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Abstract 

In industrial systems, predictive maintenance has emerged as a crucial 

strategy to minimize downtime and optimize operational efficiency. 

This study explores the utilization of data mining techniques, 

specifically fuzzy logic systems, for predictive maintenance. The 

background section examines the importance of predictive 

maintenance in industrial contexts and highlights the limitations of 

traditional approaches. The methodology section outlines the process 

of employing fuzzy logic systems for predictive maintenance, including 

data preprocessing, feature selection, fuzzy rule generation, and model 

evaluation. The contribution of this research lies in providing a 

comprehensive framework for implementing predictive maintenance 

using fuzzy logic systems, offering insights into the integration of data 

mining techniques with industrial systems. Results demonstrate the 

effectiveness of the proposed methodology in accurately predicting 

maintenance needs and minimizing unplanned downtime. Findings 

suggest that fuzzy logic systems can enhance predictive maintenance 

capabilities by handling uncertainties and vagueness inherent in 

industrial data. 
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1. INTRODUCTION 

In industrial operations, ensuring optimal performance and 

reliability of machinery is paramount. To achieve this, predictive 

maintenance has emerged as a pivotal strategy, leveraging data-

driven approaches to preemptively identify and address potential 

faults before they escalate into costly downtime or equipment 

failures [1]-[2]. However, while predictive maintenance holds 

promise, traditional methodologies often fall short in accurately 

forecasting maintenance needs, particularly in complex industrial 

systems where data is abundant but often noisy and uncertain. In 

response to these challenges, this study proposes the integration 

of data mining techniques, specifically fuzzy logic systems, to 

enhance the predictive maintenance capabilities of industrial 

systems [4]. 

The advent of Industry 4.0 has ushered in a new era of 

interconnected industrial systems, characterized by the 

proliferation of sensors and IoT devices generating vast amounts 

of data. While this data presents unprecedented opportunities for 

optimizing operations, it also poses challenges in terms of 

effectively leveraging it for predictive maintenance [3].  

Traditional maintenance strategies, such as preventive and 

corrective maintenance, are often inefficient and reactive, leading 

to unnecessary downtime and maintenance costs. Predictive 

maintenance offers a proactive alternative, allowing organizations 

to schedule maintenance activities based on the actual condition 

of equipment rather than predefined schedules [5]. 

Despite its potential benefits, implementing predictive 

maintenance in industrial settings presents several challenges. 

Firstly, industrial data is often heterogeneous, comprising sensor 

readings, equipment logs, and maintenance records, necessitating 

sophisticated data preprocessing techniques.  

Secondly, traditional predictive modeling approaches struggle 

to handle the inherent uncertainties and vagueness present in 

industrial data. Moreover, integrating predictive maintenance 

systems into existing operational workflows requires careful 

consideration of organizational structures and processes. 

The primary focus of this study is to address the limitations of 

traditional predictive maintenance approaches by leveraging data 

mining techniques, specifically fuzzy logic systems. The central 

problem is to develop a robust framework for predictive 

maintenance that can accurately forecast maintenance needs in 

industrial systems, thereby minimizing downtime and optimizing 

operational efficiency. 

The objectives of this research can be outlined as follows: 

• To explore the feasibility of integrating fuzzy logic systems 

with data mining techniques for predictive maintenance in 

industrial systems. 

• To develop a comprehensive methodology for implementing 

predictive maintenance using fuzzy logic systems, including 

data preprocessing, feature selection, fuzzy rule generation, 

and model evaluation. 

The novelty of this research lies in its integration of fuzzy 

logic systems with data mining techniques for predictive 

maintenance in industrial systems. While data mining approaches 

have been widely used for predictive maintenance, the application 

of fuzzy logic systems offers advantages in handling uncertainties 

and vagueness inherent in industrial data.  

The proposed methodology contributes to the existing body of 

knowledge by providing a systematic framework for 

implementing predictive maintenance using fuzzy logic systems, 

thereby enhancing the reliability and efficiency of industrial 

operations. Additionally, this research contributes to bridging the 

gap between academic research and industrial practice by offering 

practical insights into the integration of data mining techniques 

with operational workflows. 

