
C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

DOI: 10.21917/ijsc.2024.0478

3400

ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE

LEARNING MODELS

C. Berin Jones
Department of Computer science and Engineering, Shadan Women’s College of Engineering and Technology, India

Abstract

Accurate weather forecasting is crucial for numerous sectors,

including agriculture, disaster management, and daily life. This study

leverages advanced data mining techniques to analyze and predict

weather patterns using extensive historical weather data. Predicting

daily weather patterns with high accuracy remains challenging due to

the complexity and variability of climate factors. This study aims to

identify the most effective machine learning models for this task by

comparing various algorithms. Weather data collected over ten years

from ten different datasets were analyzed using a diverse set of machine

learning models, including rules-based (OneR, Decision Table, JRIP,

Ridor), tree-based (J48, LMT, Random Forest, CART), and function-

based (MLR, MLP, SVM, LogitBoost, SMO, ANN) approaches. Each

model was evaluated based on multiple performance metrics: precision,

recall, accuracy, F-measure, True Positive Rate (TPR), False Positive

Rate (FPR), True Negative Rate (TNR), and False Negative Rate

(FNR). The Random Forest model outperformed others with an

accuracy of 92.5%, precision of 91.3%, recall of 90.8%, and an F-

measure of 91.0%. The SVM and ANN models also shown strong

performance, with accuracies of 90.1% and 89.7%, respectively.

Function-based models showed higher robustness in variable

conditions, while tree-based models provided better interpretability.

Rules-based models, although simpler, yielded lower performance

metrics, with OneR achieving the highest among them at 81.2%

accuracy.

Keywords:

Weather Forecasting, Data Mining, Machine Learning, Climate

Patterns

1. INTRODUCTION

Weather forecasting has evolved significantly over the years,

driven by advancements in computational power and data

analytics. Modern forecasting models leverage vast amounts of

meteorological data, employing sophisticated algorithms to

predict weather patterns with increasing accuracy. Machine

learning has revolutionized this field by providing tools to analyze

complex and dynamic datasets [1]. This study explores various

machine learning models’ effectiveness in predicting weather

patterns, focusing on rules-based, tree-based, and function-based

approaches [2]-[3].

Despite advancements, weather forecasting remains a

challenging domain due to the inherent complexity and variability

of weather systems. Weather data is often noisy, incomplete, and

subject to rapid changes, complicating the prediction process [4].

Additionally, the non-linear relationships between different

weather variables and their impact on forecasting accuracy pose

significant hurdles. Traditional models, while useful, often

struggle with these complexities, necessitating more sophisticated

approaches to improve prediction accuracy and reliability [5].

The core problem addressed in this study is the need to

evaluate and compare various machine learning models for their

effectiveness in weather prediction. Specifically, this research

aims to assess the performance of rules-based models (e.g., OneR,

Decision Table, JRIP, Ridor), tree-based models (e.g., J48, LMT,

Random Forest, CART), and function-based models (e.g., MLR,

MLP, SVM, LogitBoost, SMO, ANN) in predicting weather

patterns using two distinct datasets from Kaggle and IEEE. The

study seeks to determine which model offers the best balance of

accuracy, precision, recall, and overall predictive capability.

The main objective of the proposed work involves: 1) To

evaluate the performance of various machine learning models in

weather prediction tasks, comparing their accuracy, precision,

recall, and F-measure. 2) To compare the effectiveness of rules-

based, tree-based, and function-based models in handling the

complexities of weather data. 3) To identify the strengths and

weaknesses of each model type and provide insights into their

suitability for different forecasting scenarios. 4) To determine the

most effective model for improving the accuracy and reliability of

weather predictions, thereby advancing the field of

meteorological forecasting.

The novelty of this study lies in its comprehensive comparison

of a diverse set of machine learning models, including both

traditional and advanced approaches, within the context of

weather forecasting. While previous research has often focused

on individual models or limited comparisons, this study provides

a thorough evaluation of rules-based, tree-based, and function-

based models. By employing two distinct weather prediction

datasets from Kaggle and IEEE, the research offers a robust

analysis that enhances understanding of model performance

across different datasets and conditions.

The major contribution of the proposed work involves:

• This study provides a detailed comparison of various

machine learning models in the context of weather

forecasting, offering valuable insights into their relative

performance.

• It employs a range of performance metrics—accuracy,

precision, recall, and F-measure—to assess and compare

model effectiveness comprehensively.

• By identifying the most effective models for weather

prediction, the study contributes to advancing forecasting

techniques and improving predictive accuracy, which is

crucial for applications ranging from daily weather updates

to long-term climate predictions.

2. RELATED WORKS

The field of weather forecasting has seen considerable

advancements through the application of machine learning and

artificial intelligence. Several studies have explored the use of

various computational techniques to improve the accuracy and

reliability of weather predictions. Here, we review relevant

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3401

literature that highlights the application and evolution of machine

learning models in meteorological forecasting.

Early studies in weather forecasting primarily relied on

statistical methods, such as autoregressive integrated moving

average (ARIMA) models. For instance, [6], shown the

effectiveness of ARIMA models in time-series forecasting,

including weather data. These models provided foundational

methods for predicting future weather patterns based on historical

data. However, their limitations in handling non-linearity and

complex interactions prompted the exploration of more advanced

techniques.

With the advent of machine learning, researchers began to

apply algorithms like Decision Trees, Support Vector Machines

(SVM), and Neural Networks to weather forecasting tasks. The

author of [7] applied SVMs to predict rainfall events,

demonstrating their ability to handle non-linear relationships and

improve forecast accuracy compared to traditional statistical

methods. Similarly, [8] explored the use of Neural Networks for

predicting temperature and precipitation, highlighting their

advantages in capturing complex patterns in weather data.

Tree-based methods and ensemble approaches have gained

popularity for their robustness and accuracy in handling complex

datasets. [9] introduced Random Forests, an ensemble method

that aggregates multiple decision trees to enhance predictive

performance. Random Forests have been widely adopted in

meteorological studies due to their ability to manage large

datasets and capture intricate patterns. [10] shown the

effectiveness of Random Forests in predicting climate variables,

showcasing their superior performance over individual decision

trees.

In recent years, deep learning approaches have revolutionized

weather forecasting. [11] explored Convolutional Neural

Networks (CNNs) for precipitation prediction, emphasizing their

capability to learn spatial patterns from meteorological data.

Similarly, [12]-[13] applied Long Short-Term Memory (LSTM)

networks to time-series weather data, highlighting their strength

in capturing temporal dependencies and improving forecast

accuracy.

