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Abstract 

Remote patient monitoring has become pivotal in managing chronic 

diseases like diabetes. This study proposes a novel approach for the 

classification of diabetes subtypes utilizing a deep-learning 

reconstruction algorithm. The system leverages continuous patient 

data obtained through remote monitoring devices, enabling real-time 

analysis for timely intervention. The deep-learning reconstruction 

algorithm, based on a convolutional neural network architecture, 

demonstrated exceptional accuracy in distinguishing between diabetes 

subtypes. The model achieved an overall classification accuracy of 

92%, outperforming traditional methods. It exhibited high sensitivity 

and specificity, with values exceeding 90% for each subtype. The 

results showcase the system’s effectiveness in classifying diabetes 

subtypes: Type 1 diabetes (Sensitivity: 94%, Specificity: 92%), Type 2 

diabetes (Sensitivity: 91%, Specificity: 94%), and Gestational diabetes 

(Sensitivity: 93%, Specificity: 91%). The system’s ability to accurately 

identify these subtypes ensures personalized and targeted care for 

patients. 
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1. INTRODUCTION 

In recent years, the healthcare landscape has witnessed a 

paradigm shift towards remote patient monitoring, offering 

continuous and real-time health data for chronic disease 

management [1].  

Diabetes, a prevalent and multifaceted condition, necessitates 

advanced methodologies for accurate classification of its 

subtypes. Existing diagnostic approaches often face challenges in 

providing timely and precise information, leading to suboptimal 

patient care [2]. 

1.1 DIABETES MELLITUS 

It is a chronic metabolic disorder, is characterized by elevated 

blood glucose levels resulting from impaired insulin secretion, 

insulin action, or both [3]. The condition is broadly classified into 

several subtypes, each with distinct etiological factors, clinical 

manifestations, and management strategies. Understanding the 

background of these different diabetic subtypes is crucial for 

effective diagnosis and treatment [4]. 

 

1.1.1 Type 1 Diabetes (T1D): 

T1D is an autoimmune disorder where the immune system 

mistakenly attacks and destroys insulin-producing beta cells in the 

pancreas. Typically diagnosed in childhood or adolescence [5], 

but it can occur at any age. Rapid onset, dependence on exogenous 

insulin, and a higher risk of ketoacidosis. Insulin therapy is the 

mainstay, often administered through injections or insulin pumps. 

1.1.2 Type 2 Diabetes (T2D): 

T2D involves insulin resistance, where cells do not respond 

effectively to insulin, and insufficient insulin production over 

time. Commonly develops in adulthood, but increasingly 

diagnosed in younger individuals due to lifestyle factors. Gradual 

onset, potential for initial management with lifestyle changes, oral 

medications, and later insulin if needed. Lifestyle modifications, 

oral antidiabetic medications, and insulin in advanced stages [6]. 

1.1.3 Gestational Diabetes (GDM): 

GDM occurs during pregnancy when the body cannot produce 

enough insulin to meet increased demands, leading to elevated 

blood sugar levels. It is typically diagnosed during the second or 

third trimester of pregnancy. Often asymptomatic; may increase 

the risk of complications during pregnancy and delivery. Dietary 

changes, monitoring blood glucose levels, and insulin therapy if 

needed. It is Caused by mutations in a single gene, leading to 

disruptions in insulin production or function, resulting from other 

medical conditions or medications affecting insulin regulation [7]. 

The challenges in diabetes management highlight the need for 

innovative solutions, prompting the formulation of this study. The 

primary problem addressed is the classification of diabetes 

subtypes, namely Type 1 diabetes, Type 2 diabetes, and 

Gestational diabetes, through the application of a deep-learning 

reconstruction algorithm. Current classification methods often 

lack the granularity required for personalized treatment strategies, 

posing a substantial impediment to effective diabetes care [8]. 

The objectives of this research encompass the development 

and validation of a deep-learning reconstruction algorithm for 

remote patient monitoring, aiming to enhance the classification 

accuracy of diabetes subtypes. The novelty of this approach lies 

in its utilization of continuous patient data streams, enabling real-

time subtype identification and facilitating timely medical 

interventions. 

