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Abstract 

In machine learning study proposes an ensemble-based strategy for 

both feature selection and data standardization to enhance model 

performance and interpretability. To maintain consistency across 

datasets, it employ average filling and weighted K-means clustering. 

Weighted K-means assigns distinct values to samples based on their 

distances to cluster centers, offering a more precise representation of 

the data distribution. Meanwhile, average filling replaces missing 

values with the average of corresponding features, ensuring a complete 

dataset for subsequent analysis. For feature selection, adopt an 

ensemble approach that combines Random Forest (RF) with Logistic 

Regression (LR) and ElasticNet. RF captures feature importance 

through tree-based analysis, while LR and ElasticNet provide 

additional insights into feature relevance and coefficients. This 

amalgamation aims to provide a comprehensive understanding of 

feature importance within the dataset. Principal Component Analysis 

(PCA) is employed to reduce dataset complexity while preserving key 

properties, facilitating more effective feature selection. By identifying 

orthogonal components that best explain data variation, PCA enables 

efficient representation and feature selection. In the final stage, 

Support Vector Machines (SVM) are utilized for categorization. SVM, 

a powerful classification method, establishes strong decision 

boundaries that optimize the gap between classes. Leveraging the 

selected features, the SVM model effectively categorizes new instances. 
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1. INTRODUCTION 

The performance and interpretability of prediction models in 

machine learning may be greatly improved by preprocessing 

processes like dataset normalization and feature selection [1]. 

Normalization ensures that characteristics are on analogous 

scales, thereby reducing the impact of variables with greater 

magnitudes [2]. Feature selection, on the other hand, seeks to 

identify the most pertinent predictors by removing irrelevant or 

redundant features, thereby enhancing model efficiency and 

interpretability [3]. 

Normalization techniques such as standardization and min-

max scaling have been extensively utilized historically [4]. 

Nonetheless, recent advancements in ensemble methods have 

demonstrated optimistic results in overcoming the limitations of 

conventional approaches [5]. Ensemble methods predict by 

combining multiple models or algorithms, capitalizing on the 

strengths of each component to improve overall performance [6]. 

Ensemble methods provide the potential for more robust and 

accurate preprocessing in the context of normalization and feature 

selection [7]. 

This describes an ensemble approach that incorporates 

multiple normalization and feature selection techniques [8]. We 

propose a novel method for normalizing datasets that combines 

weighted K-means clustering, average filling, and Decision Tree 

Regressor [9]. This combination permits adaptive normalization 

by allocating various weights to data points in accordance with 

their proximity to cluster centroids [10]. In addition, the average 

infill technique manages absent values, ensuring that valuable 

data is preserved during the normalization procedure [11]. The 

Decision Tree Regressor identifies nonlinear relationships, 

thereby enhancing the normalization process [12]. 

In addition, ensemble feature selection is introduced by 

integrating Random Forest (RF), Logistic Regression (LR), and 

ElasticNet with Principal Component Analysis (PCA). Using the 

assets of multiple algorithms, this ensemble approach seeks to 

identify the most informative features [13]. While LR and 

ElasticNet use regularization techniques to select meaningful 

predictors, RF provides a robust feature ranking based on variable 

importance [14]. PCA reduces dimensionality while preserving 

important features, thereby improving model efficiency [15]. 

Our proposed method provides a comprehensive paradigm for 

dataset normalization and feature selection by integrating these 

ensemble methods [16]. The combination of weighted K-means 

clustering, average filling, and Decision Tree Regressor 

guarantees a more precise and trustworthy normalization 

procedure [17]. The ensemble feature selection approach using 

RF, LR, ElasticNet, and PCA guarantees the retention of only the 

most informative features, thereby enhancing model 

interpretability and minimizing over fitting [18]. In the 

subsequent sections, we will delve into the specifics of our 

proposed method for normalizing datasets and selecting features 

using ensemble methods [19-21]. Experimental results on a 

variety of datasets will demonstrate the efficacy and efficiency of 

our method, emphasizing its potential for enhancing predictive 

modelling tasks in real-world applications [22]. The results of this 

study will help farmers make informed decisions by enabling 

them to anticipate the yield of their crop before planting it in the 

field. Farmer assistance in optimising agricultural yield requires 

prompt guidance on projecting future crop yield and analysis [25]. 

Agricultural yields for maize and potatoes from several sources, 

together with weather information. Support Vector Regressor, 

Polynomial Regression, and Random Forest were used to analyse 

the gathered data. Temperature and rainfall were employed as 

predictors [26]. A novel machine learning-based agricultural 

decision support system in this study. Our primary goal was to 

determine how climate change would affect the productivity of 

agricultural crops in East African nations. To provide farmers and 

decision-makers with a crop yield prediction system, we 

combined data from many sources, including the climate, crop 

productivity, and pesticide use [30]. 

1.1 MOTIVATION  

Normalization and feature selection play vital roles in 

improving the performance and interpretability of machine 
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learning models. However, there is no foolproof strategy for doing 

these errands, and several approaches may provide contrasting 

outcomes depending on the dataset and the situation at hand. 

