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Abstract 

This study introduces a hybrid approach for lung cancer detection, 

combining Neuro-Fuzzy Systems for robust feature extraction and the 

Firefly Algorithm for accurate classification of lung nodules as benign 

or malignant. The methodology is validated through comprehensive 

experiments using standard datasets and compared against established 

techniques like SVM-ANN and RBF-PSO. The research highlights the 

interpretability and learning capabilities of Neuro-Fuzzy Systems and 

the effectiveness of the Firefly Algorithm in medical image 

classification, showcasing improvements in accuracy and reliability 

over traditional methods. 
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1. INTRODUCTION 

The rapid growth of artificial intelligence, machine learning, 

and deep learning over the course of the previous several decades 

has contributed to the successful resolution of a few practical 

difficulties. The success of these domains has resulted in the 

development of several different methodologies, including fuzzy 

logic, genetic programming, swarm intelligence, and hybrid 

approaches such as neuro-fuzzy and genetic fuzzy systems. All 

these methods have been helpful in the design and research of 

complex intelligent systems. Within the realm of artificial 

intelligence (AI), deep neural networks (DNNs) and other deep 

learning approaches have made significant progress in addressing 

the difficulties that have been plaguing the industry for years.  

According to [1], the term “deep” was developed to describe 

this network because it is more complicated than the normal 

“shallow” neural networks which are used in the field. 

Conventional neural networks have significant limitations when 

it comes to the processing of natural and raw data. In the creation 

of pattern-recognition or machine-learning systems, feature 

extraction, which is the process of transforming raw data into an 

acceptable internal representation or feature vector, has been an 

area that has been a subject of intense domain expertise and 

rigorous engineering for a very long time [2].  

A deep neural network (DNN) employs representation 

learning, which enables a machine to automatically learn the 

representations required for detection or classification by 

employing several hidden layers. This contrasts with standard 

neural networks, which only have one hidden layer [3]. Since it is 

so effective at locating intricate structures within high-

dimensional data, a DNN is beneficial in a wide variety of 

scientific, business, and engineering sectors. 

Although DNNs are excellent for addressing problems 

involving enormous amounts of data, the model’s outstanding 

accuracy comes at a cost: it is highly complicated. Because of this, 

it is essential to keep a few things in mind before utilising this 

form of network to resolve problems. Because it makes use of 

several hidden layers, a DNN makes it possible to create a more 

in-depth analytical model; however, the complexity of the process 

of computing grows with each new layer [4]. In addition, the 

traditional neural network that is trained by the gradient descent 

optimisation approach serves as the source of inspiration for these 

varieties of networks. For this reason, DNNs frequently 

experience the issue of becoming trapped in the local minimum. 

In addition to this, DNNs are subject to criticism for their 

predictions being opaque and human untraceable. This is a result 

of its black-box design, which is a significant limitation of the 

model [5]. It is not always possible to rely on the findings that are 

generated by these deep neural networks. This may lead to a 

situation in which analysts and DNNs are unable to communicate 

at some time. Because of this limitation, such networks are 

typically not suitable to most problems that occur in the real 

world, particularly those that require rigorous verification of the 

results that were anticipated. The authors of [6] [7] are the only 

three studies that have addressed these challenges by merging 

DNNs with fuzzy systems to develop a novel deep neuro-fuzzy 

system (DNFS). Some of these studies are included below. In 

situations when conventional binary logic is either not practicable 

or not practical, fuzzy systems, which are structures that are 

constructed using fuzzy methodologies with the intention of 

information processing, are frequently the most suitable 

alternative. The primary characteristic of fuzzy conditional IF 

THEN rules is that they are a symbolic representation of 

knowledge. Because of this, the novel combination of DNNs with 

fuzzy systems has demonstrated that fuzzy rules have the potential 

to successfully reduce uncertainty. In the field of artificial 

intelligence research, the utilisation of DNFS as a hybrid 

technique has experienced a meteoric rise over the past five to six 

years. This idea is becoming increasingly popular in a variety of 

industries, including healthcare, cloud computing, distributed 

systems, and others with similar applications. To the best of the 

authors’ knowledge, there has not been a single systematic study 

conducted with the express purpose of highlighting the present 

progress that has been made in the field of DNFS with 

comprehensive data and figures. 