2. RELATED WORKS 

Predictive maintenance has garnered significant attention in 

both academia and industry, leading to a plethora of research 

efforts aimed at improving its effectiveness and applicability in 

various domains. This section provides an overview of relevant 

studies focusing on predictive maintenance, particularly those 

employing data mining techniques and fuzzy logic systems. 
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Numerous studies have explored the application of data 

mining techniques, such as machine learning algorithms and 

statistical models, for predictive maintenance. For instance, [9] 

proposed a data-driven approach for fault detection and diagnosis 

in complex industrial systems using support vector machines 

(SVM) and neural networks. Similarly, [10] developed a 

predictive maintenance framework for aircraft engines using 

ensemble learning techniques, demonstrating improved accuracy 

in predicting component failures. 

Fuzzy logic systems have also been employed in predictive 

maintenance due to their ability to handle uncertainties and 

vagueness in data. [11] utilized fuzzy logic-based reasoning to 

predict equipment failures in manufacturing plants, achieving 

better performance compared to traditional statistical methods. 

Additionally, [8] proposed a fuzzy logic-based predictive 

maintenance model for wind turbines, integrating linguistic rules 

to interpret sensor data and predict impending failures. 

Some studies have investigated the integration of data mining 

techniques with fuzzy logic systems to enhance predictive 

maintenance capabilities. For instance, [7] developed a hybrid 

predictive maintenance model combining decision trees with 

fuzzy logic reasoning, demonstrating improved accuracy in 

predicting machine failures in semiconductor manufacturing. 

Similarly, [6] proposed a hybrid predictive maintenance 

framework integrating deep learning with fuzzy logic systems, 

achieving enhanced fault detection and diagnosis in industrial 

systems. 

Several case studies and real-world applications have 

demonstrated the effectiveness of predictive maintenance in 

various industries. For example, IBM Watson IoT platform has 

been deployed in manufacturing plants to enable predictive 

maintenance of equipment, leveraging machine learning 

algorithms to analyze sensor data and predict equipment failures 

before they occur. Similarly, General Electric (GE) has 

implemented predictive maintenance solutions in its aviation and 

power generation divisions, resulting in substantial cost savings 

and operational improvements. 

3. PROPOSED METHOD  

The proposed method aims to integrate data mining 

techniques, specifically fuzzy logic systems, into the realm of 

predictive maintenance for industrial systems. This method 

encompasses several key steps designed to accurately predict 

maintenance needs and minimize unplanned downtime. Below, I 

outline the main components of the proposed method: 

• Data Preprocessing: The first step involves preprocessing 

the industrial data collected from sensors, equipment logs, 

and maintenance records. This may include cleaning the data 

to remove noise and outliers, handling missing values, and 

normalizing or scaling the data to ensure uniformity across 

features. 

• Feature Selection: Next, feature selection techniques are 

applied to identify the most relevant variables or features 

that have the greatest impact on predicting maintenance 

needs. This helps streamline the modeling process and 

improves the efficiency of the predictive maintenance 

system. 

• Fuzzy Rule Generation: Once the relevant features are 

identified, fuzzy logic systems are employed to generate 

fuzzy rules based on linguistic variables and expert 

knowledge. Fuzzy logic allows for the representation of 

vague and uncertain information, making it suitable for 

modeling complex industrial systems where data may be 

imprecise or incomplete. 

• Model Development: Using the generated fuzzy rules, a 

predictive maintenance model is developed to forecast 

maintenance needs based on the current condition of the 

equipment or machinery. This model may incorporate fuzzy 

inference mechanisms to infer the degree of maintenance 

urgency or the likelihood of equipment failure. 

• The predictive maintenance model is then evaluated using 

appropriate performance metrics, such as accuracy, 

precision, recall, and F1-score. This step assesses the 

effectiveness of the model in accurately predicting 

maintenance needs and minimizing false alarms or missed 

detections. 

• Finally, the validated predictive maintenance model is 

deployed in the industrial environment, where it 

continuously monitors equipment health and provides real-

time alerts or recommendations for maintenance actions. 

Continuous monitoring allows for proactive maintenance 

scheduling and helps prevent unexpected equipment failures 

or downtime. 

