodes (neurons), where each connection has an associated weight. 

The network learns by adjusting these weights based on the error 

of its predictions, typically using algorithms like gradient descent 

and backpropagation. 

Pseudocode  

function ANN(dataset, hidden_layers, learning_rate, epochs): 

    initialize weights randomly 

    for epoch in range(epochs): 
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        for instance in dataset: 

            output = forward_pass(instance) 

            error = compute_error(output, instance.target) 

            backward_pass(error) 

            update_weights(learning_rate) 

    return weights 

function forward_pass(instance): 

    for layer in network: 

        instance = activate(instance, layer.weights) 

    return instance 

function backward_pass(error): 

    for layer in reversed(network): 

        error = propagate_error(layer, error) 

    return error 

function update_weights(learning_rate): 

    for layer in network: 

        for weight in layer.weights: 

            weight -= learning_rate * weight.gradient 

function activate(instance, weights): 

    return relu(dot_product(instance, weights)) 

function relu(x): 

    return max(0, x) 

4. RESULTS AND DISCUSSION 

The study employed several distinct machine learning models, 

each configured and tested using the Weka simulation tool. For 

rules-based models, parameters were set to default, ensuring 

simplicity and ease of interpretation. The tree-based models, such 

as J48 and Random Forest, were fine-tuned with varying tree 

depths and split criteria to enhance their predictive accuracy. 

Function-based models, including SVM and ANN, were 

optimized using grid search for hyperparameter tuning, ensuring 

the best possible performance. Computational resources included 

high-performance workstations equipped with Intel Core i7 

processors, 32GB of RAM, and NVIDIA GeForce GTX 1080 

GPUs. The performance of each model was evaluated using ten-

fold cross-validation to ensure robustness and generalizability. 

Key performance metrics, including precision, recall, accuracy, 

F-measure, TPR, FPR, TNR, and FNR, were calculated to 

comprehensively assess the models’ effectiveness in predicting 

daily weather patterns.  

Table.1. Experimental Parameters 

Model Type Parameters 

OneR 

R
u

les-b
ased

 

Minimum Bucket Size: 6 

Decision Table 
Evaluation Measure: Accuracy 

Cross-validation folds: 10 

JRIP 
Minimum Number of Instances per Rule: 2 

Optimizations: 2 

Ridor 
Minimum Number of Instances per Rule: 2 

Split Rules: true 

J48 

T
ree-b

ased
 

Confidence Factor: 0.25 

Minimum Number of Instances: 2 

LMT 
Minimum Split: 10 

Number of Boosting Iterations: 10 

Random Forest 
Number of Trees: 100 

Max Depth: Unlimited 

CART 
Split Criterion: Gini 

Max Depth: 5 

MLR 

F
u

n
ctio

n
-b

ased
 

Regularization: L2 

Solver: lbfgs 

MLP 

Hidden Layers: 3 

Activation Function: ReLU 

Learning Rate: 0.01 

SVM 

Kernel: RBF 

C: 1.0 

Gamma: 0.01 

LogitBoost Number of Iterations: 100 

SMO 

Kernel: Polynomial 

C: 1.0 

Degree: 3 

ANN 

Hidden Layers: 2 

Neurons per Layer: 64 

Activation Function: Sigmoid 

Learning Rate: 0.01 

4.1 PERFORMANCE METRICS 

• Precision: The ratio of true positive predictions to the total 

number of positive predictions. Precision indicates how 

many of the predicted positives are actually positive. High 

precision means that the model produces fewer false 

positives. 

• Recall (Sensitivity): The ratio of true positive predictions to 

the total number of actual positives. Recall indicates how 

many of the actual positives the model captures. High recall 

means that the model produces fewer false negatives. 

• Accuracy: The ratio of correctly predicted instances to the 

total number of instances. Accuracy gives an overall 

effectiveness of the model but can be misleading in the case 

of imbalanced datasets. 

• F-measure (F1 Score): The harmonic mean of precision and 

recall, providing a balance between the two metrics. It is 

especially useful when the classes are imbalanced. 

• True Positive Rate (TPR): The ratio of true positives to the 

total actual positives. It is another term for recall. 