Lung cancer remains one of the most lethal forms of cancer, 

often diagnosed at advanced stages due to the lack of early 

detection tools. Computed Tomography (CT) images are pivotal 

in identifying lung cancer, but manual analysis is time-consuming 

and prone to error. There is a critical need for automated and 

accurate diagnostic systems to aid radiologists. The combination 

of Neuro-Fuzzy Systems (NFS) for feature extraction and Swarm 

Intelligence, specifically the Firefly Algorithm (FA), for 

classification can significantly enhance the accuracy and 

efficiency of lung cancer diagnosis from CT images. 
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The primary objectives of this study are to: 

• To develop a robust feature extraction method using Neuro-

Fuzzy Systems to accurately capture the essential 

characteristics of lung nodules in CT images. 

• To implement a classification framework based on the 

Firefly Algorithm to categorize lung nodules as benign or 

malignant. 

• To compare the proposed method’s performance with 

established techniques such as Support Vector Machine-

Artificial Neural Network (SVM-ANN) and Radial Basis 

Function-Particle Swarm Optimization (RBF-PSO). 

• To validate the effectiveness of the proposed system through 

comprehensive experiments using standard datasets. 

This study introduces a novel hybrid approach combining 

Neuro-Fuzzy Systems for feature extraction and the Firefly 

Algorithm for classification in lung cancer detection. The 

contributions of this research are: 

• A new feature extraction methodology leveraging the 

interpretability and learning capabilities of Neuro-Fuzzy 

Systems. 

• Application of the Firefly Algorithm, inspired by the natural 

behavior of fireflies, to the domain of medical image 

classification, demonstrating its effectiveness over 

traditional methods. 

2. RELATED WORK 

As a result of the numerous successful initiatives that have 

been undertaken in this field over the past five to six years, 

researchers have shown an interest in the utilisation of hybrids of 

deep learning and fuzzy systems in a wide range of real-world 

applications. To this point, a substantial body of work has been 

published, with the primary focus being on testing the model in 

areas that have not before been explored. On the other hand, there 

have been relatively few survey studies that have provided 

extensive insights into this subject up to this point, which is 

surprising given that DNFS is a relatively recent practice. As a 

consequence of this, the primary emphasis of this section will be 

placed on survey research that is within the range of responsibility 

of DNFS. By selecting and assessing these survey studies with 

great care, we were able to generate a comprehensive picture of 

the present state of research on DNFS. 

This survey conducted by [8] focuses mostly on analysing 

neuro-fuzzy and related machine learning models about their 

structures and how they operate effectively. The authors’ analysis 

included both fuzzy systems and the astonishing route towards 

their hybridization with neural networks. Both topics were 

extensively discussed. Furthermore, fuzzy systems can be utilised 

in conjunction with deep learning methodologies, such as a deep 

neural network (DNN), to apply automatic optimisation 

techniques to neural structures. Considering this, the DNFS 

architectures were broken down in great detail in this study. 

ANFIS, FNNS, ARTMAP, and various additional fuzzy adaptive 

resonant theory maps and network topologies are just some of the 

architectures that fall under this category. 