The proposed method leverages the capabilities of fuzzy logic 

systems to handle uncertainties and vagueness in industrial data, 

thereby enhancing the accuracy and reliability of predictive 

maintenance in industrial systems. By integrating data mining 

techniques with fuzzy logic-based reasoning, this method offers a 

systematic approach to improving operational efficiency and 

minimizing maintenance costs in industrial settings. 

3.1 DATA PREPROCESSING  

Data preprocessing is a crucial step in the data analysis 

pipeline that involves cleaning, transforming, and preparing raw 

data into a format suitable for further analysis and modeling. In 

the context of predictive maintenance using data mining 

techniques, data preprocessing plays a vital role in ensuring the 

quality and reliability of the input data. Here's a breakdown of the 

key tasks involved in data preprocessing: 

3.1.1 Data Cleaning: 

• Identifying and handling missing values: Missing data can 

adversely affect the performance of predictive models. 

Techniques such as imputation (replacing missing values 

with estimates) or deletion (removing instances with missing 

values) may be employed. 

• Removing outliers: Outliers, which are data points 

significantly different from the majority of the data, can 

distort the analysis. Outliers may be identified using 

statistical methods and either removed or adjusted. 

3.1.2 Data Transformation: 

• Feature scaling: Different features in the dataset may have 

different scales, which can affect the performance of certain 

algorithms. Feature scaling techniques like normalization 

(scaling features to a range) or standardization (centering 
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and scaling features to have mean zero and standard 

deviation one) can address this issue. 

• Encoding categorical variables: Categorical variables, such 

as equipment types or maintenance categories, need to be 

converted into numerical representations for analysis. 

Techniques like one-hot encoding or label encoding can be 

used for this purpose. 

• Feature engineering: Creating new features from existing 

ones or transforming features to better represent 

relationships in the data can improve model performance. 

This may involve techniques such as binning, polynomial 

features, or extracting time-based features. 

3.1.3 Data Reduction: 

• Dimensionality reduction: In datasets with a large number of 

features, dimensionality reduction techniques like principal 

component analysis (PCA) or feature selection methods can 

help reduce the complexity of the data while retaining 

important information. 

• Sampling: For datasets with imbalanced classes or large 

volumes of data, sampling techniques such as 

undersampling (reducing the size of the majority class) or 

oversampling (increasing the size of the minority class) may 

be employed to balance the dataset. 

3.1.4 Handling Imbalanced Data: 

• In predictive maintenance scenarios, the occurrence of 

equipment failures or maintenance events may be relatively 

rare compared to normal operating conditions. Techniques 

such as resampling (as mentioned above) or using 

appropriate evaluation metrics can help address imbalanced 

data issues. 

By performing these preprocessing steps, the data is refined 

and optimized for subsequent analysis, improving the 

effectiveness and reliability of predictive maintenance models. 

3.2 FEATURE SELECTION USING DEEP PCA  

Feature selection using Deep PCA involves leveraging deep 

learning techniques, specifically a deep neural network 

architecture, to perform dimensionality reduction and select the 

most informative features from the input data. Here's a detailed 

explanation of how this process works: 

3.2.1 Deep PCA (Principal Component Analysis): 

• Principal Component Analysis (PCA) is a classical 

dimensionality reduction technique used to transform high-

dimensional data into a lower-dimensional space while 

preserving as much variance as possible. PCA achieves this 

by identifying the principal components, which are 

orthogonal vectors that capture the directions of maximum 

variance in the data. 

• Deep PCA extends traditional PCA by incorporating deep 

neural networks into the dimensionality reduction process. 

Instead of directly applying PCA to the input data, a deep 

neural network is trained to learn a nonlinear mapping from 

the input space to a lower-dimensional latent space. 

3.2.2 Architecture of Deep PCA: 

• The architecture of Deep PCA typically consists of multiple 

layers of neurons, with each layer performing nonlinear 

transformations on the input data. The network may include 

various activation functions, such as ReLU (Rectified Linear 

Unit), sigmoid, or tanh, to introduce nonlinearity into the 

model. 

• The output layer of the deep neural network corresponds to 

the lower-dimensional latent space, where the data is 

projected after passing through the network. This latent 

space representation captures the essential features of the 

input data while reducing its dimensionality. 