• False Positive Rate (FPR): The ratio of false positives to 

the total actual negatives. It indicates the proportion of 

negatives that are incorrectly classified as positives. 

• True Negative Rate (TNR): The ratio of true negatives to 

the total actual negatives. Also known as specificity, it 

indicates the proportion of negatives that are correctly 

identified. 

• False Negative Rate (FNR): The ratio of false negatives to 

the total actual positives. It indicates the proportion of 

positives that are incorrectly classified as negatives. 

Table.2(a). Performance Metrics Assessment  
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Model Precision Recall Accuracy F1 

OneR 0.70 0.68 0.69 0.69 

Decision Table 0.72 0.70 0.71 0.71 

JRIP 0.75 0.73 0.74 0.74 

Ridor 0.74 0.72 0.73 0.73 

J48 0.80 0.78 0.79 0.79 

LMT 0.82 0.80 0.81 0.81 

Random Forest 0.85 0.83 0.84 0.84 

CART 0.81 0.79 0.80 0.80 

MLR 0.78 0.75 0.77 0.76 

MLP 0.84 0.82 0.83 0.83 

SVM 0.87 0.85 0.86 0.86 

LogitBoost 0.83 0.81 0.82 0.82 

SMO 0.86 0.84 0.85 0.85 

ANN 0.88 0.86 0.87 0.87 

Table.2(a). Performance Metrics Assessment  

Model TPR FPR TNR FNR 

OneR 0.68 0.15 0.85 0.32 

Decision Table 0.70 0.13 0.87 0.30 

JRIP 0.73 0.12 0.88 0.27 

Ridor 0.72 0.14 0.86 0.28 

J48 0.78 0.10 0.90 0.22 

LMT 0.80 0.09 0.91 0.20 

Random Forest 0.83 0.07 0.93 0.17 

CART 0.79 0.09 0.91 0.21 

MLR 0.75 0.11 0.89 0.25 

MLP 0.82 0.08 0.92 0.18 

SVM 0.85 0.06 0.94 0.15 

LogitBoost 0.81 0.08 0.92 0.19 

SMO 0.84 0.07 0.93 0.16 

ANN 0.86 0.05 0.95 0.14 

In this analysis, the performance metrics for each model were 

computed based on three different data splits: training (60%), 

validation (20%), and testing (20%). Tree-based models, 

particularly Random Forest and J48, shown higher accuracy, 

precision, and recall compared to rules-based models, indicating 

their robustness and ability to capture complex patterns in the 

data. Among function-based models, SVM and ANN achieved the 

highest metrics, showcasing their strength in handling non-linear 

relationships. ANN, with a precision of 0.88 and recall of 0.86, 

emerged as the top performer, likely due to its deep architecture 

capable of learning intricate data features. In contrast, rules-based 

models like OneR and Ridor, while interpretable, showed lower 

performance metrics, suggesting limited capacity for capturing 

complex data interactions. Thus, the results indicate that function-

based models, followed by tree-based models, provide superior 

predictive performance for weather forecasting tasks, while rules-

based models offer easier interpretability at the cost of lower 

accuracy. 

Table.3. Accuracy for training, testing and validation sets 

Model Training Testing  Validation  

OneR 0.68 0.65 0.64 

Decision Table 0.71 0.68 0.67 

JRIP 0.73 0.70 0.69 

Ridor 0.71 0.68 0.67 

J48 0.80 0.76 0.75 

LMT 0.82 0.78 0.77 

Random Forest 0.85 0.81 0.80 

CART 0.79 0.75 0.74 

MLR 0.76 0.72 0.71 

MLP 0.83 0.79 0.78 

SVM 0.87 0.83 0.82 

LogitBoost 0.81 0.77 0.76 

SMO 0.84 0.80 0.79 

ANN 0.88 0.84 0.83 

The accuracy values across different models and data splits 

show varying degrees of performance: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) tend to have lower accuracy compared 

to tree-based and function-based models. For example, 

OneR shows the lowest accuracy, indicating it may not 

handle complex patterns well. The accuracy improves 

slightly with more sophisticated rules-based models like 

JRIP. 

• Tree-based Models: Models like Random Forest and J48 

generally perform better than rules-based models. Random 

Forest, in particular, exhibits high accuracy across all data 

splits, reflecting its ability to generalize well due to its 

ensemble nature. LMT and CART also show good 

performance, though slightly less than Random Forest. 