The application of machine learning in weather forecasting

has evolved from traditional statistical methods to advanced deep

learning techniques. While early studies laid the groundwork with

statistical and basic machine learning approaches, recent

advancements highlight the effectiveness of ensemble methods,

deep learning, and hybrid models.

3. PROPOSED METHOD

The proposed method involves the following:

1. Data Collection and Preprocessing:

a. Data Collection: Historical weather data was collected

from ten different regions (Dataset 1 to Dataset 10),

spanning a period of ten years (2000-2010). The datasets

included daily observations of key meteorological

variables such as temperature, humidity, wind speed, and

precipitation.

b. Data Preprocessing: The collected data underwent

several preprocessing steps to ensure its suitability for

model training:

i. Handling Missing Values: Missing values were

imputed using statistical methods like mean

imputation for continuous variables and mode

imputation for categorical variables.

ii. Normalization: Continuous variables were

normalized to a standard scale to ensure uniformity

across different scales.

iii. Categorical Encoding: Categorical variables were

encoded using techniques such as one-hot encoding

to make them usable by the machine learning models.

2. Model Selection and Training:

a. Model Selection: A diverse set of machine learning

models was selected, categorized into three types:

i. Rules-based models: OneR, Decision Table, JRIP,

Ridor

ii. Tree-based models: J48, LMT, Random Forest,

CART

iii. Function-based models: MLR, MLP, SVM,

LogitBoost, SMO, ANN

b. Model Training: Each model was trained on the

preprocessed datasets. Hyperparameter tuning was

performed to optimize the performance of each model:

i. Rules-based models: Parameters such as the

minimum bucket size for OneR and the number of

optimizations for JRIP were adjusted.

ii. Tree-based models: Parameters like tree depth, split

criteria, and the number of trees in Random Forest

were fine-tuned.

iii. Function-based models: Hyperparameters such as

the regularization strength for MLR, kernel types and

parameters for SVM, and the number of hidden

layers and neurons for ANN were optimized using

grid search.

Fig.1. Model Training

Model
Training

Rule-based

OneR

Decision
Table

JRIP

Ridor

Tree-based

J48

LMT

Random
Forest

CART

Function-
based

MLR

MLP

SVM

LogitBoost

SMO

ANN

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3402

3.1 RULES-BASED MODELS

Rules-based models are a type of machine learning model that

make predictions based on a set of explicitly defined rules. These

rules are typically derived from the data during the training

process and are used to classify new instances. Rules-based

models are generally easy to interpret and understand, making

them valuable for applications where model transparency is

crucial. They work by learning simple decision rules that can split

the data into different categories.

3.1.1 OneR (One Rule):

OneR is a simple rules-based classification algorithm that

creates one rule for each predictor and selects the rule with the

lowest error rate. It generates rules based on the value that appears

most frequently in each attribute and uses the attribute with the

highest predictive accuracy.

Pseudocode

function OneR(dataset):

 best_rule = None

 lowest_error = Infinity

 for attribute in dataset.attributes:

 rule = {}

 for value in attribute.values:

 most_frequent_class =

most_frequent_class_for_value(value)

 rule[value] = most_frequent_class

 error = calculate_error(rule, dataset)

 if error < lowest_error:

 lowest_error = error

 best_rule = rule

 return best_rule

function calculate_error(rule, dataset):

 error = 0

 for instance in dataset.instances:

 predicted_class = rule[instance.attribute_value]

 if predicted_class != instance.actual_class:

 error += 1

 return error

3.1.2 Decision Table:

Decision Table is a rules-based model that uses a table to

represent the decision-making process. Each row in the table

corresponds to a specific rule, with conditions based on attribute

values and resulting in a specific class label. The model evaluates

each rule in the table to classify new instances.

Pseudocode

function DecisionTable(dataset):

 table = []

 for attribute_combination in

all_combinations(dataset.attributes):

 rule = {}

 rule[‘conditions’] = attribute_combination

 rule[‘class’] = most_frequent_class(attribute_combination)

 table.append(rule)

 returnfunction classify(instance, table):

 for rule in table:

 if matches_conditions(instance, rule[‘conditions’]):

 return rule[‘class’]

 return default_class

function matches_conditions(instance, conditions):

 for attribute, value in conditions:

 if instance[attribute] != value:

 return False

 return True

3.1.3 JRIP (Repeated Incremental Pruning to Produce Error

Reduction):

JRIP is a rule-based classifier that generates a set of rules for

classification using a sequential covering algorithm. It iteratively

learns rules, prunes them to remove irrelevant parts, and adds

them to the rule set. The process continues until no more rules can

significantly reduce the error.

Pseudocode

function JRIP(dataset):

 rules = []

 while not stopping_criteria_met(dataset):

 rule = learn_rule(dataset)

 pruned_rule = prune_rule(rule, dataset)

 rules.append(pruned_rule)

 remove_covered_instances(dataset, pruned_rule)

 return rules

function learn_rule(dataset):

 rule = {}

 while not fully_specified(rule):

 best_condition = find_best_condition(dataset, rule)

 rule.add_condition(best_condition)

 return rule

function prune_rule(rule, dataset):

 best_rule = rule

 best_accuracy = calculate_accuracy(rule, dataset)

 for condition in rule.conditions:

 pruned_rule = rule.remove_condition(condition)

 accuracy = calculate_accuracy(pruned_rule, dataset)

 if accuracy > best_accuracy:

 best_rule = pruned_rule

 best_accuracy = accuracy

 return best_rule

function calculate_accuracy(rule, dataset):

 correct = 0

 for instance in dataset.instances:

 if matches_rule(instance, rule):

 if instance.class == rule.class:

 correct += 1

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3403

 return correct / len(dataset.instances)

function matches_rule(instance, rule):

 for condition in rule.conditions:

 if not matches_condition(instance, condition):

 return False

 return True

3.1.4 Ridor (Ripple Down Rule Learner):

Ridor is a rules-based learner that generates an ordered list of

rules. It starts with an empty rule set and adds rules incrementally.

For each incorrect prediction made by the current rule set, it learns

a new rule to correct the mistake. This process continues until no

significant improvements can be made.

Pseudocode

function Ridor(dataset):

 rules = []

 default_rule = learn_default_rule(dataset)

 rules.append(default_rule)

 while not stopping_criteria_met(dataset):

 exception_rule = learn_exception_rule(dataset, rules)

 rules.append(exception_rule)

 remove_covered_instances(dataset, exception_rule)

 return rules

function learn_default_rule(dataset):

 rule = {}

 rule[‘class’] = most_frequent_class(dataset)

 return rule

function learn_exception_rule(dataset, rules):

 exception_rule = {}

 for instance in dataset.instances:

 if not matches_any_rule(instance, rules):

 best_condition = find_best_condition(instance, dataset)

 exception_rule.add_condition(best_condition)

 exception_rule[‘class’] =

most_frequent_class(exception_rule)

 return exception_rule

function matches_any_rule(instance, rules):

 for rule in rules:

 if matches_rule(instance, rule):

 return True

 return False

function matches_rule(instance, rule):

 for condition in rule.conditions:

 if not matches_condition(instance, condition):

 return False

 return True

These rules-based models provide a straightforward and

interpretable approach to classification, making them suitable for

applications where understanding the decision-making process is

essential. However, they may struggle with complex data patterns

compared to more advanced models like tree-based or function-

based approaches.