3.2.3 Training Deep PCA: 

• The deep neural network is trained using an optimization 

algorithm, such as stochastic gradient descent (SGD) or 

Adam, to minimize a loss function that quantifies the 

reconstruction error between the input data and its lower-

dimensional representation. 

• During training, the network learns to automatically extract 

hierarchical features from the input data, with each layer 

capturing increasingly abstract representations of the 

original features. This hierarchical feature learning enables 

Deep PCA to capture complex patterns and correlations in 

the data. 

3.2.4 Feature Selection: 

• Once the deep neural network is trained, the lower-

dimensional latent space representation obtained from the 

output layer can be used for feature selection. The features 

in this latent space correspond to the most informative 

dimensions of the input data, capturing the underlying 

structure and patterns. 

• Feature selection can be performed by selecting a subset of 

dimensions in the latent space that contribute the most to 

explaining the variance in the data. This subset of features 

can then be used for subsequent analysis or modeling tasks, 

such as predictive maintenance. 

PCA aims to find the orthogonal basis vectors, known as 

principal components, that capture the maximum variance in the 

data. Given a dataset X with n samples and m features, the 

principal components can be obtained through the following 

steps: 

 Mean Centering: X’= n-1∑i=1 Xi (1) 

 Covariance Matrix: Σ = n-1(X− X’)T(X−X’) (2) 

 Eigenvalue Decomposition: Σ=VΛVT (3) 

where: 

X’ is the mean vector of the dataset. 

Σ is the covariance matrix. 

V contains the eigenvectors of Σ. 

Λ is a diagonal matrix containing the corresponding eigenvalues. 

The principal components are the eigenvectors corresponding 

to the largest eigenvalues of Σ. Deep PCA extends traditional 

PCA by incorporating deep neural networks for nonlinear 

dimensionality reduction. Let’s denote the input data as X with 

dimensions n×m, where n is the number of samples and m is the 

number of features. The deep neural network consists of multiple 

layers, each with weights Wi and biases bi. The output of the 

network is the lower-dimensional latent representation Z with 

dimensions n×k, where k is the desired reduced dimensionality. 
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The computation of the latent representation Z can be 

expressed as follows: 

 Z=f(WL⋅f(WL−1⋅f(…f(W1⋅X+b1)…)+bL−1)+bL) (2) 

where: 

f denotes the activation function. 

Wi and bi are the weights and biases of layer i, respectively. 

L is the total number of layers in the network. 

During training, the network parameters are learned by 

minimizing a loss function L with respect to the input data X. 

Common choices for the loss function include the reconstruction 

error, which measures the difference between the input data and 

its reconstructed version in the latent space. The optimization 

process involves updating the network parameters using gradient 

descent or its variants. 

Algorithm: Deep PCA 

Input: 

• X: Input data matrix with dimensions n×m, where n is the 

number of samples and m is the number of features. 

• L: Total number of layers in the deep neural network. 

• k: Desired reduced dimensionality. 

• Activation function f. 

• Loss function L. 

• Optimization algorithm (e.g., stochastic gradient descent). 

Output: Lower-dimensional latent representation Z with 

dimensions n×k. 

1. Initialization: Initialize the weights Wi and biases bi for each 

layer i of the deep neural network randomly or using pre-

trained weights. 

2. Forward Propagation: For each layer i=1,2,…,L:  

Zi=f(Wi⋅Zi−1+bi)  

Z0=X is the input data; Zi is the output of layer i; Wi and bi are the 

weights and biases of layer i. 

3. Loss Computation: Compute the loss function L based on the 

reconstructed data X’ and the original input data X. 

4. Backward Propagation: Update the weights and biases using 

backpropagation and the chosen optimization algorithm to 

minimize the loss function L. 

5. Repeat: Repeat steps 2-4 until convergence or for a specified 

number of iterations. 

3.3 FUZZY LOGIC CLASSIFICATION 

Fuzzy logic classification is a methodology within the realm 

of fuzzy logic that deals with classifying input data into different 

categories or classes based on fuzzy rules and linguistic variables. 

Unlike traditional binary classification methods that assign data 

points to distinct categories, fuzzy logic classification allows for 

the representation of uncertainty in the classification process. 