• Function-based Models: These models tend to achieve the 

highest accuracy. For instance, ANN (Artificial Neural 

Network) achieves the highest accuracy Thus, which is 

expected due to its capability to model complex, non-linear 

relationships. SVM also shows strong performance, 

especially in the testing set, which indicates its effectiveness 

in creating optimal decision boundaries. 

Table.4. Precision for training, testing and validation sets 

Model Training Testing  Validation  

OneR 0.66 0.64 0.63 

Decision Table 0.70 0.67 0.66 

JRIP 0.72 0.69 0.68 

Ridor 0.68 0.65 0.64 

J48 0.78 0.74 0.73 

LMT 0.81 0.77 0.76 

Random Forest 0.84 0.80 0.79 

CART 0.76 0.72 0.71 

MLR 0.73 0.69 0.68 

MLP 0.80 0.76 0.75 

SVM 0.85 0.81 0.80 

LogitBoost 0.77 0.73 0.72 
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SMO 0.82 0.78 0.77 

ANN 0.87 0.83 0.82 

The precision values reflect each model’s ability to correctly 

identify positive instances: 

• Rules-based Models: Precision is generally lower across 

rules-based models (OneR, Decision Table, JRIP, Ridor). 

For example, OneR shows the lowest precision, indicating it 

struggles with identifying true positives accurately. JRIP and 

Decision Table perform slightly better but still lag behind 

more advanced models. 

• Tree-based Models: These models, such as Random Forest 

and J48, show improved precision compared to rules-based 

models. Random Forest stands out with the highest 

precision, demonstrating its effectiveness in reducing false 

positives due to its ensemble approach. J48 and LMT also 

perform well but are slightly less precise than Random 

Forest. 

• Function-based Models: Function-based models achieve 

the highest precision values. SVM and ANN excel in 

identifying true positives, with ANN achieving the highest 

precision overall. This high precision reflects ANN’s ability 

to learn complex patterns and minimize false positives 

effectively. SVM also shows strong precision, confirming its 

robustness in classifying data accurately. 

Thus, function-based models, especially ANN, provide 

superior precision, followed by tree-based models, while rules-

based models exhibit lower precision, indicating less 

effectiveness in minimizing false positives. 

Table.5. Recall for training, testing and validation sets 

Model Training Testing  Validation  

OneR 0.62 0.60 0.59 

Decision Table 0.66 0.64 0.63 

JRIP 0.69 0.66 0.65 

Ridor 0.64 0.61 0.60 

J48 0.75 0.72 0.71 

LMT 0.78 0.74 0.73 

Random Forest 0.81 0.77 0.76 

CART 0.70 0.68 0.67 

MLR 0.68 0.65 0.64 

MLP 0.76 0.72 0.71 

SVM 0.82 0.78 0.77 

LogitBoost 0.73 0.70 0.69 

SMO 0.77 0.73 0.72 

ANN 0.85 0.81 0.80 

Recall measures the ability of a model to identify all relevant 

positive instances: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) generally have lower recall values, 

reflecting their challenges in identifying all true positives. 

For instance, OneR shows the lowest recall, indicating it 

misses a significant portion of positive instances. JRIP 

performs somewhat better but still does not match the recall 

of more advanced models. 

• Tree-based Models: Tree-based models exhibit improved 

recall compared to rules-based models. Random Forest, with 

the highest recall among tree-based models, indicates its 

effectiveness in capturing most positive instances. J48 and 

LMT also perform well, showing better recall than their 

rules-based counterparts but still fall short of function-based 

models. 

• Function-based Models: Function-based models achieve 

the highest recall values. ANN stands out with the highest 

recall Thus, demonstrating its capacity to identify the 

majority of positive instances. SVM also shows strong 

recall, confirming its ability to effectively capture positive 

cases. These models, especially ANN, excel in reducing 

false negatives and ensuring comprehensive identification of 

positive instances. 

Thus, function-based models, particularly ANN, offer 

superior recall, capturing more true positives, followed by tree-

based models. Rules-based models generally show lower recall, 

indicating limited effectiveness in identifying all relevant positive 

instances. 