The contributions of this study extend beyond conventional 

methodologies, introducing a cutting-edge paradigm in diabetes 

classification. By combining remote patient monitoring and a 

deep-learning reconstruction algorithm, this research strives to 



CALLINS CHRISTIYANA CHELLADURAI et al.: REMOTE PATIENT MONITORING AND CLASSIFICATION OF DIABETES SUBTYPES CLASSIFICATION USING DEEP-LEARNING  

RECONSTRUCTION ALGORITHM 

3250 

significantly improve the precision and efficiency of diabetes 

subtype identification. The outcomes of this study have the 

potential to revolutionize healthcare practices, ushering in a new 

era of personalized and data-driven patient care. 

Table.1. Types of diabetes 

Diabetes 

Type 
Etiology Onset Clinical Features 

Type 1  

Diabetes  

(T1D) 

Autoimmune  

destruction of  

β-cells 

Childhood/ 

Adolescence 

Rapid onset, insulin 

dependence,  

ketoacidosis risk 

Type 2  

Diabetes  

(T2D) 

Insulin  

resistance,  

insufficient  

insulin  

production 

Adulthood 

(increasingly  

in younger 

individuals) 

Gradual onset, 

lifestyle changes,  

oral medications 

Gestational  

Diabetes  

(GDM) 

Insufficient  

insulin  

during  

pregnancy 

Second/ 

Third  

trimester 

Often asymptomatic, 

increased risk of  

pregnancy  

complications 

Monogenic  

Diabetes 

Genetic  

mutations  

affecting insulin 

Varied 
Varies based on  

genetic mutation 

Secondary  

Diabetes 

Resulting from  

other medical  

conditions or  

medications 

Varied 
Depends on  

underlying cause 

2. LITERATURE SURVEY  

In recent years, the application of deep learning techniques for 

diabetic classification has gained substantial attention within the 

scientific community [9]. Researchers have explored various 

architectures and methodologies to enhance the accuracy and 

efficiency of diabetic subtype identification. Convolutional 

Neural Networks (CNNs) [10] have emerged as a prominent 

choice due to their ability to automatically learn hierarchical 

features from medical data. Studies, such as [11], have 

successfully employed CNNs to discriminate between different 

diabetic subtypes, achieving results in terms of sensitivity and 

specificity. 

Another exploration involves the utilization of Recurrent 

Neural Networks (RNNs) for temporal modeling of patient data. 

RNNs are well-suited for capturing sequential patterns, making 

them valuable in analyzing time-series data from remote patient 

monitoring devices. Notably, [12] demonstrated the effectiveness 

of RNNs in identifying subtle changes in glucose levels over time, 

aiding in the early detection of diabetic subtypes. The temporal 

aspect of RNNs has proven particularly beneficial in 

distinguishing between acute and chronic variations in glucose 

dynamics. 

Furthermore, the integration of transfer learning techniques 

has garnered attention for diabetic classification tasks. By 

leveraging pre-trained models on large medical datasets, 

researchers [13] achieved superior performance in differentiating 

between diabetic subtypes. Transfer learning facilitates the 

extraction of meaningful features from general medical data, 

providing a valuable initialization for deep learning models and 

potentially reducing the need for extensive labeled diabetic 

datasets. 

Attention mechanisms have been incorporated into deep 

learning architectures to enhance the interpretability of model 

predictions. These mechanisms enable the network to focus on 

relevant regions within the input data, aiding in the identification 

of critical features for diabetic classification. Notable 

contributions, as seen in [14], showcase the efficacy of attention-

based models in improving the understanding of the decision-

making process and enhancing the overall classification 

performance. 

3. PROPOSED METHOD  

The proposed method utilizes a cutting-edge deep-learning 

reconstruction algorithm, specifically Capsule Networks 

(CapsNet), to address the task of diabetic subtype classification. 

CapsNet represents a departure from traditional neural network 

architectures by introducing capsules, dynamic entities that 

encode hierarchical relationships between features. This unique 

architecture is particularly suited for capturing intricate patterns 

and nuanced representations within medical data, such as those 

associated with diabetic subtypes. 

The first step of the CapsNet-based method involves the input 

layer, where relevant features from the patient data are encoded 

into capsules. These capsules encapsulate spatial hierarchies and 

relationships, allowing the network to discern subtle variations in 

diabetic characteristics. The non-linear dynamics of CapsNet 

facilitate the extraction of discriminative features that might be 

challenging for conventional neural networks to capture 

effectively. 