• Linguistic Variables: In fuzzy logic classification, 

linguistic variables are used to represent qualitative terms or 

labels that describe the input data and the output classes. 

These linguistic variables capture the imprecision inherent 

in natural language and allow for a more flexible and 

intuitive representation of the classification rules. 

• Fuzzy Sets and Membership Functions: Fuzzy sets are 

used to represent the degree of membership of an element in 

a particular class. Each linguistic variable is associated with 

one or more fuzzy sets, each characterized by a membership 

function that quantifies the degree of membership of an 

input data point to that fuzzy set. Membership functions can 

take various forms, such as triangular, trapezoidal, or 

Gaussian, depending on the nature of the data and the 

classification problem. 

• Fuzzy Rules: Fuzzy logic classification relies on a set of 

fuzzy rules that describe the relationship between the input 

variables and the output classes. These rules are expressed 

in the form of if-then statements, where the antecedent (if-

part) specifies the conditions based on linguistic variables 

and fuzzy sets, and the consequent (then-part) specifies the 

output class. For example, a fuzzy rule could be If 

temperature is hot and humidity is high, then classify as class 

A. 

 

Fig.1. FIS Formulation 

 

Fig.2. Fuzzy Rule Setup 

• Fuzzy Inference: Fuzzy inference involves applying the 

fuzzy rules to the input data to determine the degree of 

membership of each data point in each output class. This is 

done by evaluating the truth values of the antecedents of 
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each rule using fuzzy logic operators (e.g., AND, OR, NOT), 

combining the results using fuzzy aggregation methods (e.g., 

maximum, minimum), and then inferring the degree of 

membership of the data point in each output class based on 

the consequents of the rules. 

• Defuzzification: Once the degrees of membership in each 

output class are determined, defuzzification is performed to 

determine the final class assignment for each data point. This 

involves aggregating the membership degrees across all 

fuzzy rules and output classes to obtain a crisp output value 

or class label. 

 

Fig.3. Fuzzy Output 

Fuzzy logic classification offers several advantages, including 

the ability to handle imprecise and uncertain data, interpretability 

of the classification rules, and flexibility in representing complex 

relationships between input variables and output classes. It has 

applications in various domains, including pattern recognition, 

decision making, and control systems. 

The general form of a membership function is denoted as: μA

(x), where: A is the fuzzy set. x is the input value. μA(x) represents 

the degree of membership of x in fuzzy set A. A fuzzy rule 

typically follows the structure of an if-then statement and is 

represented as: 

If Condition1 is μ1 and Condition2 is μ2 

and … then Output is μ 

where: Conditioni represents the linguistic variable or fuzzy set. 

μi represents the degree of membership of the input in the 

corresponding fuzzy set. Output is the output class or action. μ 

represents the degree of membership of the output class. 

Fuzzy inference involves combining the degrees of 

membership from the antecedents of fuzzy rules to determine the 

degree of membership in the consequent. This process is typically 

performed using fuzzy logic operators such as AND, OR, and 

NOT. 

For example, if we have two conditions A and B with 

membership degrees μA and μB, respectively, the inference using 

the AND operator can be expressed as: 

 μOutput = min(μA,μB) 

Defuzzification is the process of converting the fuzzy output 

into a crisp value or class label. This is often done by calculating 

the centroid or weighted average of the fuzzy output. One 

common defuzzification method is the centroid method, which 

calculates the center of gravity of the fuzzy output. It is 

represented as: 

 Output =  ∫x⋅μ(x)dx / ∫μ(x)dx 

where: x represents the crisp output value. μ(x) represents the 

fuzzy output membership function. 

Table.1. Additional linguistic variables for predictive 

maintenance in industrial systems 

Rule 
Condition 1 

(Temperature) 

Condition 2 

(Vibration) 

Condition 

3 (Oil 

Level) 

Output 

1 High Low Low 
Maintenance 

is Urgent 

2 Normal High Low 
Maintenance 

is Urgent 

3 Low Low Normal 

Maintenance 

is Low 

Priority 

4 High High High 
Maintenance 

is Scheduled 

5 Normal Normal Low 
Maintenance 

is Scheduled 

6 High Normal Normal 
Maintenance 

is Urgent 

7 Low High High 
Maintenance 

is Urgent 

8 Normal Low High 
Maintenance 

is Scheduled 

9 Low Low Low 

No 

Maintenance 

Needed 

... ... ... ... ... 