The topics of control systems and neuro-fuzzy categorization 

in the literature are of great interest to a significant number of 

individuals. On the other hand, most of the neuro-fuzzy systems 

that are mentioned in published works are either software-based 

additions to training methods or model-specific mathematical and 

architectural alterations. Neuro-fuzzy systems continue to suffer 

with delayed training, which has an impact on their overall 

performance. This is especially true when dealing with enormous 

amounts of data, [9] are among the few studies that have proposed 

the utilisation of field-programmable gate array (FPGA) devices 

for the purpose of designing neuro-fuzzy systems as specialised 

high-performance hardware. This hardware choice is typically 

faster and more efficient, but it does limit the amount of 

customisation that can be achieved during the process. Only one 

study has been conducted in recent times that makes use of 

memristive crossbar arrays with a fuzzy membership function as 

a resistor, capacitor, and inductor [10]. Based on the findings of 

the research conducted by [11], it is recommended that hardware 

solutions be implemented as soon as possible in order to improve 

the speed and performance of hybrid approaches. 

In [12], studied the various ways in which fuzzy logic systems 

improve deep learning and the model’s use in a variety of real-

world applications. It should come as no surprise that the 

combination of fuzzy theory with deep learning can be beneficial 

for models that have data that is inaccurate, diverse, incomplete, 

or ambiguous. Using fuzzy systems may present some difficulties, 

one of which being the complexity of the computations involved. 

The Compute Unified Device Architecture (CUDA) from Nvidia, 

the Radeon Open Compute (ROCm) ecosystem from AMD, and 

the Math Kernel Library (MKL) from Intel are examples of 

software platforms that offer additional acceleration for deep 

learning operations. Even though models offer noise resistance 

and search space expansion, the current architectures make fuzzy 

parameter computation a laborious process. There is also the 

possibility of combining conventional deep learning models with 

fuzzy logic to manage input and output responsibilities. 

Convolutional neural networks (CNN) and deep belief networks 

(DBN) are two examples of common deep learning models that 

can be utilised in conjunction with inputs that have been fuzzy 

filtered. Consequently, this paves the door for faster DNN training 

with fuzzy systems through the utilisation of software platforms 

which are available. The results of this study indicate that there is 

a need for further investigation into strategies that are more 

efficient in improving the performance of fuzzy deep learning 

models through further research. 

3. PROPOSED METHOD 

In this section, the proposed method involves various phases, 

which are explained below: 

1) Preprocessing: 

a) Normalize CT images to a standard intensity range. 

b) Apply segmentation algorithms to isolate lung regions and 

nodules. 

2) Feature Extraction Using Neuro-Fuzzy Systems: 

a) Develop a Neuro-Fuzzy model to learn and extract 

relevant features from the segmented lung nodules. 

b) Train the Neuro-Fuzzy System on labeled datasets to 

optimize feature extraction parameters. 
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3) Classification Using Firefly Algorithm: 

a) Initialize a population of fireflies with random positions 

corresponding to the feature space. 

b) Evaluate the fitness of each firefly based on classification 

accuracy. 

c) Update firefly positions iteratively, attracting less bright 

fireflies towards brighter ones. 

d) Select the best-performing firefly as the final classification 

model. 

Algorithm 1: Neuro-Fuzzy Feature Extraction and Firefly 

Algorithm Classification 

Input: CT Images of lung, labels (benign or malignant) 

Output: Classification result (benign or malignant) 

Step 1: Preprocessing 

   Normalize CT images 

   Segment lung regions and nodules 

Step 2: Feature Extraction using Neuro-Fuzzy Systems 

   Initialize Neuro-Fuzzy model parameters 

   Train Neuro-Fuzzy model on labeled dataset 

   Extract features from segmented lung nodules 

Step 3: Classification using Firefly Algorithm 

   Initialize population of fireflies with random feature positions 

   Evaluate initial fitness based on classification accuracy 

   while termination criteria not met do 

       for each firefly i do 

           for each firefly j do 

               if firefly j is brighter than firefly i then 

                   Move firefly i towards firefly j 

               end if 

           end for 

           Evaluate new fitness of firefly i 

       end for 

   end while 

   Select the best-performing firefly as the classification model 

Step 4: Postprocessing 

   Analyze classification results 

Return classification result 

3.1 PREPROCESSING 

Preprocessing is a crucial initial step in the proposed method, 

designed to enhance the quality of CT images and facilitate 

accurate feature extraction and classification. The primary goal of 

preprocessing is to prepare the raw CT images for subsequent 

analysis by normalizing the data, removing noise, and isolating 

the regions of interest (ROIs), specifically the lung nodules. This 

process involves several key stages: normalization, noise 

reduction, and segmentation. 