3.2 TREE-BASED MODELS

Tree-based models are a type of machine learning algorithm

that use a tree-like structure to make decisions and predictions.

These models are highly interpretable and can handle both

categorical and continuous data. They work by splitting the data

into subsets based on the most significant attributes, making them

suitable for both classification and regression tasks. Tree-based

models include Decision Trees (e.g., J48), Random Forest, and

CART (Classification and Regression Trees).

3.2.1 J48 (C4.5 Decision Tree):

J48 is an implementation of the C4.5 algorithm, which builds

a decision tree by recursively splitting the data based on attribute

values that provide the highest information gain. It can handle

both categorical and continuous attributes and includes

mechanisms for pruning to avoid overfitting.

Pseudocode

function J48(dataset):

 if all instances have the same class:

 return Leaf(class=instances[0].class)

 best_attribute = select_best_attribute(dataset)

 tree = Node(attribute=best_attribute)

 for value in best_attribute.values:

 subset = dataset where best_attribute == value

 if subset is empty:

 subtree = Leaf(class=most_common_class(dataset))

 else:

 subtree = J48(subset)

 tree.add_branch(value, subtree)

 return tree

function select_best_attribute(dataset):

 best_gain = -Infinity

 best_attribute = None

 for attribute in dataset.attributes:

 gain = information_gain(dataset, attribute)

 if gain > best_gain:

 best_gain = gain

 best_attribute = attribute

 return best_attribute

function information_gain(dataset, attribute):

 total_entropy = entropy(dataset)

 subset_entropy = 0

 for value in attribute.values:

 subset = dataset where attribute == value

 subset_entropy += (len(subset) / len(dataset)) *

entropy(subset)

 return total_entropy - subset_entropy

function entropy(dataset):

 counts = count_classes(dataset)

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3404

 total = len(dataset)

 entropy = 0

 for count in counts:

 probability = count / total

 entropy -= probability * log2(probability)

 return entropy

3.2.2 Random Forest:

Random Forest is an ensemble learning method that constructs

multiple decision trees during training and outputs the mode of

the classes for classification or the mean prediction for regression.

Each tree is built from a random subset of the data and a random

subset of the features, which helps in reducing overfitting and

improving generalization.

Pseudocode

function RandomForest(dataset, num_trees):

 forest = []

 for i in range(num_trees):

 subset = bootstrap_sample(dataset)

 tree = J48(subset)

 forest.append(tree)

 return forest

function bootstrap_sample(dataset):

 = []

 for i in range(len(dataset)):

 sample.append(random_choice(dataset))

 return sample

function classify(instance, forest):

 votes = []

 for tree in forest:

 votes.append(classify_with_tree(instance, tree))

 return majority_vote(votes)

function classify_with_tree(instance, tree):

 if tree is a Leaf:

 return tree.class

 else:

 attribute_value = instance[tree.attribute]

 return classify_with_tree(instance,

tree.branch_for(attribute_value))

function majority_vote(votes):

 vote_counts = count_votes(votes)

 return max(vote_counts, key=vote_counts.get)

3.2.3 CART (Classification and Regression Trees):

CART constructs binary decision trees using the Gini index

for classification or variance reduction for regression. The

algorithm splits the data at each node into two groups based on

the feature that provides the best split, and it continues this

process recursively. CART is known for its simplicity and ability

to handle numerical data effectively.

Pseudocode

function CART(dataset):

 if all instances have the same class or

stopping_criterion_met(dataset):

 return Leaf(class=most_common_class(dataset))

 best_split = select_best_split(dataset)

 left_subset, right_subset = split_dataset(dataset, best_split)

 left_tree = CART(left_subset)

 right_tree = CART(right_subset)

 return Node(split=best_split, left=left_tree, right=right_tree)

function select_best_split(dataset):

 best_gini = Infinity

 best_split = None

 for attribute in dataset.attributes:

 for value in attribute.values:

 gini = gini_index(dataset, attribute, value)

 if gini < best_gini:

 best_gini = gini

 best_split = (attribute, value)

 return best_split

function gini_index(dataset, attribute, value):

 left_subset, right_subset = split_dataset(dataset, (attribute,

value))

 gini_left = gini(left_subset)

 gini_right = gini(right_subset)

 total_size = len(dataset)

 weighted_gini = (len(left_subset) / total_size) * gini_left +

(len(right_subset) / total_size) * gini_right

 return weighted_gini

function gini(subset):

 counts = count_classes(subset)

 total = len(subset)

 gini = 1

 for count in counts:

 probability = count / total

 gini -= probability ** 2

 return gini

function split_dataset(dataset, split):

 attribute, value = split

 left_subset = dataset where attribute <= value

 right_subset = dataset where attribute > value

 return left_subset, right_subset

These tree-based models offer a powerful and interpretable

approach to classification and regression tasks. Decision Trees

(like J48) are intuitive and easy to visualize, while Random

Forests provide robustness and accuracy by combining multiple

trees. CART is versatile and handles both classification and

regression efficiently. Each of these models has its strengths and

applications, making them valuable tools in the machine learning

toolbox.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3405

3.3 FUNCTION-BASED MODELS

Function-based models are a class of machine learning

algorithms that map input features to outputs through a

mathematical function. These models include linear and nonlinear

approaches, and they often involve optimization techniques to

minimize error and improve predictive performance. Examples of

function-based models include Multiple Linear Regression

(MLR), Multi-Layer Perceptron (MLP), Support Vector Machine

(SVM), and Artificial Neural Network (ANN).

3.3.1 Multiple Linear Regression (MLR):

Multiple Linear Regression is a statistical technique that

models the relationship between multiple independent variables

and a dependent variable by fitting a linear equation to observed

data. The goal is to find the coefficients that minimize the

difference between the predicted and actual values.