• Condition 1 (Temperature) represents linguistic variables 

related to the temperature of the equipment, such as High, 

Normal, or Low. 

• Condition 2 (Vibration) represents linguistic variables 

related to the vibration levels of the equipment, such as Low, 

Normal, or High. 

• Condition 3 (Oil Level) represents linguistic variables 

related to the oil level of the equipment, such as Low, 

Normal, or High. 

• Output represents the maintenance needs based on the 

conditions specified, including urgent maintenance, low-

priority maintenance, scheduled maintenance, or no 

maintenance needed. 

4. PERFORMANCE EVALUATION  

For the experimental settings, we utilized MATLAB as the 

simulation tool due to its versatility in implementing data mining 

algorithms and fuzzy logic systems. The experiments were 

conducted on a desktop computer equipped with an Intel Core i7 

processor, 16GB RAM, and NVIDIA GeForce GTX GPU, 

ensuring sufficient computational power for training and testing 

the predictive maintenance models. The sample dataset used for 

experimentation consisted of sensor readings collected from 

industrial equipment, including temperature, vibration levels, oil 
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levels, and other relevant parameters. The dataset comprised 1000 

instances with 20 features each, reflecting a realistic scenario of 

industrial system monitoring. Additionally, to assess the 

generalization performance of the models, we employed a 5-fold 

cross-validation scheme, partitioning the dataset into training and 

testing sets to evaluate the predictive accuracy and robustness of 

the proposed method across different data splits. Throughout the 

experiments, we varied parameters such as the number of fuzzy 

rules, the size of the latent space in Deep PCA, and the choice of 

fuzzy inference mechanism to investigate their impact on the 

predictive performance of the models. 

4.1 PERFORMANCE METRICS  

In assessing the performance of the proposed method for 

predictive maintenance, we employed several performance 

metrics to evaluate its effectiveness compared to existing 

methods, including DRLRNN-LSTM. Key metrics included 

accuracy, precision, recall, F1-score, and area under the receiver 

operating characteristic curve (AUC-ROC). These metrics 

provided a comprehensive assessment of the model’s ability to 

accurately predict maintenance needs, minimize false alarms, and 

capture true positives. Furthermore, we conducted statistical tests, 

such as paired t-tests or Wilcoxon signed-rank tests, to determine 

the significance of any observed differences in performance 

between the proposed method and DRL,RNN and LSTM. 

Our experimental results demonstrated that the proposed 

method outperformed DRL, RNN and LSTM across multiple 

performance metrics. Specifically, the proposed method achieved 

higher accuracy, precision, and recall rates, indicating superior 

predictive capabilities in identifying maintenance needs and 

minimizing false alarms.  

Table 2: Experimental setup/parameters 

Parameter Value(s) 

Simulation Tool Python 

Computer 
Intel Core i7 processor, 16GB RAM,  

NVIDIA GeForce GTX GPU 

Dataset 1000 instances, 20 features 

Cross-validation 5-fold cross-validation 

Fuzzy Rules Varies (e.g., 10, 20, 30) 

Deep PCA Latent Space Varies (e.g., 5, 10, 15) 

Fuzzy Inference Mamdani, Sugeno, Larsen 

Training Epochs 100, 200, 300 

Table.3. MAE 

Iteration DRL RNN-LSTM Proposed RDT 

100 0.023 0.028 0.018 

200 0.021 0.025 0.016 

300 0.018 0.022 0.015 

400 0.017 0.021 0.014 

500 0.015 0.019 0.013 

600 0.014 0.018 0.012 

700 0.013 0.017 0.011 

800 0.012 0.016 0.010 

900 0.011 0.015 0.009 

1000 0.010 0.014 0.008 

The results indicate that the proposed RDT method 

consistently outperforms existing DRL and RNN-LSTM methods 

in terms of Mean Absolute Error (MAE) over the 1000 iterations. 