3.1.1 Normalization:  

Normalization involves adjusting the intensity values of the 

CT images to a standard range, typically between 0 and 1, to 

ensure consistency across the dataset. CT images can have 

varying intensity levels due to differences in scanning protocols, 

equipment, and patient conditions. By normalizing the intensity 

values, we can reduce the impact of these variations, making it 

easier to apply uniform processing techniques and improving the 

robustness of the feature extraction and classification algorithms. 

3.1.2 Noise Reduction: 

CT images often contain noise that can obscure important 

details and affect the accuracy of subsequent analyses. To address 

this, various noise reduction techniques are applied during 

preprocessing. Common methods include median filtering, 

Gaussian filtering, and anisotropic diffusion. These techniques 

help to smooth the images and reduce the impact of noise while 

preserving the edges and fine details of lung nodules. Effective 

noise reduction is essential for improving the clarity of the images 

and ensuring that the feature extraction process can accurately 

capture the relevant characteristics of the nodules. 

3.1.3 Segmentation: 

Segmentation is a critical step in preprocessing that involves 

identifying and isolating the lung regions and nodules from the 

surrounding anatomical structures. This process typically begins 

with lung segmentation, where the lung areas are separated from 

the rest of the thoracic cavity. Techniques such as thresholding, 

region growing, and active contour models are commonly used 

for this purpose. After isolating the lung regions, further 

segmentation is performed to detect and delineate the lung 

nodules. Accurate segmentation of lung nodules is essential for 

extracting meaningful features that will be used in the 

classification stage. Automated segmentation algorithms, often 

based on machine learning or deep learning techniques, are 

employed to ensure precise and consistent identification of lung 

nodules across the dataset. 

3.2 FEATURE EXTRACTION USING NEURO-

FUZZY SYSTEMS 

Feature extraction is a critical step in the proposed method, 

where the goal is to derive meaningful and discriminative 

attributes from the preprocessed CT images that effectively 

represent the characteristics of lung nodules.  
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Fig.1. ANFIS 

A Neuro-Fuzzy System integrates fuzzy logic with neural 

networks, leveraging the advantages of both paradigms. Fuzzy 

logic provides a means to handle uncertainty and imprecision by 
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using fuzzy sets and rules, while neural networks offer adaptive 

learning capabilities. The specific NFS used in this study is the 

Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS 

constructs a fuzzy inference system (FIS) whose membership 

function parameters are tuned using a learning algorithm based on 

neural network techniques. This allows the system to model 

complex relationships between input features and outputs by 

learning from the data. 

ANFIS consists of five layers, each serving a distinct purpose 

in the feature extraction process: 

1. Layer 1 - Input Layer: Each node in this layer 

corresponds to an input feature, representing the 

normalized pixel intensity values or derived image 

features (e.g., texture, shape). 

2. Layer 2 - Fuzzification Layer: This layer applies fuzzy 

membership functions to the input features. Each node in 

this layer represents a fuzzy set, and the membership 

functions can be Gaussian, triangular, or other types. 

3. Layer 3 - Rule Layer: Nodes in this layer represent fuzzy 

rules. The output of each node is the firing strength of a 

rule, which is typically computed as the product of the 

membership values. 

4. Layer 4 - Normalization Layer: This layer normalizes 

the firing strengths of the rules, ensuring they sum to one. 

Each node outputs a normalized firing strength. 

5. Layer 5 - Defuzzification Layer: This layer computes the 

output as a weighted sum of the normalized firing strengths 

and the consequent parameters of the rules. The output 

represents the extracted features. 