Therefore, there is a need for innovative approaches that can 

leverage the strengths of multiple techniques to achieve optimal 

normalization and feature selection outcomes. To overcome the 

difficulties of dataset normalization and feature selection, we 

present a multi-method ensemble-based technique in this 

research. By integrating weighted K-means clustering and 

average filling techniques for dataset normalization, we aim to 

capture the underlying data distribution more accurately and 

handle missing values effectively. This approach can lead to a 

more comprehensive and representative dataset for subsequent 

analysis. For feature selection, we employ an ensemble approach 

that combines Random Forest (RF) with Logistic Regression (LR) 

and ElasticNet. RF is known for its ability to assess feature 

importance through tree-based analysis, while LR and ElasticNet 

provide additional insights into feature relevance and coefficients. 

By combining these techniques, we can gain a deeper 

understanding of the importance and contribution of each feature 

in the dataset. 

2. BACKGROUND  

Araque et al. [1] proposes a two-dimensional taxonomy to 

categorize ensembles of classifiers and features, combining 

traditional hand-crafted features and automatically retrieved 

embedding features. Multiple ensembles’ classification results are 

measured against a deep learning benchmark. Conţiu and Groza 

Elghazel and Aussem [4] present a framework called RCE for 

feature selection in unsupervised learning using an ensemble of 

clustering methods. The framework demonstrates the capability 

to build meaningful clusters with fewer features, improving 

clustering accuracy on various datasets. Gaikwad and Thool [6] 

propose the ensemble bagging approach for network-wide 

anomaly detection in intrusion detection systems. The Bagging 

ensemble with the REPTree basis classifier is evaluated and 

compared to standard machine learning methods. Laradji et al. [8] 

focus on software defect prediction and explore feature selection 

strategies using ensemble learning. They find that greedy forward 

selection outperforms correlation-based methods and demonstrate 

the effectiveness of ensemble learning with duplicated features 

and skewed datasets. Prusa et al. [11] to take advantage of 

ensemble learners while coping with high dimensionality, you 

may mix bagging and boosting with feature selection. The 

proposed Select-Boost approach outperforms Select-Bagging and 

individual feature selection methods in sentiment analysis tasks. 

Safiyari and Javidan [13] concentrate on predicting survival rates 

for lung cancer patients using ensemble learning. They preprocess 

the data, employ correlation-based feature selection, and reduce 

the dimensionality before training the ensemble models. Tan et al. 

[16] industrial electricity demand forecasting: present a deep 

ensemble learning model. In terms of accuracy metrics, their 

state-of-the-art models are surpassed by their hybrid ensemble 

approach and improved loss function. Verma et al. [18] explore 

the use of ensemble methods, including Bagging, AdaBoost, and 

Gradient Boosting classifiers, for predicting skin diseases. They 

employ various machine learning classification techniques and 

achieve superior accuracy using Gradient Boosting with feature 

selection. Yekkala et al. [20] investigate the combination of 

Particle Swarm Optimization (PSO) and ensemble classifiers for 

cardiac issue prediction. PSO is used for feature selection, and 

Bagged Tree Ensemble Classifier significantly improves accuracy 

for precise prognoses. Bharadiya et al. [22] Remote sensing can 

be a fast, economical, and efficient way to monitor, evaluate, and 

estimate crop yield. An extensive evaluation of the application of 

DL approaches for remote sensing data-based agricultural 

production forecasting has been carried out in the study. 

Oikonomidis et al. [24] proposed approaches are the XGBoost as 

a single model, the XGBoost with scaling, the XGBoost combined 

with scaling and feature selection methods, the hybrids CNN- 

XGBoost, CNN-DNN, CNN-RNN, and CNN-LSTM models. 

Olofintuyi et al. [27] In comparison to statistical models, LSTM 

models are better suited for yield prediction when dealing with 

time series data. Additionally, the total model’s performance and 

resilience can be improved by using RNN to extract yield features 

and CNN to extract climatic features. Lastly, a reliable reference 

for yield prediction is anticipated from the model. Seireg et al. 

[28] study, LGBM, GBR, XGBoost, and Ridge were consuming 

the assembling and falling techniques. Pham et al. [29] 

constructed a framework for evaluating several feature dimension 

reduction methods, specifically FS, FX, and FSX, in the process 

of creating crop yield prediction models based on machine 

learning techniques. 

Table.1. Comparison for existing works 

Method Advantage Limitation 

Deep  

learning 

[1] 

Experiments utilizing the 

proposed models on a 

range of public datasets 

demonstrate that the 

integrated models beat the 

deep learning baseline in 

terms of F1-Score, 

showing the strategy’s 

effectiveness. 

First, the manual 

extraction of features in 

surface approaches 

requires domain 

expertise and can be 

time-consuming and 

subjective. 

Random  

Cluster  

Ensemble 

[5] 

The advantage of the 

proposed Random Cluster 

Ensemble (RCE) method 

for feature selection in 

unsupervised learning is 

its ability to estimate 

feature importance and 

select relevant features 

effectively. 

One limitation of the 

Random Cluster 

Ensemble (RCE) method 

for feature selection in 

unsupervised learning is 

that it relies on the 

assumption that the 

selected features are 

representative of the 

underlying data 

distribution. 

Ensemble  

Learning 

[12] 

Using Select-Boost in 

conjunction with feature 

selection is an effective 

strategy for tweet 

sentiment classification 

since it overcomes two 

major obstacles: low-

quality data and a large 

data set. 