The routing mechanism within CapsNet enables the network 

to establish dynamic connections between capsules. This dynamic 

routing ensures that the network considers the spatial 

relationships and dependencies among features, fostering a more 

comprehensive understanding of the complex patterns inherent in 

diabetic data. The capsules act as informative entities, facilitating 

robust and nuanced feature representation crucial for accurate 

classification. 

To train the CapsNet, a reconstruction loss is employed, 

encouraging the network to reconstruct the input data accurately. 

This inherent regularization mechanism aids in preventing 

overfitting and enhances the model’s generalization capability. 

During training, the CapsNet learns to encode and decode input 

data, emphasizing the preservation of critical features relevant to 

diabetic subtype classification. 

3.1 CAPSNET  

Capsule Networks, commonly referred to as CapsNets, 

represent a revolutionary advancement in neural network 

architectures. They were introduced to address the limitations of 

traditional neural networks, particularly in capturing hierarchical 

relationships and spatial hierarchies within data. CapsNets derive 

their name from capsules, which are dynamic entities within the 

network that encode information about the presence and pose of 

specific features. The distinctive feature of CapsNets is their 

ability to recognize patterns in a spatially hierarchical manner, 

allowing for more nuanced and accurate representation of 
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complex data. The process of CapsNets involves several key 

components: 

3.1.1 Input Encoding: 

The initial layer of the CapsNet processes the input data, 

which could be medical data in the context of diabetic 

classification. Rather than using traditional neurons, CapsNets 

utilize capsules to encode information. Each capsule represents a 

specific feature or part of an object. 

3.1.2 Dynamic Routing Mechanism: 

A critical aspect of CapsNets is the dynamic routing 

mechanism, which facilitates communication between capsules. 

This contrasts with the fixed-weight connections in traditional 

neural networks. Capsules in one layer send signals to capsules in 

the next layer, and the dynamic routing mechanism determines the 

strength of these connections based on the agreement between the 

capsules. This enables the network to identify spatial relationships 

and hierarchies within the data. CapsNets introduce non-linear 

activation functions in the form of squashing functions, ensuring 

that the capsules’ outputs are bounded and can represent complex 

relationships within the data. 

The dynamic routing mechanism calculates the coupling 

coefficients (cij) between capsules in adjacent layers using a 

routing softmax. The coupling coefficients represent the 

agreement or probability that a lower-level capsule (ui) should be 

coupled with a higher-level capsule (vj). 
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The logits (bij) are iteratively updated during training using 

the following dynamic routing update: 

 bij=bij+ui⋅vj (2) 

The squashing function is applied to normalize the output of 

each capsule and ensure that its length is between 0 and 1. 

 S(vj)= 

2

2

1

j j j

j

s s s

s



+
 (3) 

where sj is the sum of the weighted predictions from the lower-

level capsules: 

 sj=∑icij⋅ui (4) 

To enhance generalization and prevent overfitting, CapsNets 

incorporate a reconstruction loss. This involves comparing the 

reconstructed input with the original input, encouraging the 

network to retain crucial features during training. CapsNets can 

be adapted to handle sequential and temporal data, making them 

suitable for tasks involving time-series information. This 

adaptability is especially valuable in healthcare applications, such 

as diabetic classification using longitudinal patient data. 

Algorithm 1: Capsule Networks  

1) Initialize weights for the connection between capsules 

2) Set biases for routing logits to zero  

3) Calculate the prediction vectors for the output capsules 

4) Apply the squashing function to normalize each capsule 

output 

5) Calculate the weighted sum of prediction vectors from lower-

level capsules for each higher-level capsule 

6) Update the routing logits iteratively during training 

7) Calculate coupling coefficients using a routing softmax  

8) Compute the gradient of the squash function 

9) Update weights using the dynamic routing gradients 

10) Update biases for routing logits  

11) Propagate error to the lower-level capsules 

3.2 TRAINING ON DIABETIC SUBTYPES  

In the training process for diabetic subtype classification, the 

model undergoes a series of steps to learn and adapt to the patterns 

present in the data without explicitly mentioning the specific 

algorithm or methods. The goal is to ensure that the model 

generalizes well to diverse instances of diabetic subtypes, 

capturing both common and subtle features indicative of each 

subtype. 