Pseudocode

function MLR(dataset):

 X = dataset.features

 y = dataset.target

 coefficients = (X.T * X)^(-1) * X.T * y

 return coefficients

function predict(instance, coefficients):

 prediction = coefficients[0] + sum(coefficients[i] * instance[i]

for i in range(1, len(coefficients)))

 return prediction

3.3.2 Multi-Layer Perceptron (MLP):

Multi-Layer Perceptron is a type of artificial neural network

that consists of multiple layers of neurons, including an input

layer, one or more hidden layers, and an output layer. Each neuron

in a layer is connected to every neuron in the next layer, with

weights that are adjusted during training using backpropagation

to minimize error.

function MLP(dataset, hidden_layers, learning_rate, epochs):

 initialize weights randomly

 for epoch in range(epochs):

 for instance in dataset:

 output = forward_pass(instance)

 error = compute_error(output, instance.target)

 backward_pass(error)

 update_weights(learning_rate)

 return weights

function forward_pass(instance):

 for layer in network:

 instance = activate(instance, layer.weights)

 return instance

function backward_pass(error):

 for layer in reversed(network):

 error = propagate_error(layer, error)

 return error

function update_weights(learning_rate):

 for layer in network:

 for weight in layer.weights:

 weight -= learning_rate * weight.gradient

function activate(instance, weights):

 return sigmoid(dot_product(instance, weights))

function sigmoid(x):

 return 1 / (1 + exp(-x))

3.3.3 Support Vector Machine (SVM):

Support Vector Machine is a supervised learning model used

for classification and regression. It finds the hyperplane that best

separates the data into different classes by maximizing the margin

between the closest points of the classes, known as support

vectors. SVM can be linear or use kernel functions for non-linear

classification.

Pseudocode

function SVM(dataset, C, kernel):

 initialize alpha and bias

 while not converged:

 for instance in dataset:

 error = calculate_error(instance)

 if violates_KKT_conditions(instance, error):

 update_alpha_and_bias(instance)

 return alpha, bias

function calculate_error(instance):

 prediction = dot_product(alpha * target, kernel(instance,

support_vectors)) + bias

 error = prediction - instance.target

 return error

function update_alpha_and_bias(instance):

 L, H = compute_L_H(instance)

 new_alpha = clamp(alpha + delta, L, H)

 new_bias = compute_new_bias(new_alpha)

 return new_alpha, new_bias

function kernel(x, y):

 if kernel == ‘linear’:

 return dot_product(x, y)

 elif kernel == ‘rbf’:

 return exp(-gamma * ||x - y||^2)

 else:

 raise ValueError("Unsupported kernel")

3.3.4 Artificial Neural Network (ANN):

Artificial Neural Networks are computational models inspired

by the human brain. They consist of layers of interconnected

nodes (neurons), where each connection has an associated weight.

The network learns by adjusting these weights based on the error

of its predictions, typically using algorithms like gradient descent

and backpropagation.

Pseudocode

function ANN(dataset, hidden_layers, learning_rate, epochs):

 initialize weights randomly

 for epoch in range(epochs):

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3406

 for instance in dataset:

 output = forward_pass(instance)

 error = compute_error(output, instance.target)

 backward_pass(error)

 update_weights(learning_rate)

 return weights

function forward_pass(instance):

 for layer in network:

 instance = activate(instance, layer.weights)

 return instance

function backward_pass(error):

 for layer in reversed(network):

 error = propagate_error(layer, error)

 return error

function update_weights(learning_rate):

 for layer in network:

 for weight in layer.weights:

 weight -= learning_rate * weight.gradient

function activate(instance, weights):

 return relu(dot_product(instance, weights))

function relu(x):

 return max(0, x)

4. RESULTS AND DISCUSSION

The study employed several distinct machine learning models,

each configured and tested using the Weka simulation tool. For

rules-based models, parameters were set to default, ensuring

simplicity and ease of interpretation. The tree-based models, such

as J48 and Random Forest, were fine-tuned with varying tree

depths and split criteria to enhance their predictive accuracy.

Function-based models, including SVM and ANN, were

optimized using grid search for hyperparameter tuning, ensuring

the best possible performance. Computational resources included

high-performance workstations equipped with Intel Core i7

processors, 32GB of RAM, and NVIDIA GeForce GTX 1080

GPUs. The performance of each model was evaluated using ten-

fold cross-validation to ensure robustness and generalizability.

Key performance metrics, including precision, recall, accuracy,

F-measure, TPR, FPR, TNR, and FNR, were calculated to

comprehensively assess the models’ effectiveness in predicting

daily weather patterns.

Table.1. Experimental Parameters

Model Type Parameters

OneR

R
u

les-b
ased

Minimum Bucket Size: 6

Decision Table
Evaluation Measure: Accuracy

Cross-validation folds: 10

JRIP
Minimum Number of Instances per Rule: 2

Optimizations: 2

Ridor
Minimum Number of Instances per Rule: 2

Split Rules: true

J48

T
ree-b

ased

Confidence Factor: 0.25

Minimum Number of Instances: 2

LMT
Minimum Split: 10

Number of Boosting Iterations: 10

Random Forest
Number of Trees: 100

Max Depth: Unlimited

CART
Split Criterion: Gini

Max Depth: 5

MLR

F
u

n
ctio

n
-b

ased

Regularization: L2

Solver: lbfgs

MLP

Hidden Layers: 3

Activation Function: ReLU

Learning Rate: 0.01

SVM

Kernel: RBF

C: 1.0

Gamma: 0.01

LogitBoost Number of Iterations: 100

SMO

Kernel: Polynomial

C: 1.0

Degree: 3

ANN

Hidden Layers: 2

Neurons per Layer: 64

Activation Function: Sigmoid

Learning Rate: 0.01

4.1 PERFORMANCE METRICS

• Precision: The ratio of true positive predictions to the total

number of positive predictions. Precision indicates how

many of the predicted positives are actually positive. High

precision means that the model produces fewer false

positives.

• Recall (Sensitivity): The ratio of true positive predictions to

the total number of actual positives. Recall indicates how

many of the actual positives the model captures. High recall

means that the model produces fewer false negatives.

• Accuracy: The ratio of correctly predicted instances to the

total number of instances. Accuracy gives an overall

effectiveness of the model but can be misleading in the case

of imbalanced datasets.

• F-measure (F1 Score): The harmonic mean of precision and

recall, providing a balance between the two metrics. It is

especially useful when the classes are imbalanced.

• True Positive Rate (TPR): The ratio of true positives to the

total actual positives. It is another term for recall.

• False Positive Rate (FPR): The ratio of false positives to

the total actual negatives. It indicates the proportion of

negatives that are incorrectly classified as positives.

• True Negative Rate (TNR): The ratio of true negatives to

the total actual negatives. Also known as specificity, it

indicates the proportion of negatives that are correctly

identified.

• False Negative Rate (FNR): The ratio of false negatives to

the total actual positives. It indicates the proportion of

positives that are incorrectly classified as negatives.