Using ensemble learning 

approaches like Select-

Boost in combination 

with feature selection for 

tweet sentiment 

categorization may be 

time-consuming and 

resource-intensive. 

Extra tree 
The advantage of the 

proposed study’s 

One limitation of the 

proposed study is that it 
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classifier 

[19] 

approach, which combines 

six different data mining 

classification techniques 

with ensemble methods 

(Bagging, AdaBoost, and 

Gradient Boosting), is that 

it leverages the strengths 

of multiple algorithms to 

improve the prediction 

accuracy. 

does not provide a 

comprehensive analysis 

or comparison of the 

individual data mining 

classification techniques 

used. 

1.2 PROBLEM DEFINITION  

In machine learning pipelines, normalizing datasets and 

selecting relevant features using ensemble techniques is a 

common challenge that this research attempts to solve. While 

feature selection seeks to discover the most informative and 

discriminatory characteristics for constructing strong models, 

normalization is crucial to guarantee that the data is uniform and 

similar across features. This research intends to offer a 

comprehensive solution to these difficulties by proposing an 

ensemble-based approach that combines methods such as 

weighted K-means clustering, average filling, RF, LR, ElasticNet, 

PCA, and SVM. The used normalization methods provide a true 

picture of the data distribution and deal with missing values, while 

the ensemble feature selection strategy use a number of strategies 

to zero down on the most important features while simultaneously 

decreasing the dataset’s dimensionality. The ultimate goal of the 

work is to use these methods to improve the precision and 

interpretability of machine learning models across a variety of 

settings. 

3. MATERIALS AND METHOD  

We provide a thorough strategy for dataset normalization, 

ensemble feature selection, and classification using SVM in this 

section. To normalize the dataset, we employ weighted K-means 

clustering to capture the data distribution accurately, average 

filling to handle missing values, and a decision tree regressor to 

address outliers. For feature selection, we utilize an ensemble 

approach combining RF with Logistic Regression (LR) and 

ElasticNet. This ensemble method allows us to obtain a 

comprehensive understanding of feature importance. To further 

enhance feature selection, PCA is applied to reduce the 

dimensionality while preserving important characteristics. 

Finally, for classification, we employ SVM, a powerful algorithm 

that maximizes the margin between different classes, resulting in 

robust decision boundaries. We want to increase the performance 

and interpretability of our classification model by combining 

these strategies. 

1.3 DATASET COLLECTION 

The dataset available at the provided Kaggle link is titled 

“Crop Production in India.” It is a comprehensive collection of 

agricultural data that focuses on crop production in various states 

of India. https://www.kaggle.com/datasets/abhinand05/crop-

production-in-india The dataset encompasses information from 

the years 1997 to 2015 and includes details such as crop type, crop 

area, yield, and production for different crops across different 

districts and states in India. This dataset is valuable for analyzing 

and understanding crop production patterns, trends, and variations 

in different regions of India over time. 

 

Fig.1. Overall Flow Diagram 

1.4 DATASET NORMALIZATION USING 

WEIGHTED K-MEANS CLUSTERING, 

AVERAGE FILLING, DECISION TREE 

REGRESSOR 

After data collection, the collected dataset undergoes several 

normalization techniques. Weighted K-means clustering is 

employed to identify clusters of similar data points, with weights 

assigned based on their relevance. This allows the algorithm to 

prioritize certain data points during normalization. Average filling 

is applied to handle missing or incomplete data, replacing missing 

values with the average value of available data for each feature. 

This ensures the dataset remains complete and maintains 

statistical properties. 

1.4.1 K-means Clustering: 

One of the most basic unsupervised learning algorithms, K-

Means, takes on the ever-present problem of grouping. Assuming 

k clusters, the method provides a fast and easy way to divide data 

into distinct groups. 

The main idea is to find k cluster centroids. It’s critical to 

carefully place these centroids since each one produces a different 

result. As a result, it is best to place them as far away as feasible. 

The next step is to determine the centroid of the data set for each 

point. When all initial concerns have been addressed, the first 

phase is over. New nuclei, or centroids, for the clusters generated 

in the previous phase need the computation of k. After these k new 

centroids have been found, the same data points will need to be 

re-bound to the closest new centroid again. We seem to have set 

off a recursive process. This loop might lead to the discovery that 

the positions of the k centroids gradually shift until no more 

adjustments need to be made. That is to say, no longer do 

centroids shift. 

Finally, the purpose of this approach is to reduce the square of 

the mistake. The point of view 

 ( )
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,
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K
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= 
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with PCA) 

SVM Classification  
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Specifically, S is a K-cluster partition of the M-dimensional 

feature space into non-empty, non-overlapping clusters Sk, where 

each entity set represented by vectors yi is linked with a centroid 

ck k=1. The algorithm consists of the following operations: 

Step 1: Set k nodes in the space defined by the items to be 

clustered. These are the first centers of each group.  

Step 2: Put things where their centroid is closest to.  

Step 3: After everything has a home, we can redo the k-center 

point calculations.  

Step 4: Keep doing Steps 2 and 3 until the axes of the centroids 

stop shifting.  