Table.6. F-measure for training, testing and validation sets 

Model Training Testing  Validation  

OneR 0.64 0.61 0.60 

Decision Table 0.68 0.65 0.64 

JRIP 0.71 0.68 0.67 

Ridor 0.66 0.63 0.62 

J48 0.76 0.72 0.71 

LMT 0.79 0.75 0.74 

Random Forest 0.83 0.78 0.77 

CART 0.73 0.70 0.69 

MLR 0.71 0.68 0.67 

MLP 0.78 0.74 0.73 

SVM 0.85 0.81 0.80 

LogitBoost 0.76 0.72 0.71 

SMO 0.80 0.76 0.75 

ANN 0.86 0.82 0.81 

The F-measure, which balances precision and recall, provides 

a single metric to evaluate the performance of each model: 

• Rules-based Models: The F-measure is relatively lower for 

rules-based models (OneR, Decision Table, JRIP, Ridor), 

reflecting their limited ability to balance precision and 

recall. For example, OneR has the lowest F-measure, 

indicating it struggles to effectively manage both false 

positives and false negatives. 

• Tree-based Models: Tree-based models show improved F-

measure values compared to rules-based models. Random 

Forest achieves the highest F-measure among tree-based 

models, indicating it effectively balances precision and 

recall. J48 and LMT also perform well, but their F-measure 

values are slightly lower, suggesting some trade-off between 

precision and recall. 

• Function-based Models: Function-based models exhibit 

the highest F-measure values. ANN leads with the highest 
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F-measure, demonstrating its superior ability to balance 

precision and recall, ensuring a robust performance across 

all metrics. SVM also performs strongly, reflecting its 

effective balance between correctly identifying positives and 

minimizing false positives and negatives. 

Thus, function-based models, especially ANN, show the best 

F-measure, providing a strong balance of precision and recall. 

Tree-based models follow, offering good performance but with 

some trade-offs. Rules-based models generally show lower F-

measure, indicating less effective management of precision and 

recall. 

Table.7. Accuracy over various Datasets 

Model 

Kaggle  

Weather  

Forecast  

IEEE  

Weather  

Forecast  

OneR 0.63 0.62 

Decision Table 0.66 0.65 

JRIP 0.68 0.67 

Ridor 0.65 0.64 

J48 0.75 0.73 

LMT 0.77 0.76 

Random Forest 0.80 0.78 

CART 0.72 0.70 

MLR 0.70 0.68 

MLP 0.76 0.74 

SVM 0.82 0.80 

LogitBoost 0.74 0.72 

SMO 0.78 0.76 

ANN 0.84 0.82 

The accuracy values reflect each model’s performance on 

weather prediction datasets from Kaggle and IEEE: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) exhibit lower accuracy compared to 

more advanced models. For instance, OneR achieves an 

accuracy of 0.63 on Kaggle and 0.62 on IEEE, indicating 

limited capability in handling complex weather patterns. 

JRIP performs somewhat better but still shows lower 

accuracy than tree-based and function-based models. 

• Tree-based Models: Tree-based models, such as Random 

Forest and J48, demonstrate higher accuracy. Random 

Forest achieves an accuracy of 0.80 on Kaggle and 0.78 on 

IEEE, reflecting its strength in capturing complex patterns 

through its ensemble approach. J48 and LMT also perform 

well, showing better accuracy than rules-based models but 

less than function-based models. 

• Function-based Models: Function-based models, including 

SVM and ANN, show the highest accuracy across both 

datasets. ANN achieves the highest accuracy, with 0.84 on 

Kaggle and 0.82 on IEEE, indicating its superior ability to 

model intricate weather patterns. SVM also performs well, 

with accuracy values of 0.82 and 0.80, respectively. 

Thus, function-based models, particularly ANN, provide the 

highest accuracy, reflecting their effectiveness in predicting 

weather patterns. Tree-based models follow, showing strong 

performance but with slightly lower accuracy. Rules-based 

models generally have the lowest accuracy, highlighting their 

limitations in handling complex weather data. 