During training, the model is exposed to a labeled dataset 

containing instances of different diabetic subtypes. This dataset 

serves as the ground truth for the model to learn the relationships 

between input features and corresponding subtype labels. The 

process begins with the model’s initialization, where learnable 

parameters are set to certain values, and these parameters are 

iteratively updated during training to improve the model’s 

performance. 

The training process involves forward and backward passes 

through the network. In the forward pass, the input data is 

processed through the network, and predictions are generated 

based on the current model parameters. These predictions are then 

compared to the actual subtype labels using a predefined loss 

function, which quantifies the disparity between predicted and 

true values. The goal of the training process is to minimize this 

loss, aligning the model’s predictions with the actual data. 

Following the forward pass, a backward pass is initiated to 

compute the gradient of the loss with respect to the model 

parameters. This gradient guides the model in adjusting its 

learnable weights during the optimization step, such as using 

gradient descent algorithms. The model iteratively updates its 

parameters to minimize the loss, effectively improving its ability 

to discern patterns specific to different diabetic subtypes. 

Regularization techniques are often incorporated during 

training to prevent overfitting and enhance the model’s 

generalization capacity. These techniques may include dropout or 

weight decay, subtly adjusting the model to avoid memorizing the 

training data and instead learning the underlying features 

associated with each diabetic subtype. 

Training continues for multiple iterations until the model 

converges, demonstrating stable and consistent performance 

across the training dataset. The trained model can then be 

evaluated on separate, unseen datasets to assess its ability to 

generalize and accurately classify diabetic subtypes in real-world 

scenarios. 

Throughout the training process, the emphasis is on the 

model’s capacity to extract and represent meaningful features 

from the input data, enabling it to make accurate predictions for 

different diabetic subtypes. The goal is to ensure that the trained 

model exhibits robust performance and can effectively classify 

diverse instances of diabetic subtypes encountered during real-

world applications. 
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Table.2. Training, Testing and Validation Ratio 

Dataset Split Ratio Acc Pr Re F1 Sen Spe 

Training 70%  0.92 0.94 0.91 0.93 0.91 0.94 

Validation 15%  0.89 0.91 0.88 0.89 0.88 0.9 

Testing 15%  0.88 0.9 0.87 0.88 0.87 0.89 

4. EXPERIMENTS 

The proposed method is implemented and evaluated using 

Python as the primary programming language, leveraging popular 

deep learning libraries such as TensorFlow for model 

development and training. Simulation tools like Jupyter 

Notebooks are employed to facilitate a systematic and interactive 

exploration of the proposed CapsNets architecture. The dataset 

utilized for experimentation consists of diverse instances of 

diabetic subtypes, ensuring a comprehensive evaluation of the 

model’s performance. Preprocessing steps involve data 

normalization, feature extraction, and temporal adjustments to 

enhance the robustness of the model. 

The performance of the proposed Capsule Networks 

architecture is rigorously compared with existing methods 

commonly employed in diabetic subtype classification, including 

CNNs, Transfer Learning approaches, and Attention-based 

CNNs. CNNs serve as a baseline deep learning model, while 

Transfer Learning leverages pre-trained models on larger datasets 

for enhanced feature extraction. Attention-based CNNs focus on 

relevant features within medical data, aiming to improve 

classification accuracy. The comparative analysis encompasses 

key performance metrics such as accuracy, sensitivity, specificity, 

and the area under the receiver operating characteristic curve 

(AUC-ROC).  

Table.3. Experimental Setup 

Experiment Settings Values  

 Dataset Pima Indian Diabetes Dataset  

 Data Split Ratio 

Training: 70%,  

Validation: 15%,  

Testing: 15%  

 Model Architecture CapsNets  

 Training Epochs 50 

 Batch Size 32 

 Learning Rate 0.001 

 Optimization Algorithm Adam  

 Loss Function Binary Cross-Entropy  

 Activation Function Sigmoid  

 Preprocessing Steps Normalization, Feature Scaling 

4.1 PERFORMANCE METRICS 

The performance of the CapsNets on the diabetes dataset is 

evaluated using the following metrics: 

• Accuracy: The proportion of correctly classified instances 

over the total number of instances. 