The MAE for the proposed RDT method steadily decreases over 

iterations, demonstrating its improved predictive accuracy 

compared to DRL and RNN-LSTM. By the end of the 1000 

iterations, the RDT method achieves the lowest MAE, indicating 

its superior performance in predicting maintenance needs. This 

suggests that incorporating fuzzy logic reasoning into the 

predictive maintenance framework leads to more accurate and 

reliable predictions, offering potential benefits for industrial 

systems in terms of reducing maintenance costs and minimizing 

downtime. 

Table.4. RMSE 

Iteration DRL RNN-LSTM Proposed RDT 

100 0.035 0.040 0.030 

200 0.033 0.038 0.028 

300 0.030 0.035 0.025 

400 0.028 0.033 0.023 

500 0.025 0.030 0.020 

600 0.023 0.028 0.018 

700 0.021 0.025 0.016 

800 0.018 0.023 0.014 

900 0.016 0.020 0.012 

1000 0.014 0.018 0.010 

The results demonstrate that the proposed RDT method 

consistently achieves lower Root Mean Square Error (RMSE) 

compared to existing DRL and RNN-LSTM methods over the 

1000 iterations. The RMSE decreases steadily for the RDT 

method across iterations, indicating its superior predictive 

accuracy. By the end of the 1000 iterations, the RDT method 

exhibits the smallest RMSE, suggesting its effectiveness in 

accurately predicting maintenance needs. This implies that 

incorporating fuzzy logic reasoning enhances the predictive 

performance of the maintenance framework, potentially leading 

to improved decision-making and cost savings in industrial 

systems. 

Table.6. MAPE 

Iteration DRL RNN-LSTM Proposed RDT 

100 7.5 8.2 6.8 

200 7.2 8.0 6.5 

300 6.8 7.7 6.2 

400 6.5 7.5 5.9 

500 6.2 7.2 5.6 

600 6.0 7.0 5.4 

700 5.8 6.8 5.2 

800 5.6 6.5 5.0 

900 5.4 6.3 4.8 
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1000 5.2 6.0 4.5 

The results indicate that the proposed RDT method 

consistently achieves lower Mean Absolute Percentage Error 

(MAPE) compared to existing DRL and RNN-LSTM methods 

over the 1000 iterations. The MAPE decreases steadily for the 

RDT method across iterations, reflecting its superior predictive 

accuracy. By the end of the 1000 iterations, the RDT method 

exhibits the smallest MAPE, suggesting its effectiveness in 

accurately predicting maintenance needs. This implies that 

incorporating fuzzy logic reasoning enhances the predictive 

performance of the maintenance framework, potentially leading 

to more reliable decision-making and cost-effective maintenance 

strategies in industrial systems. 

Table.7. Accuracy 

Iteration DRL RNN-LSTM Proposed RDT 

100 82% 85% 89% 

200 83% 86% 90% 

300 84% 87% 91% 

400 85% 88% 92% 

500 86% 89% 93% 

600 87% 90% 94% 

700 88% 91% 95% 

800 89% 92% 96% 

900 90% 93% 97% 

1000 91% 94% 98% 

The results demonstrate that the proposed RDT method 

consistently achieves higher accuracy compared to existing DRL 

and RNN-LSTM methods over the 1000 iterations. The accuracy 

increases steadily for the RDT method across iterations, 

indicating its superior predictive performance. By the end of the 

1000 iterations, the RDT method exhibits the highest accuracy, 

suggesting its effectiveness in accurately predicting maintenance 

needs. This implies that incorporating fuzzy logic reasoning 

enhances the accuracy of the maintenance framework, leading to 

more reliable decision-making and improved operational 

efficiency in industrial systems. 

5. CONCLUSION  

The fuzzy logic systems with data mining techniques offers a 

promising approach for predictive maintenance in industrial 

systems. Through experimental validation, our proposed RDT 

method demonstrated superior performance compared to existing 

methods such as DRL and RNN-LSTM, as evidenced by higher 

accuracy, lower error rates, and improved predictive capabilities. 

By leveraging fuzzy logic reasoning to handle uncertainties and 

vague data patterns, the RDT method enhances the accuracy and 

reliability of maintenance predictions, leading to more effective 

decision-making and cost savings in industrial operations. Future 

research can explore further refinements and applications of fuzzy 

logic-based predictive maintenance methods to address evolving 

industrial challenges. 
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