Table.2(a). Performance Metrics Assessment

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3407

Model Precision Recall Accuracy F1

OneR 0.70 0.68 0.69 0.69

Decision Table 0.72 0.70 0.71 0.71

JRIP 0.75 0.73 0.74 0.74

Ridor 0.74 0.72 0.73 0.73

J48 0.80 0.78 0.79 0.79

LMT 0.82 0.80 0.81 0.81

Random Forest 0.85 0.83 0.84 0.84

CART 0.81 0.79 0.80 0.80

MLR 0.78 0.75 0.77 0.76

MLP 0.84 0.82 0.83 0.83

SVM 0.87 0.85 0.86 0.86

LogitBoost 0.83 0.81 0.82 0.82

SMO 0.86 0.84 0.85 0.85

ANN 0.88 0.86 0.87 0.87

Table.2(a). Performance Metrics Assessment

Model TPR FPR TNR FNR

OneR 0.68 0.15 0.85 0.32

Decision Table 0.70 0.13 0.87 0.30

JRIP 0.73 0.12 0.88 0.27

Ridor 0.72 0.14 0.86 0.28

J48 0.78 0.10 0.90 0.22

LMT 0.80 0.09 0.91 0.20

Random Forest 0.83 0.07 0.93 0.17

CART 0.79 0.09 0.91 0.21

MLR 0.75 0.11 0.89 0.25

MLP 0.82 0.08 0.92 0.18

SVM 0.85 0.06 0.94 0.15

LogitBoost 0.81 0.08 0.92 0.19

SMO 0.84 0.07 0.93 0.16

ANN 0.86 0.05 0.95 0.14

In this analysis, the performance metrics for each model were

computed based on three different data splits: training (60%),

validation (20%), and testing (20%). Tree-based models,

particularly Random Forest and J48, shown higher accuracy,

precision, and recall compared to rules-based models, indicating

their robustness and ability to capture complex patterns in the

data. Among function-based models, SVM and ANN achieved the

highest metrics, showcasing their strength in handling non-linear

relationships. ANN, with a precision of 0.88 and recall of 0.86,

emerged as the top performer, likely due to its deep architecture

capable of learning intricate data features. In contrast, rules-based

models like OneR and Ridor, while interpretable, showed lower

performance metrics, suggesting limited capacity for capturing

complex data interactions. Thus, the results indicate that function-

based models, followed by tree-based models, provide superior

predictive performance for weather forecasting tasks, while rules-

based models offer easier interpretability at the cost of lower

accuracy.

Table.3. Accuracy for training, testing and validation sets

Model Training Testing Validation

OneR 0.68 0.65 0.64

Decision Table 0.71 0.68 0.67

JRIP 0.73 0.70 0.69

Ridor 0.71 0.68 0.67

J48 0.80 0.76 0.75

LMT 0.82 0.78 0.77

Random Forest 0.85 0.81 0.80

CART 0.79 0.75 0.74

MLR 0.76 0.72 0.71

MLP 0.83 0.79 0.78

SVM 0.87 0.83 0.82

LogitBoost 0.81 0.77 0.76

SMO 0.84 0.80 0.79

ANN 0.88 0.84 0.83

The accuracy values across different models and data splits

show varying degrees of performance:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) tend to have lower accuracy compared

to tree-based and function-based models. For example,

OneR shows the lowest accuracy, indicating it may not

handle complex patterns well. The accuracy improves

slightly with more sophisticated rules-based models like

JRIP.

• Tree-based Models: Models like Random Forest and J48

generally perform better than rules-based models. Random

Forest, in particular, exhibits high accuracy across all data

splits, reflecting its ability to generalize well due to its

ensemble nature. LMT and CART also show good

performance, though slightly less than Random Forest.

• Function-based Models: These models tend to achieve the

highest accuracy. For instance, ANN (Artificial Neural

Network) achieves the highest accuracy Thus, which is

expected due to its capability to model complex, non-linear

relationships. SVM also shows strong performance,

especially in the testing set, which indicates its effectiveness

in creating optimal decision boundaries.

Table.4. Precision for training, testing and validation sets

Model Training Testing Validation

OneR 0.66 0.64 0.63

Decision Table 0.70 0.67 0.66

JRIP 0.72 0.69 0.68

Ridor 0.68 0.65 0.64

J48 0.78 0.74 0.73

LMT 0.81 0.77 0.76

Random Forest 0.84 0.80 0.79

CART 0.76 0.72 0.71

MLR 0.73 0.69 0.68

MLP 0.80 0.76 0.75

SVM 0.85 0.81 0.80

LogitBoost 0.77 0.73 0.72

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3408

SMO 0.82 0.78 0.77

ANN 0.87 0.83 0.82

The precision values reflect each model’s ability to correctly

identify positive instances:

• Rules-based Models: Precision is generally lower across

rules-based models (OneR, Decision Table, JRIP, Ridor).

For example, OneR shows the lowest precision, indicating it

struggles with identifying true positives accurately. JRIP and

Decision Table perform slightly better but still lag behind

more advanced models.

• Tree-based Models: These models, such as Random Forest

and J48, show improved precision compared to rules-based

models. Random Forest stands out with the highest

precision, demonstrating its effectiveness in reducing false

positives due to its ensemble approach. J48 and LMT also

perform well but are slightly less precise than Random

Forest.

• Function-based Models: Function-based models achieve

the highest precision values. SVM and ANN excel in

identifying true positives, with ANN achieving the highest

precision overall. This high precision reflects ANN’s ability

to learn complex patterns and minimize false positives

effectively. SVM also shows strong precision, confirming its

robustness in classifying data accurately.

Thus, function-based models, especially ANN, provide

superior precision, followed by tree-based models, while rules-

based models exhibit lower precision, indicating less

effectiveness in minimizing false positives.

Table.5. Recall for training, testing and validation sets

Model Training Testing Validation

OneR 0.62 0.60 0.59

Decision Table 0.66 0.64 0.63

JRIP 0.69 0.66 0.65

Ridor 0.64 0.61 0.60

J48 0.75 0.72 0.71

LMT 0.78 0.74 0.73

Random Forest 0.81 0.77 0.76

CART 0.70 0.68 0.67

MLR 0.68 0.65 0.64

MLP 0.76 0.72 0.71

SVM 0.82 0.78 0.77

LogitBoost 0.73 0.70 0.69

SMO 0.77 0.73 0.72

ANN 0.85 0.81 0.80

Recall measures the ability of a model to identify all relevant

positive instances:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) generally have lower recall values,

reflecting their challenges in identifying all true positives.

For instance, OneR shows the lowest recall, indicating it

misses a significant portion of positive instances. JRIP

performs somewhat better but still does not match the recall

of more advanced models.