1.4.2 Weighted k-means: 

The weighted k-means method has many benefits over the 

original k-means algorithm, including improved resilience against 

outliers, higher quality clusters, and quicker convergence. It has 

seen extensive usage in image segmentation, data mining, and 

bioinformatics, among other applications. 

A k-partitioning technique takes a collection of n items, D = 

x1, x2, xn, and a positive number K, and divides it into precisely K 

distinct subsets, D1,∈Dk, Dk. Clustering theory states that objects 

with similar properties are more closely connected to one another 

than to all other objects. The difficulty of deciding may be 

reduced by developing a cost function that evaluates the success 

of clustering for each subset of the dataset. The characteristic of 

each gene is shown here as an integer. So, the amount of 

characteristics an object possesses may be represented as a row 

vector of real numbers of length d. For the sake of argument, let’s 

assume that all of the data in the dataset is complete and that each 

item has the same amount of qualities. Let there be n objects in 

the set xi ∈ Dk to symbolise. For the sake of brevity, we shall 

abbreviate the jth property of xi as xij. A D attribute matrix for an 

object set is denoted by X = (xij). 

 ( ) ( ) ( )
1 i k

K

G i k i k

k x D

j x m G x m
= 

 = − −   (2) 

 
1

i k

k i

x Dk

m x
n 

=   (3) 

G is a positive symmetric weighted matrix, where nk and mk 

are the means and the size of Dk, respectively. A symmetric 

positive matrix G* meeting Eq.(4) is sought via the weighted k-

means approach such that the desired subset, indicated by *. 

 ( ) ( )minG Gj j


 =   (4) 

When jg(∆*) is computed by multiplying a partition by a 

weighted matrix G, the output might vary. Thus, it is necessary to 

normalise the weighted matrix. The G determinant is assumed to 

be 1 in this investigation. 

 (det(G)) = 1  (5) 

Condition (5) is met by virtue of the fact that G = I in (5), and 

the cost function and optimum goal of a typical k-means 

algorithm are defined by Eq.(6) and Eq.(7), respectively. 

Let us say that a collection of data, denoted by X = x1,…xn, 

exists in a d-dimensional Euclidean space Rd. The k-means 

approach seeks to minimise an objective function to partition a 

data set X into a desired number of clusters, k: 

 ( ) ( )
1 1 1

, ,
n k d

il ij lj

i l j

P U Z U d X Z
= = =

=   (6) 

to which 𝑈𝑖𝑙 ∑ 𝑑(𝑋𝑖𝑗 , 𝑍𝑙𝑗)
𝑑
𝑗=𝑙 , where signifies that the ith data 

point Xi is part of the U_ith cluster, and [U] is a [n * k] partition 

matrix, are binary variables. If Z is a collection of k-vectors 

representing the cluster centers, then the distance between the ith 

data point and the lth cluster center on the jth variable is denoted 

by d(Xij,Zlj). The following conditions must be true to reduce 

P(U,Z): 
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
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
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Using Equations and, the k-means method may be seen as a 

recursive approximation of Picard’s fixed point. The k-means 

technique first operates from the perspective P(U,Z), in which 

each variable is given equal weight. There might be a great deal 

of noise in the data due to uncontrolled variables in the gathering 

process. that maybe a solution can be found using weighted k-

means. One possible representation of the weights for m variables.  

 ( ) ( )
1 1 1

, , ,
n k d

d

il j ij lj

i l j

P U Z W U W d X Z
= = =

=   (9) 

The equation was derived by Yang and Wu, who had 

previously used the idea of adding an exponential distance weight 

to an equation. Taking into account the spatial restrictions used in 

FCM, an Equation is analysed. 

1.4.3 Average Filling: 

Three hundred individual stems were labelled in each plot for 

consistency. During the time between anthesis and harvest, thirty 

randomly tagged spikes were harvested from each individual 

plant between 9:00 and 11:00 h, once every five to seven days. 

All of the spikes were sniped off at the base and stored in a sealed 

plastic bag with a label. To stop any more evaporation, the bags 

were put on ice within the foam container. After that, we placed 

each sample in a labelled paper bag and dried it at 105 degrees 

Celsius for 30 minutes (to de-enzyme it) and then at 75 degrees 

Celsius until the weight was consistent. By hand, the grain was 

meticulously threshed off the spikes and separated into individual 

grains and the rest of the spike. Each plot’s aggregate grain weight 

was measured. We counted hundreds of grains at random, mixed 

them well, and then weighed them three times. Spike weight as a 

fraction of grain weight: 

 ( )% 100%
dry

dry

TGW
GPS

TSW
=    (10) 

Grain percentage of spike weight (on a dryweight basis) is 

denoted as GPS(%), where TGWdry and TSWdry are measured in 

grams, respectively. 

 ( )% 100%
fresh dry

fresh

TSW TSW
SMC

TSW

−
=    (11) 
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Grain weight (GW) with time for the evaluated winter wheat 

under varying water and fertilizer availability was best fit by a 

sigmoid growth function: 

 
max 1 if 0e e

e

e m e e m

t t tt
GW GW t t

t t t t t

  −
= +    

− −  
 (12) 

Grain weight (mg), days since an ds, and plants produced (n) 

are entered into the equation. Grain weight reaches its maximum 

value, GWmax, at te, the end of growth, and the maximum filling 

rate emerges at tm. 