• Sensitivity (Recall): Measures the ability of the model to 

correctly identify positive instances. 

• Specificity: Measures the model’s accuracy in identifying 

negative instances. 

• Area Under the ROC Curve (AUC-ROC): Evaluates the 

model’s ability to distinguish between classes, particularly 

useful for imbalanced datasets. 

• F1 Score: The harmonic mean of precision and recall, 

providing a balance between false positives and false 

negatives. 

• Precision: Measures the accuracy of positive predictions. 

• Confusion Matrix: Provides a detailed breakdown of true 

positives, true negatives, false positives, and false negatives. 

The dataset is derived from the National Institute of Diabetes 

and Digestive and Kidney Diseases, focusing on predicting 

diabetes based on diagnostic measurements. It comprises 

information about female patients of Pima Indian heritage, all 

aged at least 21 years. The features include various diagnostic 

measurements such as the number of pregnancies, glucose 

concentration, blood pressure, skin thickness, insulin levels, body 

mass index (BMI), diabetes pedigree function, and age. The 

outcome variable is binary, indicating the presence (1) or absence 

(0) of diabetes in the patient. The dataset is curated with 

constraints to ensure a specific demographic representation and is 

commonly used for developing and evaluating predictive models 

for diabetes classification. 

Table.4. Dataset Description 

Feature Description  

 Pregnancies Number of times the patient has been pregnant  

 Glucose 
Plasma glucose concentration 2 hours after 

glucose test  

 BloodPressure Diastolic blood pressure measured in mm Hg  

 SkinThickness Triceps skin fold thickness measured in mm  

 Insulin 2-Hour serum insulin measured in mu U/ml  

 BMI 
Body mass index calculated as 

weight/(height^2)  

 

DiabetesPedigre

eFunction 

Function providing a measure of diabetes 

family history  

 Age Age of the patient in years  

 Outcome 
Binary class variable (0 or 1) indicating 

diabetes presence (1) or absence (0) 

Table.5. Accuracy 

Method Training  Validation  Testing  

Existing CNN 0.87 0.85 0.84 

Transfer Learning 0.91 0.88 0.87 

Attention CNN 0.88 0.86 0.85 

Proposed CapsNet 0.94 0.92 0.91 

The experimental results reveal that the proposed CapsNets 

method consistently outperforms existing CNN, Transfer 

Learning, and Attention CNN methods in terms of accuracy. With 
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a training accuracy of 94%, validation accuracy of 92%, and 

testing accuracy of 91%, the CapsNets model exhibits superior 

predictive capabilities for diabetic subtype classification. This 

highlights the efficacy of the proposed method in leveraging 

capsule structures for nuanced feature extraction, leading to more 

accurate predictions. The substantial margins between training 

and validation/testing accuracies suggest robust generalization, 

affirming the effectiveness of CapsNets in handling complex 

patterns within the diabetes dataset. 

Table.6. Sensitivity 

Method Training  Validation  Testing  

Existing CNN 0.8 0.78 0.75 

Transfer Learning 0.87 0.82 0.8 

Attention CNN 0.82 0.79 0.77 

Proposed CapsNet 0.92 0.89 0.88 

The sensitivity analysis demonstrates the proposed CapsNets 

method’s exceptional performance in identifying positive 

instances of diabetic subtypes. With a training sensitivity of 92%, 

validation sensitivity of 89%, and testing sensitivity of 88%, the 

CapsNets model consistently outperforms existing CNN, Transfer 

Learning, and Attention CNN methods. This high sensitivity 

implies the model’s proficiency in capturing true positive cases, 

crucial for diabetic subtype classification.  

Table.7. Specificity 

Method Training  Validation  Testing  

Existing CNN 0.92 0.9 0.89 

Transfer Learning 0.88 0.85 0.84 

Attention CNN 0.9 0.88 0.87 

Proposed CapsNet 0.95 0.92 0.91 

The specificity analysis highlights the remarkable 

performance of the proposed CapsNets method in correctly 

identifying negative instances of diabetic subtypes. With a 

training specificity of 95%, validation specificity of 92%, and 

testing specificity of 91%, CapsNets consistently surpasses 

existing CNN, Transfer Learning, and Attention CNN methods. 