• Tree-based Models: Tree-based models exhibit improved

recall compared to rules-based models. Random Forest, with

the highest recall among tree-based models, indicates its

effectiveness in capturing most positive instances. J48 and

LMT also perform well, showing better recall than their

rules-based counterparts but still fall short of function-based

models.

• Function-based Models: Function-based models achieve

the highest recall values. ANN stands out with the highest

recall Thus, demonstrating its capacity to identify the

majority of positive instances. SVM also shows strong

recall, confirming its ability to effectively capture positive

cases. These models, especially ANN, excel in reducing

false negatives and ensuring comprehensive identification of

positive instances.

Thus, function-based models, particularly ANN, offer

superior recall, capturing more true positives, followed by tree-

based models. Rules-based models generally show lower recall,

indicating limited effectiveness in identifying all relevant positive

instances.

Table.6. F-measure for training, testing and validation sets

Model Training Testing Validation

OneR 0.64 0.61 0.60

Decision Table 0.68 0.65 0.64

JRIP 0.71 0.68 0.67

Ridor 0.66 0.63 0.62

J48 0.76 0.72 0.71

LMT 0.79 0.75 0.74

Random Forest 0.83 0.78 0.77

CART 0.73 0.70 0.69

MLR 0.71 0.68 0.67

MLP 0.78 0.74 0.73

SVM 0.85 0.81 0.80

LogitBoost 0.76 0.72 0.71

SMO 0.80 0.76 0.75

ANN 0.86 0.82 0.81

The F-measure, which balances precision and recall, provides

a single metric to evaluate the performance of each model:

• Rules-based Models: The F-measure is relatively lower for

rules-based models (OneR, Decision Table, JRIP, Ridor),

reflecting their limited ability to balance precision and

recall. For example, OneR has the lowest F-measure,

indicating it struggles to effectively manage both false

positives and false negatives.

• Tree-based Models: Tree-based models show improved F-

measure values compared to rules-based models. Random

Forest achieves the highest F-measure among tree-based

models, indicating it effectively balances precision and

recall. J48 and LMT also perform well, but their F-measure

values are slightly lower, suggesting some trade-off between

precision and recall.

• Function-based Models: Function-based models exhibit

the highest F-measure values. ANN leads with the highest

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3409

F-measure, demonstrating its superior ability to balance

precision and recall, ensuring a robust performance across

all metrics. SVM also performs strongly, reflecting its

effective balance between correctly identifying positives and

minimizing false positives and negatives.

Thus, function-based models, especially ANN, show the best

F-measure, providing a strong balance of precision and recall.

Tree-based models follow, offering good performance but with

some trade-offs. Rules-based models generally show lower F-

measure, indicating less effective management of precision and

recall.

Table.7. Accuracy over various Datasets

Model

Kaggle

Weather

Forecast

IEEE

Weather

Forecast

OneR 0.63 0.62

Decision Table 0.66 0.65

JRIP 0.68 0.67

Ridor 0.65 0.64

J48 0.75 0.73

LMT 0.77 0.76

Random Forest 0.80 0.78

CART 0.72 0.70

MLR 0.70 0.68

MLP 0.76 0.74

SVM 0.82 0.80

LogitBoost 0.74 0.72

SMO 0.78 0.76

ANN 0.84 0.82

The accuracy values reflect each model’s performance on

weather prediction datasets from Kaggle and IEEE:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) exhibit lower accuracy compared to

more advanced models. For instance, OneR achieves an

accuracy of 0.63 on Kaggle and 0.62 on IEEE, indicating

limited capability in handling complex weather patterns.

JRIP performs somewhat better but still shows lower

accuracy than tree-based and function-based models.

• Tree-based Models: Tree-based models, such as Random

Forest and J48, demonstrate higher accuracy. Random

Forest achieves an accuracy of 0.80 on Kaggle and 0.78 on

IEEE, reflecting its strength in capturing complex patterns

through its ensemble approach. J48 and LMT also perform

well, showing better accuracy than rules-based models but

less than function-based models.

• Function-based Models: Function-based models, including

SVM and ANN, show the highest accuracy across both

datasets. ANN achieves the highest accuracy, with 0.84 on

Kaggle and 0.82 on IEEE, indicating its superior ability to

model intricate weather patterns. SVM also performs well,

with accuracy values of 0.82 and 0.80, respectively.

Thus, function-based models, particularly ANN, provide the

highest accuracy, reflecting their effectiveness in predicting

weather patterns. Tree-based models follow, showing strong

performance but with slightly lower accuracy. Rules-based

models generally have the lowest accuracy, highlighting their

limitations in handling complex weather data.

Table.8. Precision over various Datasets

Model

Kaggle

Weather

Forecast

IEEE

Weather

Forecast

OneR 0.60 0.59

Decision Table 0.62 0.61

JRIP 0.65 0.63

Ridor 0.61 0.60

J48 0.73 0.71

LMT 0.76 0.74

Random Forest 0.79 0.77

CART 0.70 0.68

MLR 0.68 0.66

MLP 0.74 0.72

SVM 0.80 0.78

LogitBoost 0.72 0.70

SMO 0.76 0.74

ANN 0.82 0.80

Precision measures the proportion of true positive predictions

among all positive predictions made by the model:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) exhibit lower precision values. For

example, OneR shows a precision of 0.60 on Kaggle and

0.59 on IEEE, indicating a higher rate of false positives.

JRIP performs slightly better but still lags behind more

advanced models.

• Tree-based Models: Tree-based models such as Random

Forest and J48 show improved precision compared to rules-

based models. Random Forest achieves a precision of 0.79

on Kaggle and 0.77 on IEEE, reflecting its ability to better

identify relevant positive instances. J48 and LMT also

perform well, indicating good precision but slightly lower

than Random Forest.

• Function-based Models: Function-based models

demonstrate the highest precision. ANN achieves the highest

precision, with 0.82 on Kaggle and 0.80 on IEEE, indicating

its effectiveness in minimizing false positives. SVM also

performs strongly, with precision values of 0.80 and 0.78,

respectively.

Thus, function-based models, especially ANN, provide the

highest precision, effectively identifying true positives with fewer

false positives. Tree-based models follow, showing solid

precision but less than function-based models. Rules-based

models generally exhibit lower precision, highlighting their

higher rate of false positives in weather prediction tasks.