Table.8. Precision over various Datasets 

Model 

Kaggle  

Weather  

Forecast  

IEEE  

Weather  

Forecast  

OneR 0.60 0.59 

Decision Table 0.62 0.61 

JRIP 0.65 0.63 

Ridor 0.61 0.60 

J48 0.73 0.71 

LMT 0.76 0.74 

Random Forest 0.79 0.77 

CART 0.70 0.68 

MLR 0.68 0.66 

MLP 0.74 0.72 

SVM 0.80 0.78 

LogitBoost 0.72 0.70 

SMO 0.76 0.74 

ANN 0.82 0.80 

Precision measures the proportion of true positive predictions 

among all positive predictions made by the model: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) exhibit lower precision values. For 

example, OneR shows a precision of 0.60 on Kaggle and 

0.59 on IEEE, indicating a higher rate of false positives. 

JRIP performs slightly better but still lags behind more 

advanced models. 

• Tree-based Models: Tree-based models such as Random 

Forest and J48 show improved precision compared to rules-

based models. Random Forest achieves a precision of 0.79 

on Kaggle and 0.77 on IEEE, reflecting its ability to better 

identify relevant positive instances. J48 and LMT also 

perform well, indicating good precision but slightly lower 

than Random Forest. 

• Function-based Models: Function-based models 

demonstrate the highest precision. ANN achieves the highest 

precision, with 0.82 on Kaggle and 0.80 on IEEE, indicating 

its effectiveness in minimizing false positives. SVM also 

performs strongly, with precision values of 0.80 and 0.78, 

respectively. 

Thus, function-based models, especially ANN, provide the 

highest precision, effectively identifying true positives with fewer 

false positives. Tree-based models follow, showing solid 

precision but less than function-based models. Rules-based 

models generally exhibit lower precision, highlighting their 

higher rate of false positives in weather prediction tasks. 

Table.9. Recall over various Datasets  

Model 

Kaggle  

Weather  

Forecast  

IEEE  

Weather  

Forecast  
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OneR 0.58 0.57 

Decision Table 0.61 0.60 

JRIP 0.64 0.62 

Ridor 0.59 0.58 

J48 0.72 0.69 

LMT 0.75 0.73 

Random Forest 0.78 0.76 

CART 0.70 0.68 

MLR 0.66 0.64 

MLP 0.73 0.71 

SVM 0.79 0.77 

LogitBoost 0.71 0.69 

SMO 0.74 0.72 

ANN 0.81 0.79 

Recall measures the proportion of true positive instances 

identified by the model out of all actual positive instances: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) exhibit lower recall values. For instance, 

OneR has a recall of 0.58 on Kaggle and 0.57 on IEEE, 

indicating that it misses a significant number of positive 

instances. JRIP performs slightly better but still shows 

limited effectiveness in capturing all relevant positives 

compared to more advanced models. 

• Tree-based Models: Tree-based models show improved 

recall compared to rules-based models. Random Forest, with 

a recall of 0.78 on Kaggle and 0.76 on IEEE, effectively 

identifies a higher proportion of positive instances. J48 and 

LMT also perform well, reflecting better recall but slightly 

lower than Random Forest. 

• Function-based Models: Function-based models achieve 

the highest recall values. ANN leads with the highest recall, 

reaching 0.81 on Kaggle and 0.79 on IEEE, demonstrating 

its strong capability to identify most positive instances. 

SVM also performs robustly, with recall values of 0.79 and 

0.77, respectively. 

Thus, function-based models, particularly ANN, provide the 

highest recall, effectively identifying most positive instances with 

fewer missed positives. Tree-based models follow with strong 

performance, while rules-based models generally exhibit lower 

recall, indicating less comprehensive identification of positive 

instances. 

Table.10. F-Measure over various Datasets  

Model 

Kaggle  

Weather  

Forecast  

IEEE  

Weather  

Forecast  

OneR 0.59 0.58 

Decision Table 0.62 0.61 

JRIP 0.66 0.64 

Ridor 0.60 0.59 

J48 0.73 0.71 

LMT 0.76 0.74 

Random Forest 0.79 0.77 

CART 0.71 0.69 

MLR 0.67 0.65 

MLP 0.74 0.72 

SVM 0.80 0.78 

LogitBoost 0.72 0.70 

SMO 0.75 0.73 

ANN 0.82 0.80 

The F-measure balances precision and recall, providing a 

single metric that combines both aspects of model performance: 

• Rules-based Models: These models (OneR, Decision 

Table, JRIP, Ridor) show lower F-measure values, reflecting 

difficulties in achieving a good balance between precision 

and recall. For example, OneR has an F-measure of 0.59 on 

Kaggle and 0.58 on IEEE, indicating that it struggles to 

manage both false positives and false negatives effectively. 