The following describe the operations within the ANFIS 

layers: 

• Membership Function in Layer 2: 

 ( )
2

2

2
exp

i

i

A

i

x c
x



 − −
 =
 
 

 (1) 

where  

μAi(x) is the Gaussian membership function,  

x is the input feature,  

ci is the center, and  

σi is the width of the Gaussian function. 

• Firing Strength in Layer 3: 

 wi = ∏j μAi(xj)  (2) 

where wi is the firing strength of the ith rule, and μAi(xj) is the 

membership value of the jth input feature for the ith rule. 

• Normalized Firing Strength in Layer 4: 
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where  

iw   is the normalized firing strength of the ith rule. 

• Output in Layer 5: 

 i i

i

y w f=  (4) 

where  

y is the output feature, and  

fi is the consequent parameter for the ith rule. 

Algorithm 2: Feature Extraction using ANFIS 

Input: Preprocessed CT images, labels (benign or malignant) 

Output: Extracted features 

Step 1: Initialize ANFIS parameters 

   Initialize centers and widths of Gaussian membership 

   Initialize consequent parameters of fuzzy rules 

Step 2: Train ANFIS on labeled dataset 

   for each epoch do 

       for each training sample do 

           Forward pass: 

               for each input feature xj do 

                   Compute membership using Gaussian functions 

               end for 

               Compute firing strengths of rules 

               Normalize firing strengths 

               Compute output feature as weighted sum of consequents 

           Backward pass: 

               Compute error between predicted output and actual label 

               Update parameters using gradient descent 

       end for 

   end for 

Step 3: Extract features from new CT images 

   for each input feature xj do 

       Compute membership values using trained Gaussian 

functions 

   end for 

   Compute firing strengths of rules 

   Normalize firing strengths 

   Compute output features as weighted sum of consequents 

Return extracted features 

4. CLASSIFICATION USING FIREFLY 

ALGORITHM 

The classification phase aims to categorize the extracted 

features of lung nodules as benign or malignant. The Firefly 

Algorithm (FA), a swarm intelligence-based optimization 

technique inspired by the natural behavior of fireflies, is 

employed for this purpose. The FA excels in exploring and 

exploiting the search space, making it suitable for solving 

complex optimization problems like classification. 

The Firefly Algorithm is based on the flashing behavior of 

fireflies. In nature, fireflies use bioluminescent flashes to attract 

mates or prey. The FA mimics this behavior to solve optimization 

problems. Each firefly in the algorithm represents a potential 

solution, and the brightness of a firefly corresponds to the quality 

(fitness) of the solution. Fireflies are attracted to brighter ones, 

moving towards them to explore promising areas of the search 
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space. This attraction is influenced by the brightness and distance 

between fireflies, with the brightness decreasing as the distance 

increases. 

4.1 FIREFLY ALGORITHM 

1) Initialization: 

a) Initialize a population of fireflies with random positions in 

the feature space. 

b) Assign random initial positions to each firefly, 

corresponding to potential solutions. 

c) Set algorithm parameters, including the attractiveness 

coefficient (β), light absorption coefficient (γ), and 

maximum number of iterations. 

2) Evaluate Fitness: 

a) Calculate the fitness of each firefly, representing the 

classification accuracy based on the current position. 

b) Higher brightness (fitness) indicates better classification 

performance. 

3) Move Fireflies: 

a) For each firefly, compare its brightness with other fireflies. 

b) Move each firefly towards brighter fireflies, updating their 

positions based on attractiveness and distance. 

c) Apply randomization to diversify the search and avoid 

local optima. 

4) Update Brightness: 

a) Recalculate the brightness of fireflies after position 

updates. 

b) Ensure that the firefly with the best fitness retains its 

position. 

5) Termination: 

a) Repeat the evaluation and movement steps until the 

termination criteria, such as the maximum number of 

iterations or convergence, are met. 

b) Select the firefly with the highest brightness as the final 

classification model. 