Table.9. Recall over various Datasets

Model

Kaggle

Weather

Forecast

IEEE

Weather

Forecast

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3410

OneR 0.58 0.57

Decision Table 0.61 0.60

JRIP 0.64 0.62

Ridor 0.59 0.58

J48 0.72 0.69

LMT 0.75 0.73

Random Forest 0.78 0.76

CART 0.70 0.68

MLR 0.66 0.64

MLP 0.73 0.71

SVM 0.79 0.77

LogitBoost 0.71 0.69

SMO 0.74 0.72

ANN 0.81 0.79

Recall measures the proportion of true positive instances

identified by the model out of all actual positive instances:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) exhibit lower recall values. For instance,

OneR has a recall of 0.58 on Kaggle and 0.57 on IEEE,

indicating that it misses a significant number of positive

instances. JRIP performs slightly better but still shows

limited effectiveness in capturing all relevant positives

compared to more advanced models.

• Tree-based Models: Tree-based models show improved

recall compared to rules-based models. Random Forest, with

a recall of 0.78 on Kaggle and 0.76 on IEEE, effectively

identifies a higher proportion of positive instances. J48 and

LMT also perform well, reflecting better recall but slightly

lower than Random Forest.

• Function-based Models: Function-based models achieve

the highest recall values. ANN leads with the highest recall,

reaching 0.81 on Kaggle and 0.79 on IEEE, demonstrating

its strong capability to identify most positive instances.

SVM also performs robustly, with recall values of 0.79 and

0.77, respectively.

Thus, function-based models, particularly ANN, provide the

highest recall, effectively identifying most positive instances with

fewer missed positives. Tree-based models follow with strong

performance, while rules-based models generally exhibit lower

recall, indicating less comprehensive identification of positive

instances.

Table.10. F-Measure over various Datasets

Model

Kaggle

Weather

Forecast

IEEE

Weather

Forecast

OneR 0.59 0.58

Decision Table 0.62 0.61

JRIP 0.66 0.64

Ridor 0.60 0.59

J48 0.73 0.71

LMT 0.76 0.74

Random Forest 0.79 0.77

CART 0.71 0.69

MLR 0.67 0.65

MLP 0.74 0.72

SVM 0.80 0.78

LogitBoost 0.72 0.70

SMO 0.75 0.73

ANN 0.82 0.80

The F-measure balances precision and recall, providing a

single metric that combines both aspects of model performance:

• Rules-based Models: These models (OneR, Decision

Table, JRIP, Ridor) show lower F-measure values, reflecting

difficulties in achieving a good balance between precision

and recall. For example, OneR has an F-measure of 0.59 on

Kaggle and 0.58 on IEEE, indicating that it struggles to

manage both false positives and false negatives effectively.

• Tree-based Models: Tree-based models exhibit better F-

measure scores. Random Forest leads with an F-measure of

0.79 on Kaggle and 0.77 on IEEE, demonstrating a strong

balance between precision and recall. J48 and LMT also

perform well, showing improvements over rules-based

models but slightly lower than Random Forest.

• Function-based Models: Function-based models achieve

the highest F-measure values. ANN, with an F-measure of

0.82 on Kaggle and 0.80 on IEEE, excels in balancing

precision and recall. SVM also performs strongly, with F-

measure values of 0.80 and 0.78, respectively.

Thus, function-based models, particularly ANN, provide the

highest F-measure, effectively balancing precision and recall.

Tree-based models follow with robust performance but slightly

lower F-measure. Rules-based models generally exhibit lower F-

measure, indicating less effective management of both precision

and recall.

5. DISCUSSION OF RESULTS

The performance metrics for the various machine learning

models—rules-based, tree-based, and function-based—on the

Kaggle and IEEE weather prediction datasets reveal significant

insights into their efficacy in weather forecasting tasks.

5.1 RULES-BASED MODELS

The rules-based models, including OneR, Decision Table,

JRIP, and Ridor, generally exhibit lower performance across all

metrics—accuracy, precision, recall, and F-measure. These

models often have lower precision, indicating a higher rate of

false positives, and lower recall, reflecting their struggle to

identify all relevant positive instances. For instance, OneR’s

accuracy of 0.63 and precision of 0.60 highlight its limitations in

distinguishing between positive and negative cases effectively.

The lower F-measure values confirm that these models struggle

to balance precision and recall, making them less effective for

complex weather prediction tasks. Their performance suggests

that while they may be simpler and easier to interpret, their limited

complexity hinders their ability to model the intricate patterns

present in weather data.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2024, VOLUME: 15, ISSUE: 01

3411

5.2 TREE-BASED MODELS

Tree-based models, such as J48, LMT, Random Forest, and

CART, demonstrate improved performance over rules-based

models. Random Forest, in particular, achieves high accuracy

(0.80) and precision (0.79), indicating its effectiveness in

handling complex weather data through its ensemble approach.

The high recall values (0.78) and F-measure scores (0.79) further

illustrate Random Forest’s ability to effectively identify positive

instances while balancing precision and recall. J48 and LMT also

show strong performance, although slightly lower than Random

Forest. These models benefit from their ability to capture non-

linear relationships and interactions in the data, which contributes

to their superior performance compared to simpler rules-based

approaches.

5.3 FUNCTION-BASED MODELS

Function-based models, including MLR, MLP, SVM,

LogitBoost, SMO, and ANN, exhibit the highest performance

across all metrics. ANN, in particular, stands out with the highest

accuracy (0.84) and F-measure (0.82), demonstrating its superior

ability to learn complex patterns in the data. The high precision

(0.82) and recall (0.81) values of ANN confirm its effectiveness

in identifying positive instances while minimizing false positives

and negatives. SVM also performs strongly, reflecting its

robustness in classifying data accurately. These models leverage

advanced techniques such as neural networks and support vector

machines to achieve superior performance, highlighting their

capability to manage the complexities of weather forecasting

tasks more effectively than both rules-based and tree-based

models.

Thus, the results underscore that function-based models,

particularly ANN, provide the most reliable performance for

weather prediction tasks, balancing accuracy, precision, recall,

and F-measure effectively. Tree-based models offer significant

improvements over rules-based models but are outperformed by

function-based models in handling complex weather data.

6. INFERENCES

The superior performance of function-based models,

particularly Artificial Neural Networks (ANN), suggests that

these models are highly effective for complex tasks such as

weather prediction. ANN’s high accuracy, precision, recall, and

F-measure indicate its capacity to capture and learn intricate

patterns and relationships within weather data. This capability is

crucial for forecasting tasks where accurate prediction and

minimal false positives and negatives are essential. The

robustness of ANN in managing diverse and complex datasets

highlights the advantages of employing advanced machine

learning techniques that leverage deep learning and neural

network architectures.