• Tree-based Models: Tree-based models exhibit better F-

measure scores. Random Forest leads with an F-measure of 

0.79 on Kaggle and 0.77 on IEEE, demonstrating a strong 

balance between precision and recall. J48 and LMT also 

perform well, showing improvements over rules-based 

models but slightly lower than Random Forest. 

• Function-based Models: Function-based models achieve 

the highest F-measure values. ANN, with an F-measure of 

0.82 on Kaggle and 0.80 on IEEE, excels in balancing 

precision and recall. SVM also performs strongly, with F-

measure values of 0.80 and 0.78, respectively. 

Thus, function-based models, particularly ANN, provide the 

highest F-measure, effectively balancing precision and recall. 

Tree-based models follow with robust performance but slightly 

lower F-measure. Rules-based models generally exhibit lower F-

measure, indicating less effective management of both precision 

and recall. 

5. DISCUSSION OF RESULTS 

The performance metrics for the various machine learning 

models—rules-based, tree-based, and function-based—on the 

Kaggle and IEEE weather prediction datasets reveal significant 

insights into their efficacy in weather forecasting tasks. 

5.1 RULES-BASED MODELS 

The rules-based models, including OneR, Decision Table, 

JRIP, and Ridor, generally exhibit lower performance across all 

metrics—accuracy, precision, recall, and F-measure. These 

models often have lower precision, indicating a higher rate of 

false positives, and lower recall, reflecting their struggle to 

identify all relevant positive instances. For instance, OneR’s 

accuracy of 0.63 and precision of 0.60 highlight its limitations in 

distinguishing between positive and negative cases effectively. 

The lower F-measure values confirm that these models struggle 

to balance precision and recall, making them less effective for 

complex weather prediction tasks. Their performance suggests 

that while they may be simpler and easier to interpret, their limited 

complexity hinders their ability to model the intricate patterns 

present in weather data. 
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5.2 TREE-BASED MODELS 

Tree-based models, such as J48, LMT, Random Forest, and 

CART, demonstrate improved performance over rules-based 

models. Random Forest, in particular, achieves high accuracy 

(0.80) and precision (0.79), indicating its effectiveness in 

handling complex weather data through its ensemble approach. 

The high recall values (0.78) and F-measure scores (0.79) further 

illustrate Random Forest’s ability to effectively identify positive 

instances while balancing precision and recall. J48 and LMT also 

show strong performance, although slightly lower than Random 

Forest. These models benefit from their ability to capture non-

linear relationships and interactions in the data, which contributes 

to their superior performance compared to simpler rules-based 

approaches. 

5.3 FUNCTION-BASED MODELS 

Function-based models, including MLR, MLP, SVM, 

LogitBoost, SMO, and ANN, exhibit the highest performance 

across all metrics. ANN, in particular, stands out with the highest 

accuracy (0.84) and F-measure (0.82), demonstrating its superior 

ability to learn complex patterns in the data. The high precision 

(0.82) and recall (0.81) values of ANN confirm its effectiveness 

in identifying positive instances while minimizing false positives 

and negatives. SVM also performs strongly, reflecting its 

robustness in classifying data accurately. These models leverage 

advanced techniques such as neural networks and support vector 

machines to achieve superior performance, highlighting their 

capability to manage the complexities of weather forecasting 

tasks more effectively than both rules-based and tree-based 

models. 

Thus, the results underscore that function-based models, 

particularly ANN, provide the most reliable performance for 

weather prediction tasks, balancing accuracy, precision, recall, 

and F-measure effectively. Tree-based models offer significant 

improvements over rules-based models but are outperformed by 

function-based models in handling complex weather data. 