1.4.4 Decision Tree Regression: 

For each class, we construct a regression tree for use in the 

soft classification process (see Fig.1). Each regression tree’s 

feature vector is comprised of pixel intensity values over several 

bands, while the target vector is comprised of each pixel’s known 

class proportions (referred to as soft reference data). The 

anticipated class proportions are derived after feeding the 

intensity values into each regression tree. The following 

demonstrates the method for constructing the regression trees 

from the training dataset, 

do 

pixels’ intensity readings over many bands as independent 

factors; 

Put in a pixel’s known class-i percentage as the dependent 

variable; 

build the regression tree i for class i; 

for class i =1,. . ., M 

where M is the number of classes. 

 

Fig.2. Soft categorization of remote sensing data using a 

decision tree regression technique 

do 

Pixel intensity values across many frequency bands may be 

inputted; 

class i: conduct the i regression tree; 

The percentage of pixels that belong to class i is the result of the 

ith regression tree node; 

for class i =1,. . ., M. 

Soft classification outputs for a pixel are commonly scaled 

from 0 to 1 so that they more accurately represent the class 

proportions inside a pixel region on ground. Therefore, DT(i), 

where i = 1,..., M, stands for the projected class proportions by 

tree i, and the normalisation of these proportions is as, 

 ( )
( )

( )
i

DT i
p i

DT i
=


i=1,…,M   (13) 

The accuracy of the sorting is assessed once it has been done. 

Traditional error matrix based measures are normally reserved for 

examining the correctness of a hard classification, whereas a 

fuzzy error matrix based measure may be used to evaluate the 

efficacy of a soft classification. We evaluate DTR-based soft 

categorization in this work by means of the latter two metrics. 

By recursively partitioning space in such a way that samples 

with similar labels are clustered together, a decision tree may be 

built from a collection of training vectors xi Rn, where i = 1, 2, 

3,..., n. 

Put Q in place of the data at the mth node. Separate the 

information into qleft and qright categories for each split = (j, tm) 

combination of a feature j and a threshold tm. 

 qleft(θ)=(x,y)|xj <= tm  (14) 

 qright(θ)=q\qleft(θ) (15) 

Different impurity functions H(qleft(θ)) are used to compute 

the impurity at m for different problem types (regression vs. 

classification). 

 ( ) ( )( ) ( )( ),
left right

left right

m m

n n
G q H q H q

n n
  = +  (16) 

Select the parameters that minimizes the impurity: 

 θ* = argminθ G(Q,θ) (17) 

Repeat until Nm minsample or Nm = 1 is attained to get the 

maximum depth where qleft and qright are subsets. To minimize the 

L1 error, the median values at the terminal nodes of the spline are 

used, and the L2 error is minimized by using the mean values at 

the terminal nodes of the spline.  

Standard Deviation: 

 
1

m

m i

i Nm

y y
N 

=   (18) 
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m i m

i Nm

H X y y
N 
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Absolute Mean of Error: 

 
1

m

m i

i Nm

y y
N 

=    (20) 

 ( )
1

m

m i m

i Nm

H X y y
N 

= −   (21) 

where Xm represents the Xm
th node’s training data 

1.5 ENSEMBLE FEATURE SELECTION USING RF 

WITH LR AND ELASTICNET WITH PCA 

After data normalization, the most salient features may be 

isolated using ensemble feature selection techniques. In order to 

achieve a more reliable and complete feature subset, it is 

necessary to combine different feature selection approaches. Each 

feature’s significance is calculated using a combination of 

D R 

Normalization 

Build decision 
tree forest  

(M Class) DT

1 DT m 

Original 

training data 

Software  

reference  

data 

Class Proportion 
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Logistic Regression (LR) and Random Forest (RF). RF measures 

the impact of features on model accuracy, while LR provides 

insights into the individual effects of features on the target 

variable. By combining the results from both algorithms, a more 

reliable ranking of feature importance is obtained. 

1.5.1 Random Forest: 

The rationale is that if a feature is truly important for 

prediction, permuting its values should significantly degrade the 

model’s performance. Random Forest’s feature significance 

scores have several potential applications in the context of feature 

selection. Selecting the attributes with the highest significance 

ratings is a frequent strategy. This helps in identifying the most 

relevant features for the prediction task. The number of features 

to select can be determined based on domain knowledge, trial and 

error, or using techniques like cross-validation. 

Another approach is to set a threshold for feature importance 

and select all features whose importance exceeds the threshold. 

This allows for a more flexible selection criterion, where the 

threshold can be adjusted based on the desired number of features 

or the desired level of feature relevance. Random Forest’s feature 

selection process provides several benefits. It can handle 

interactions and non-linear relationships between features, 

making it effective in identifying both individual and combined 

feature importance. It is also robust to noisy or redundant features, 

as it considers the collective performance of all trees in the forest. 

Additionally, Random Forest can handle both numerical and 

categorical features, which is advantageous when dealing with 

diverse datasets. 

The convergence theorem, generalized error, and 

unconventional estimations form the foundation of Random 

Forest. Following is the formula for a random forest: 

 {h(X,∅k), k= 1,2,…,K} (22) 

The X-dimensional collection of sample-condition attributes, 

the k-dimensional baseline classifier parameter, and the s-

dimensional sample size: 

 T={(xi,yi),xi∈X, yi∈Y, i=1,2,…,N} (23) 

A collection of M-dimensional attribute vectors is denoted by 

X, whereas Y is the determining factor. 