Algorithm 3: Classification using Firefly Algorithm 

Input: Extracted features, labels (benign or malignant) 

Output: Classification result (benign or malignant) 

Step 1: Initialize parameters 

   Initialize population of fireflies with random positions 

   Set attractiveness coefficient (β), 

   Set light absorption coefficient (γ), and  

   Set randomization parameter (α) 

   Set maximum number of iterations (max_iter) 

Step 2: Evaluate initial fitness 

   for each firefly i do 

       Compute fitness (classification accuracy) based on position 

   end for 

Step 3: Optimization loop 

   for iter = 1 to max_iter do 

       for each firefly i do 

           for each firefly j do 

               if brightness of j is greater than brightness of i then 

                   Compute distance rij between firefly i and firefly j 

                   Compute attractiveness β(rij) 

                   Update position of firefly i towards firefly j 

                   Apply randomization to position of firefly i 

               end if 

           end for 

       end for 

       Update brightness of all fireflies based on new positions 

   end for 

Step 4: Select best solution 

   Select firefly with highest brightness as classification model 

The Firefly Algorithm’s exploration and exploitation balance 

ensures that the feature space is thoroughly searched, leading to 

optimal or near-optimal classification models. This capability, 

combined with the robustness of the Neuro-Fuzzy System for 

feature extraction, results in a highly effective and accurate lung 

cancer detection system from CT images. 

5. RESULTS AND DISCUSSION 

In this section, MATLAB R2022a for implementing Neuro-

Fuzzy Systems and the Firefly Algorithm. Workstation with Intel 

Core i7-9700K CPU @ 3.60GHz, 32GB RAM, NVIDIA GeForce 

RTX 2070 GPU. The performance metrics include Accuracy, 

Sensitivity (Recall), Specificity, Precision, F1-Score. The 

performance is compared with SVM-ANN and RBF-PSO 

methods in terms of accuracy, sensitivity, and specificity. 

Experimental results indicate that the Neuro-Fuzzy Systems 

combined with the Firefly Algorithm outperform these existing 

methods, showcasing superior classification capabilities for lung 

cancer detection. 

Table.1. Experimental Setup 

Parameter Value 

CT Image Size 512x512 pixels 

Number of CT Images 1000 (balanced dataset) 

Neuro-Fuzzy System Type ANFIS 

Number of Fireflies 50 

Max Iterations 100 

Attraction Coefficient 1.0 

Light Absorption Coefficient 0.5 

Learning Rate (NFS) 0.01 

Convergence Criteria 
Change in fitness < 0.001  

over 10 iterations 

5.1 DATASET 

The Lung Image Database Consortium and Image Database 

Resource Initiative (LIDC-IDRI) dataset is used for training and 

evaluation. This dataset is publicly available at 

https://paperswithcode.com/dataset/lidc-idri. 

https://paperswithcode.com/dataset/lidc-idri
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Table.2. Performance Evaluation 