6. INFERENCES 

The superior performance of function-based models, 

particularly Artificial Neural Networks (ANN), suggests that 

these models are highly effective for complex tasks such as 

weather prediction. ANN’s high accuracy, precision, recall, and 

F-measure indicate its capacity to capture and learn intricate 

patterns and relationships within weather data. This capability is 

crucial for forecasting tasks where accurate prediction and 

minimal false positives and negatives are essential. The 

robustness of ANN in managing diverse and complex datasets 

highlights the advantages of employing advanced machine 

learning techniques that leverage deep learning and neural 

network architectures. 

Rules-based models, including OneR, Decision Table, JRIP, 

and Ridor, demonstrate clear limitations in weather prediction 

tasks. Their lower performance across all metrics—accuracy, 

precision, recall, and F-measure—suggests that they struggle with 

the complexity of weather data. These models, which rely on 

simple rule-based logic, are less capable of handling non-linear 

relationships and intricate patterns compared to more advanced 

models. As a result, their use in practical applications where high 

accuracy and comprehensive prediction are required may be 

limited. The challenges observed with rules-based models 

highlight the need for more sophisticated approaches to improve 

performance in complex forecasting scenarios. 

Tree-based models, such as J48, LMT, Random Forest, and 

CART, show notable improvements over rules-based models. 

Their ability to handle non-linear relationships and interactions in 

the data contributes to their enhanced performance in weather 

prediction tasks. Random Forest, in particular, stands out for its 

robustness and high performance, reflecting its strength in 

aggregating multiple decision trees to improve predictive 

accuracy. Tree-based models offer a middle ground between 

simplicity and complexity, making them a viable option for tasks 

requiring a balance of interpretability and performance. However, 

while they represent an advancement over rules-based models, 

they are still outperformed by function-based models, which 

leverage deeper learning techniques for even greater accuracy. 

The findings emphasize the need for selecting appropriate 

models based on the complexity of the task and the dataset. 

Function-based models, especially ANN, are recommended for 

applications demanding high accuracy and robust performance in 

handling complex and dynamic data. Tree-based models provide 

a strong alternative for cases where interpretability and moderate 

performance are acceptable. Rules-based models may be suitable 

for simpler tasks but fall short in scenarios requiring high 

precision and recall. The insights underscore the importance of 

model selection and the value of advanced techniques in 

achieving optimal performance for complex predictive tasks. 

Conclusion 

The comparative analysis of machine learning models for 

weather prediction tasks on the Kaggle and IEEE datasets 

highlights several key findings that shape the conclusion of this 

study. Function-based models, particularly Artificial Neural 

Networks (ANN), emerge as the most effective approach for 

weather forecasting. Their superior performance across all 

evaluation metrics—accuracy, precision, recall, and F-measure—

demonstrates their ability to handle the complexities and 

intricacies of weather data with remarkable proficiency. ANN’s 

high accuracy of 0.84 and F-measure of 0.82 reflect its capacity 

to accurately predict weather patterns while effectively managing 

false positives and negatives. The robust performance of ANN 

underscores the advantages of leveraging advanced deep learning 

techniques in achieving high-quality predictions. In contrast, 

rules-based models, such as OneR, Decision Table, JRIP, and 

Ridor, exhibit lower performance in comparison to both tree-

based and function-based models. Their limited accuracy and 

lower precision and recall values indicate their struggle with the 

complexity of weather prediction tasks. These models, which rely 

on straightforward rule-based logic, are less adept at capturing the 

non-linear relationships inherent in weather data. Their 

performance suggests that while they may be simpler to 

implement, they are less suitable for applications requiring high 

precision and comprehensive predictive capabilities. Tree-based 

models, including J48, LMT, Random Forest, and CART, offer a 

notable improvement over rules-based models. Their ability to 

manage non-linear data relationships and interactions results in 

better performance metrics. Random Forest provides a strong 

balance between performance and complexity, achieving high 
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accuracy and recall. However, while tree-based models represent 

a significant advancement over rules-based approaches, they still 

fall short of the superior performance achieved by function-based 

models. Thus, this study highlights the importance of selecting the 

appropriate model based on the complexity of the forecasting 

task. Function-based models, especially ANN, are recommended 

for scenarios requiring high accuracy and robust performance. 

Tree-based models serve as a viable middle ground, while rules-

based models are less effective for complex prediction tasks. The 

findings emphasize the critical role of model sophistication in 

achieving optimal performance in weather prediction. 
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