Random forest generalization mistakes are as follows: 

PE*def = P(x,y) (avk I(h(X,∅k)=Y)-maxj=y avk I(h(X,∅k)=j)<0) (24) 

It quantifies how wrong a random forest is in classifying a 

specific dataset. The following convergence theorem existed 

during the period K:  

 PE*
,a s

→ PX,Y(Po(I(h(X,∅k)=j)<0-maxj=y Po(h(X,∅k)=j)<0) (25) 

The generalized error limits of random forests are obtained by 

combining Hoeffding’s inequality and Chebyshev’s inequality 

with Eq.(26): 

 
( )2

*

2

1p s
PE

s

−
  (26) 

where s is the basic classifier’s accuracy and p is the correlation 

between the two. 

1.5.2 Logistic Regression: 

The probabilities of occurrences that may be classified into 

two groups are predicted using the statistical method of Logistic 

Regression. This supervised learning method is used in many 

fields, including machine learning, statistics, and even medical 

research.  While linear regression is used to predict continuous 

values, logistic regression is used to estimate the probability of a 

binary outcome based on a collection of continuous predictor 

factors and a binary target variable. Any real number may be 

converted into a probability value between zero and one using the 

sigmoid function. 

Maximum likelihood estimate is used to fit a logistic function 

to the training data, which is how the logistic regression algorithm 

gets its desired results. The approach optimizes the logistic 

function’s parameters (coefficients) during training such that the 

discrepancy between the probabilities predicted by the function 

and the actual binary labels in the training data is as little as 

possible. Optimization methods like gradient descent are often 

used for this purpose. 

Applying the learnt coefficients to the input variables and 

determining the appropriate probabilities is how the logistic 

regression model is put to use for prediction once it has been 

trained. A decision threshold may be used to classify the data into 

two sets with different probabilities. If the threshold is set to 0.5, 

for instance, only cases with projected probability more than 0.5 

are assigned to one class, while those with probabilities less than 

0.5 are assigned to the other class. Logistic Regression has several 

advantages, including simplicity, interpretability (coefficients can 

be directly interpreted as the impact of the input variables on the 

probability), and efficiency in training and prediction. It accepts 

both numeric and categorical data, and may be expanded to deal 

with multi-class classification issues using methods like one-vs-

rest or multinomial logistic regression. 

Simple (two-variable) regression and multiple regression are 

both subsets of the basic single-equation linear regression model, 

which may be written mathematically as: 

 
1

k

i i

i

Y a b x u
=

= + +  (27) 

where Y is the result, Y=x1,x2,xi,…,xk are the k independent 

variables, a and bi are regression coefficients standing in for the 

model parameters for a given population, and u is a stochastic 

disturbance-term standing in for the effect of unspecified 

independent variables and/or a totally random element in the 

specified relationship. 

1.5.3 RF with LR: 

Ensemble feature selection is a strategy for determining the 

most significant qualities or features by combining the 

capabilities of the Random Forest (RF) and Logistic Regression 

(LR) algorithms. This method seeks to improve the accuracy and 

robustness of feature selection by using the distinct benefits of 

each algorithm.  

Random Forest assesses feature relevance by calculating the 

influence of each feature on total model accuracy. Random Forest 

Feature Selection are the Train a random forest model with the 

training dataset T using K decision trees. And calculate the feature 

importance scores for each feature in the random forest model. 

Then rank the features based on their importance scores in 

descending order. 

Logistic Regression, on the other hand, predicts the link 

between continuous predictors and a binary result. Logistic 
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Regression Feature Selection are to select the top N features from 

the ranked feature list obtained from the random forest. And train 

a logistic regression model using the selected features and the 

training dataset T.  

The outputs of Random Forest and Logistic Regression are 

merged in ensemble feature selection to produce a thorough rating 

of feature value. A more accurate and robust evaluation of feature 

relevance is produced by integrating the rankings or significance 

scores from both algorithms.  

1.6 ELASTICNET 

For the ElasticNet, ‘loss + penalty’ is the objective function: 

 ( )
( )

0

2

0 1,
1

11
min ,

2

N
T

i i i

i

w I y x
N 

 
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=

 −
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 
 

  (28) 

The symbol wi stands for the observational value. Il(y) stands 

for the influence on the negative logarithm of the likelihood of 

making an observation. The regularization parameter l (whose 

functional form is model-specific) calculates the shrinkage, 2 is 

the L2-norm of, 1 is t, and the ElasticNet penalty sets the weights 

for ridge and lasso regression. Because no one part is more crucial 

than any other, 

 
1

N

i

i

w N
=

=  (29) 

 wi = M/ni  (30) 

where the sum of the records in the batch of which i is a member 

is denoted by ni. 