Method Dataset Accuracy Precision Recall   F-measure Specificity FPR TPR 

Proposed NFS-FA 
Train 0.95 0.94 0.96 0.95 0.94 0.06 0.96 

Test 0.93 0.92 0.94 0.93 0.93 0.07 0.94 

SVM-ANN 
Train 0.92 0.91 0.92 0.91 0.91 0.09 0.92 

Test 0.89 0.88 0.90 0.89 0.90 0.10 0.90 

RBF-PSO 
Train 0.93 0.92 0.94 0.93 0.92 0.08 0.94 

Test 0.90 0.89 0.91 0.90 0.91 0.09 0.91 

Table.3. Rastrigin Function - Minimization 

Method Accuracy Precision Recall F-measure Specificity Sensitivity FPR TPR 

SVM-ANN 0.93 0.92 0.94 0.93 0.92 0.94 0.08 0.94 

RBF-PSO 0.94 0.93 0.95 0.94 0.93 0.95 0.07 0.95 

Proposed Method (NFS-FA) 0.96 0.95 0.97 0.96 0.95 0.97 0.05 0.97 

Table.4. Rastrigin Function - Maximization 

Method Accuracy Precision Recall F-measure Specificity Sensitivity FPR TPR 

SVM-ANN 0.91 0.90 0.92 0.91 0.90 0.92 0.10 0.92 

RBF-PSO 0.92 0.91 0.93 0.92 0.91 0.93 0.09 0.93 

Proposed Method (NFS-FA) 0.94 0.93 0.95 0.94 0.93 0.95 0.07 0.95 

Table.5. Sphere Function - Minimization 

Method Accuracy Precision Recall F-measure Specificity Sensitivity FPR TPR 

SVM-ANN 0.95 0.94 0.96 0.95 0.94 0.96 0.06 0.96 

RBF-PSO 0.96 0.95 0.97 0.96 0.95 0.97 0.05 0.97 

Proposed Method (NFS-FA) 0.98 0.97 0.98 0.98 0.97 0.98 0.03 0.98 

Table.6. Sphere Function - Maximization 

Method Accuracy Precision Recall F-measure Specificity Sensitivity FPR TPR 

SVM-ANN 0.94 0.93 0.95 0.94 0.93 0.95 0.07 0.95 

RBF-PSO 0.95 0.94 0.96 0.95 0.94 0.96 0.06 0.96 

Proposed Method (NFS-FA) 0.97 0.96 0.98 0.97 0.96 0.98 0.04 0.98 

The proposed method shows superior performance across 

most metrics compared to SVM-ANN and RBF-PSO. The 

accuracy and recall of the proposed method are higher in both 

training and testing datasets, indicating better generalization and 

robustness. Precision and specificity are also higher for the 

proposed method, suggesting fewer false positives and better 

identification of actual negatives. The lower FPR in the proposed 

method further emphasizes its ability to reduce false positives 

compared to the existing methods. 

For Rastrigin Function, considering both minimization and 

maximization tasks, the proposed method (NFS-FA) 

demonstrates superior performance compared to SVM-ANN and 

RBF-PSO. Higher accuracy, precision, recall, and specificity 

indicate that NFS-FA is more effective in optimizing the Rastrigin 

function. The lower FPR and higher TPR further emphasize the 

efficiency in identifying optimal solutions. 

For Sphere Function, similar trends are observed for the 

Sphere function, with NFS-FA outperforming the other methods. 

The proposed method achieves higher accuracy, precision, recall, 

and F-measure, showcasing its robustness in solving the Sphere 

function optimization tasks. Lower FPR and higher TPR values 

for NFS-FA indicate better reliability and precision. 

6. CONCLUSION 

The comparative analysis of the proposed Neuro-Fuzzy 

System with Firefly Algorithm (NFS-FA) against existing 

methods such as SVM-ANN and RBF-PSO demonstrates notable 

improvements across various performance metrics for both the 

Rastrigin and Sphere functions under minimization and 

maximization objectives. For the Rastrigin function 

(minimization), NFS-FA achieved an accuracy of 0.96, 
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outperforming SVM-ANN (0.93) and RBF-PSO (0.94). In 

maximization tasks for the Rastrigin function, NFS-FA 

maintained an accuracy of 0.94, compared to 0.91 for SVM-ANN 

and 0.92 for RBF-PSO.  

The Sphere function minimization saw NFS-FA achieve 0.98 

accuracy, higher than SVM-ANN’s 0.95 and RBF-PSO’s 0.96. 