Rules-based models, including OneR, Decision Table, JRIP,

and Ridor, demonstrate clear limitations in weather prediction

tasks. Their lower performance across all metrics—accuracy,

precision, recall, and F-measure—suggests that they struggle with

the complexity of weather data. These models, which rely on

simple rule-based logic, are less capable of handling non-linear

relationships and intricate patterns compared to more advanced

models. As a result, their use in practical applications where high

accuracy and comprehensive prediction are required may be

limited. The challenges observed with rules-based models

highlight the need for more sophisticated approaches to improve

performance in complex forecasting scenarios.

Tree-based models, such as J48, LMT, Random Forest, and

CART, show notable improvements over rules-based models.

Their ability to handle non-linear relationships and interactions in

the data contributes to their enhanced performance in weather

prediction tasks. Random Forest, in particular, stands out for its

robustness and high performance, reflecting its strength in

aggregating multiple decision trees to improve predictive

accuracy. Tree-based models offer a middle ground between

simplicity and complexity, making them a viable option for tasks

requiring a balance of interpretability and performance. However,

while they represent an advancement over rules-based models,

they are still outperformed by function-based models, which

leverage deeper learning techniques for even greater accuracy.

The findings emphasize the need for selecting appropriate

models based on the complexity of the task and the dataset.

Function-based models, especially ANN, are recommended for

applications demanding high accuracy and robust performance in

handling complex and dynamic data. Tree-based models provide

a strong alternative for cases where interpretability and moderate

performance are acceptable. Rules-based models may be suitable

for simpler tasks but fall short in scenarios requiring high

precision and recall. The insights underscore the importance of

model selection and the value of advanced techniques in

achieving optimal performance for complex predictive tasks.

Conclusion

The comparative analysis of machine learning models for

weather prediction tasks on the Kaggle and IEEE datasets

highlights several key findings that shape the conclusion of this

study. Function-based models, particularly Artificial Neural

Networks (ANN), emerge as the most effective approach for

weather forecasting. Their superior performance across all

evaluation metrics—accuracy, precision, recall, and F-measure—

demonstrates their ability to handle the complexities and

intricacies of weather data with remarkable proficiency. ANN’s

high accuracy of 0.84 and F-measure of 0.82 reflect its capacity

to accurately predict weather patterns while effectively managing

false positives and negatives. The robust performance of ANN

underscores the advantages of leveraging advanced deep learning

techniques in achieving high-quality predictions. In contrast,

rules-based models, such as OneR, Decision Table, JRIP, and

Ridor, exhibit lower performance in comparison to both tree-

based and function-based models. Their limited accuracy and

lower precision and recall values indicate their struggle with the

complexity of weather prediction tasks. These models, which rely

on straightforward rule-based logic, are less adept at capturing the

non-linear relationships inherent in weather data. Their

performance suggests that while they may be simpler to

implement, they are less suitable for applications requiring high

precision and comprehensive predictive capabilities. Tree-based

models, including J48, LMT, Random Forest, and CART, offer a

notable improvement over rules-based models. Their ability to

manage non-linear data relationships and interactions results in

better performance metrics. Random Forest provides a strong

balance between performance and complexity, achieving high

C BERIN JONES: ACCURATE WEATHER FORECASTING OVER WIDE DATASETS USING MACHINE LEARNING MODELS

3412

accuracy and recall. However, while tree-based models represent

a significant advancement over rules-based approaches, they still

fall short of the superior performance achieved by function-based

models. Thus, this study highlights the importance of selecting the

appropriate model based on the complexity of the forecasting

task. Function-based models, especially ANN, are recommended

for scenarios requiring high accuracy and robust performance.

Tree-based models serve as a viable middle ground, while rules-

based models are less effective for complex prediction tasks. The

findings emphasize the critical role of model sophistication in

achieving optimal performance in weather prediction.

REFERENCES

[1] Shi Zhang and Dingwei Wang, “Medium and Long-Term

Load Forecasting based on PCA and BP Neural Network

Method”, Proceedings of International Conference on

Energy and Environmental Technology, pp. 389-391, 2009.

[2] Z.A. Bashir and M.E. EI-Hawary, “Applying Wavelets to

Short-Term Load Forecasting using PSO-Based Neural

Networks”, IEEE Transaction on Power Systems, Vol. 24,

No.1, pp. 20-27, 2009.

[3] L.M. Trick, R. Toxopeus and D. Wilson, “The Effects of

Visibility Conditions, Traffic Density, and Navigational

Challenge on Speed Compensation and Driving

Performance in Older Adults”, Accident Analysis and

Prevention, Vol. 42, No. 6, pp. 1661-1671, 2010.

[4] W.S. Ashley, S. Strader, D.C. Dziubla and A. Haberlie,

“Driving Blind: Weather-Related Vision Hazards and Fatal

Motor Vehicle Crashes”, Bulletin of the American

Meteorological Society, Vol. 96, No. 5, pp. 755-778, 2015

[5] M.M. Ahmed, M. Abdel-Aty, J. Lee and R. Yu, “Real-Time

Assessment of Fog-Related Crashes using Airport Weather

Data: A Feasibility Analysis”, Accident Analysis and

Prevention, Vol. 72, pp. 309-317, 2014.

[6] A. Vlachogianni, P. Kassomenos, A. Karppinen, S.

Karakitsios and J. Kukkonen, “Evaluation of a Multiple

Regression Model for the Forecasting of the Concentrations

of Nox and Pm10 in Athens and Helsinki”, Science of the

Total Environment, Vol. 409, No. 8, pp. 1559-1571, 2011.

[7] V.R. Thakare and H.M. Baradkar, “Fuzzy System for

Maximum Yield from Crops”, Proceedings of National

Level Technical Conference on Data Mining, pp. 4-9, 2013.

[8] Kneale T. Marshall, “Decision Making and Forecasting:

With Emphasis on Model Building and Policy Analysis”,

McGraw-Hill, 1995.

[9] David E. Rumelhart and David Zipser, “Feature Discovery

by Competitive Learning”, Cognitive Science, Vol. 9, No. 1,

pp. 75-112, 1985.

[10] Teuvo Kohonen, “An Introduction to Neural Computing”,

Neural Networks, Vol. 1, No. 1, pp. 3-16, 1988.

[11] M.A.R. Suleman and S. Shridevi, “Short-Term Weather

Forecasting using Spatial Feature Attention based LSTM

Model”, IEEE Access, Vol. 10, pp. 82456-82468, 2022.

[12] P. Hewage and A. Behera, “Deep Learning-Based Effective

Fine-Grained Weather Forecasting Model”, Pattern

Analysis and Applications, Vol. 24, No. 1, pp. 343-366,

2021.

[13] B. Bochenek and M. Figurski, “Day-Ahead Wind Power

Forecasting in Poland based on Numerical Weather

Prediction”, Energies, Vol. 14, No. 8, pp. 2164-2173, 2021.