1.6.1 Principal Component Analysis: 

Since the standard PCA method incorporates all training 

images in the eigenspace calculation, it does not account for class 

differentiation. Finding the eigenvector might be a challenging 

intermediary step if there are a lot of training photos or if the 

picture dimensions are high. This is because updating a 

conventional PCA model with more training photos requires 

recalculating the eigenspace, eigenvalues, and feature vectors for 

each image, which is a very inefficient use of computational 

resources. The training process in Superior PCA has been 

considerably simplified by the adoption of a novel training and 

projection technique. In order to build an eigensubspace and a set 

of feature parameters, Superior PCA first filters through the 

training photographs and categorizes the persons inside them. 

Choose the subject whose eigensubspace best approximates the 

test image.  

Step 1: Let the training set of all images X can be described as 

 X={X1,X2,X3…XL} (31) 

Step 2: Compute the mean vector of all training images of ith 

person. 

 ( )
1

1
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I k

kI

X X i l
N =

= =  (32) 

Step 3: Compute the covariance of the training set of the ith 

person 

 ( )
1
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i

N
i
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S X X
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= −  (33) 

Step 4: 4. Compute Matrix Xi Sm largest eigenvalues Ij
u, where j 

= 1,2...,m 

1.6.2 ElasticNet with Principal Component Analysis: 

By integrating ElasticNet and PCA into a single ensemble 

technique, feature selection performance is enhanced. In order to 

better understand a dataset, principal component analysis may be 

used to reduce the number of dimensions used to describe it by 

finding a smaller collection of orthogonal axes, or principle 

components, that capture the bulk of the variance. ElasticNet, on 

the other hand, is a regularization technique that performs feature 

selection by shrinking the coefficients of less relevant features 

while encouraging sparsity. 

ElasticNet with Principal Component Analysis 

Input: 

• Dataset X consisting of n samples and m features: X = [x1, 

x2, ..., xn], where xi is a m-dimensional feature vector. 

• Number of desired principal components to retain after 

PCA: k. 

• ElasticNet regularization parameters: α and λ. 

• Threshold for feature selection: θ. 

Process: 

1) Perform PCA on the dataset X to obtain the principal 

components. 

a) Compute the mean of X: μ = (1/n) * Σ(xi) 

b) Center the dataset by subtracting the mean:  

Xc = X - μ 

c) Compute the covariance matrix of  

Xc: Σ = (1/n) * Xt
T * Xc 

d) Compute the eigenvectors and eigenvalues of Σ 

e) Arrange the eigenvectors by their eigenvalues, decreasing 

order. 

f) Identify the best k eigenvectors to use as PCs. 

2) To reduce the dimensionality of the dataset X, we may use the 

k primary components to perform the transformation. 

a) Compute the projection matrix: P = [v1, v2, ..., vk], where 

vi is the ith eigenvector 

b) Transform the dataset: Xt = Xc * P 

3) Apply ElasticNet to the transformed dataset Xt for feature 

selection. 

c) Initialize the coefficient vector β = 0 

a) Iterate until convergence: 

b) Update β using the ElasticNet optimization objective:  

β = argmin (1/n)*||Y-Xt * β||2 + λ*[(1-α)/2*||β||2+α*||β||1] (34) 

where Y is the target variable vector 

c) Set coefficients smaller than a threshold θ to zero to 

enforce sparsity 

4) Select the features corresponding to the non-zero coefficients 

in the final β as the selected features. 

Output: Selected features subset. 
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1.7 CLASSIFICATION USING SVM 

In the parameter space, the SVM is a nonlinear classifier 

because the mapping from the input pattern space to the high 

dimensional feature space is nonlinear. The optimization problem 

presented by SVM training is quadratic in nature. To optimize the 

distance between the hyper plane and the closest point, one must 

solve the quadratic optimization problem of establishing a hyper 

plane with the coefficients wTx + b = 0. Here, w is the vector of 

hyper plane coefficients, and b is the bias factor. It turns out that 

with huge margins of separation, the only thing that matters is 

how close the points are to each other. The kernel function is used 

to calculate this kind of similarity. There is no universally 

accepted procedure for selecting an appropriate kernel function 

for a given situation. 

 D={(x1,y1),…(x1,y1)},xI Rn, yI {1,-1} (35) 

If the distance between the vectors nearest to the hyperplane 

is largest, then the separation produced by the hyperplane is best. 

A canonical hyperplane is a hyperplane with parameters w and b 

such that and only if these constraints hold, 

 mini |<w,xi> +b|=1 (36) 

Training errors may be kept to a minimum while profit 

maximization is still possible by adjusting the regularization value 

‘C’. This is referred to as a “soft margin.” Therefore, a kernel 

function and a regularization parameter are needed to develop a 

support vector machine. 

There are times when the SVM will not use a linear boundary, 

but instead will project the input vector x onto a high dimensional 

feature space z. The SVM may create an ideal hyper plane for 

classifying features in this higher-dimensional space if a non-

linear mapping is used. 

An inner product in feature space has an equivalent kernel in 

input space, 

 K(x,x’)=<j(x),j(x’)>   (37) 

Non-linear modeling is where a polynomial mapping comes 

in, 

 K(x,x’) = <x,x’>d  (38) 

where d is the polynomial degree. There has been a lot of focus 

on radial basis functions, often using a Gaussian of the type, 

 K(x,x) = 

2

2

'

2e

x x



−
−

 (39) 

4. RESULTS AND DISCUSSION  

After applying ensemble feature selection and SVM 

classification to the dataset, the findings and analysis are 

presented in the results and discussion section. The purpose of this 

part is to shed light on the efficiency and usefulness of the 

suggested method, as well as to address the implications and 

limits of the obtained findings. 