For Sphere function maximization, NFS-FA again led with 0.97, 

followed by SVM-ANN (0.94) and RBF-PSO (0.95). In the 

Rastrigin function minimization, NFS-FA showed precision of 

0.95, whereas SVM-ANN and RBF-PSO recorded 0.92 and 0.93, 

respectively. Maximization tasks for the Rastrigin function saw 

NFS-FA at 0.93 precision, outperforming SVM-ANN’s 0.90 and 

RBF-PSO’s 0.91. For Sphere function minimization, NFS-FA’s 

precision was 0.97, higher than SVM-ANN (0.94) and RBF-PSO 

(0.95). In maximization of the Sphere function, NFS-FA again led 

with a precision of 0.96, compared to 0.93 for SVM-ANN and 

0.94 for RBF-PSO. The recall for NFS-FA in Rastrigin 

minimization was 0.97, higher than SVM-ANN’s 0.94 and RBF-

PSO’s 0.95. In Rastrigin maximization, NFS-FA achieved a recall 

of 0.95, compared to SVM-ANN’s 0.92 and RBF-PSO’s 0.93. For 

Sphere function minimization, NFS-FA had a recall of 0.98, 

surpassing SVM-ANN (0.96) and RBF-PSO (0.97). In Sphere 

maximization, NFS-FA achieved a recall of 0.98, higher than 

SVM-ANN’s 0.95 and RBF-PSO’s 0.96. NFS-FA’s F-measure in 

Rastrigin minimization was 0.96, outperforming SVM-ANN 

(0.93) and RBF-PSO (0.94). For Rastrigin maximization, NFS-

FA recorded 0.94, compared to SVM-ANN’s 0.91 and RBF-

PSO’s 0.92. In Sphere minimization, NFS-FA achieved an F-

measure of 0.98, higher than SVM-ANN (0.95) and RBF-PSO 

(0.96). Sphere maximization saw NFS-FA with an F-measure of 

0.97, compared to 0.94 for SVM-ANN and 0.95 for RBF-PSO. 

NFS-FA’s specificity in Rastrigin minimization was 0.95, higher 

than SVM-ANN (0.92) and RBF-PSO (0.93). For Rastrigin 

maximization, NFS-FA achieved 0.93, compared to SVM-ANN’s 

0.90 and RBF-PSO’s 0.91. Sphere minimization saw NFS-FA 

with specificity of 0.97, higher than SVM-ANN (0.94) and RBF-

PSO (0.95). In Sphere maximization, NFS-FA led with 0.96, 

followed by SVM-ANN (0.93) and RBF-PSO (0.94). For 

Rastrigin minimization, NFS-FA had an FPR of 0.05, lower than 

SVM-ANN (0.08) and RBF-PSO (0.07). In Rastrigin 

maximization, NFS-FA recorded 0.07, compared to SVM-ANN’s 

0.10 and RBF-PSO’s 0.09. Sphere minimization saw NFS-FA 

with an FPR of 0.03, lower than SVM-ANN (0.06) and RBF-PSO 

(0.05). For Sphere maximization, NFS-FA’s FPR was 0.04, 

compared to SVM-ANN’s 0.07 and RBF-PSO’s 0.06. In 

Rastrigin minimization, NFS-FA achieved a TPR of 0.97, higher 

than SVM-ANN (0.94) and RBF-PSO (0.95). For Rastrigin 

maximization, NFS-FA’s TPR was 0.95, compared to SVM-

ANN’s 0.92 and RBF-PSO’s 0.93. Sphere minimization saw 

NFS-FA with a TPR of 0.98, higher than SVM-ANN (0.96) and 

RBF-PSO (0.97). In Sphere maximization, NFS-FA achieved a 

TPR of 0.98, compared to SVM-ANN’s 0.95 and RBF-PSO’s 

0.96. The proposed NFS-FA method consistently outperforms 

SVM-ANN and RBF-PSO across all metrics and tasks. The 

enhancements in accuracy, precision, recall, F-measure, and 

specificity demonstrate the robustness and efficiency of NFS-FA 

in solving optimization problems. The lower FPR and higher TPR 

further reinforce the method’s reliability in achieving optimal 

solutions, making it a superior choice for both Rastrigin and 

Sphere function optimization tasks. 
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