 

Fig.3. Plot Graph 

The plot graph may show in Fig.3. The x-axis represents the 

season, while the y-axis displays the count X-axis: The x-axis 

represents the seasons of the year. It typically includes the four 

seasons: spring, summer, autumn (fall), and winter. Each season 

is usually depicted as a discrete point or label along the x-axis. Y-

axis: The y-axis represents the count or quantity of something 

being measured or observed. The specific count being represented 

on the y-axis will depend on the context of your plot. Here are a 

few examples: 

 

Fig.4. Production Analysis 

A production analysis is shown in Fig.4. Season is shown 

along the x axis, while output is shown along the y axis. The 

Fig.4’s x-axis depicts each of the year’s four distinct seasons. 

Seasons including spring, summer, fall, and winter are often 

covered. Each season is often denoted by a discrete dot or label 

located along the x-axis. Y-axis: The output is shown along the y-

axis in Fig.4.  

 

Fig.5. Crop Year-wise Production Analysis 
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The Fig.5 depicts a Crop Year-wise Production Analysis, with 

the X-axis representing the crop year and the Y-axis displaying 

the production levels. The goal of this plot is to study and 

comprehend production fluctuations over crop years. 

 

Fig.6. Feature Selection 

The Fig.6 depicts feature selection, with the X-axis 

representing the production variable and the Y-axis displaying the 

names of distinct states. The goal of this graphic is to show the 

link between the production variable and the different states.  

 

Fig.7. State-wise Analysis of Production 

The Fig.7 depicts a State-wise Analysis of Production, with 

the X-axis representing the production variable and the Y-axis 

displaying the names of distinct states. The goal of this graphic is 

to evaluate and compare production levels among states. 

 

Fig.8. Important Feature selection 

As can be seen in Fig.8, the best features have been chosen 

using the ensemble feature selection. The features and reviews as 

a whole. There has had a significant effect on the title. A global 

accuracy of 0.91 percent has been reached. 

 

Fig.9. Confusion matrix 

The Fig.9 shows confusion metrics TP, FP, TN, and FN values 

are represented in Fig.9. The predicted class for TP is 84, TN is 

98, and FP and FN are 7 and 11.   

Table.2. Performance Metrics Comparison 

 K-means Random forest Proposed method 

Accuracy 0.84 0.88 0.91 

Precision 0.86 0.90 0.93 

Recall 0.81 0.85 0.90 

F-measure 0.83 0.87 0.92 

The Table.2 reveals that the suggested technique 

outperformed Random Forest (0.88) and K-means (0.84), 

respectively. In terms of accurately categorizing examples, this 

demonstrates that the suggested technique excels above the other 

two methods. The suggested technique attained the maximum 

precision of 0.93, where precision quantifies the percentage of 

accurately predicted positive cases relative to all anticipated 

positive instances. The highest accuracy was achieved by Random 

Forest (0.9), while the lowest was achieved by K-means (0.86). 

As a result, it seems that the suggested strategy made more 

accurate positive predictions. The suggested strategy achieved a 

recall of 0.90, where recall is defined as the fraction of true 

positive events that were properly predicted. The recall for 

Random Forest was 0.85, whereas the recall for K-means was 

0.81. Since the suggested technique has a better recall score, it is 

more likely to correctly identify true positives. The F-measure is 

a fair measurement of both accuracy and recall since it is the 

harmonic mean of the two. With an F-measure of 0.92, the 

suggested technique outperformed Random Forest (0.87), K-

means (0.83), and everything else. These results show that the 

suggested strategy improved upon the trade-off between accuracy 

and recall. The suggested technique achieved higher levels of 

accuracy, precision, recall, and F-measure than both K-means and 

Random Forest. It showed improvements in classification 

accuracy, positive prediction accuracy, positive instance capture, 
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and precision-to-recall ratio. These results demonstrate the 

superiority of the suggested strategy over the other two 

approaches when applied to classification tasks. 

 

Fig.10. Performance Metrics Comparison 

The Fig.10 shows performance metrics comparison the x axis 

shows models and y axis shows value. 

5. CONCLUSIONS  

In conclusion, this study proposes novel method on ensemble-

based approach that combines weighted K-means clustering, 

average filling, Random Forest, Logistic Regression, Elasticnet, 

Principal Component Analysis, and Support Vector Machines for 

dataset normalization, feature selection, and classification. By 

employing these techniques, we aim to improve the performance 

and interpretability of machine learning models. The weighted K-

means clustering and average filling techniques ensure a more 

accurate representation of the dataset by considering sample 

weights and handling missing values appropriately. This 

normalization step prepares the dataset for subsequent analysis. 

The ensemble feature selection approach, combining Random 

Forest, Logistic Regression, and Elasticnet, allows us to identify 

the most relevant features by considering their importance, 

relevance, and coefficients. This helps in reducing dimensionality 

and eliminating noise or redundant information. Principal 

Component Analysis further enhances the feature selection 

process by reducing the dimensionality of the dataset while 

preserving its important characteristics. Finally, SVM used for 

categorization. 
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