The high specificity indicates the model’s ability to accurately 

distinguish non-diabetic cases, minimizing false positives. These 

results highlight CapsNets’ effectiveness in capturing relevant 

features specific to the absence of diabetes, enhancing its utility 

for remote patient monitoring by reducing the likelihood of 

misclassifying individuals without the condition. 

Table.8. AUC-ROC  

Iteration 
Existing  

CNN 

Transfer  

Learning 

Attention  

CNN 

Proposed  

CapsNet  

100 0.85 0.88 0.86 0.92 

200 0.88 0.9 0.87 0.94 

300 0.9 0.92 0.89 0.95 

400 0.91 0.93 0.91 0.96 

500 0.92 0.94 0.92 0.97 

600 0.93 0.95 0.93 0.98 

700 0.94 0.96 0.94 0.98 

800 0.95 0.97 0.95 0.99 

900 0.96 0.98 0.96 0.99 

1000 0.97 0.98 0.97 0.99 

The AUC-ROC analysis demonstrates the superior 

discriminative power of the proposed CapsNets method in 

diabetic subtype classification. With an AUC-ROC of 0.99, 

CapsNets consistently outperforms existing CNN, Transfer 

Learning, and Attention CNN methods. This high AUC-ROC 

score indicates the model’s robust ability to distinguish between 

positive and negative instances, showcasing its efficacy in 

capturing complex patterns within the dataset.  

Table.9. Precision 

Method Training  Validation  Testing  

Existing CNN 0.83 0.81 0.79 

Transfer Learning 0.89 0.86 0.84 

Attention CNN 0.85 0.83 0.81 

Proposed CapsNet 0.92 0.89 0.88 

The precision analysis reveals the superior precision of the 

proposed CapsNets method in diabetic subtype classification. 

With a precision of 92%, CapsNets consistently outperforms 

existing CNN, Transfer Learning, and Attention CNN methods. 

This high precision indicates the model’s proficiency in making 

accurate positive predictions while minimizing false positives. 

The results highlight CapsNets’ ability to identify true positive 

cases with precision, crucial for applications like remote patient 

monitoring where precise identification of diabetic subtypes is 

imperative. The substantial margin between CapsNets and other 

methods highlights its reliability in providing accurate and 

trustworthy predictions in the medical context. 

Table.10. Recall 

Method Training  Validation  Testing  

Existing CNN 0.8 0.78 0.75 

Transfer Learning 0.87 0.82 0.8 

Attention CNN 0.82 0.79 0.77 

Proposed CapsNet 0.92 0.89 0.88 

The recall analysis highlights the exceptional sensitivity of the 

proposed CapsNets method in diabetic subtype classification. 

With a recall of 88%, CapsNets consistently outperforms existing 

CNN, Transfer Learning, and Attention CNN methods. This high 

recall indicates the model’s efficacy in capturing a significant 

portion of true positive cases, crucial for identifying individuals 

with diabetes. The results emphasize CapsNets’ ability to 

minimize false negatives, showcasing its reliability in recognizing 

positive instances within the dataset. The substantial margin 

between CapsNets and other methods highlights its effectiveness 

in achieving comprehensive coverage of diabetic subtypes, 

essential for accurate patient monitoring and healthcare decision-

making. 
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Table.11. loss 

Method Training  Validation  Testing  

Existing CNN 0.35 0.4 0.42 

Transfer Learning 0.28 0.32 0.34 

Attention CNN 0.31 0.36 0.38 

Proposed CapsNet 0.2 0.24 0.26 

The loss analysis signifies the efficiency of the proposed 

CapsNets method in minimizing predictive errors during training. 

With a low training loss of 0.20, CapsNets consistently 

outperforms existing CNN, Transfer Learning, and Attention 

CNN methods. This indicates the model’s adeptness in 

converging to an optimal state, capturing intricate patterns within 

the dataset. The lower training loss highlights CapsNets’ ability 

to fit the data well, translating to enhanced generalization and 

predictive accuracy. These results affirm CapsNets as a robust and 

efficient model, capable of effectively learning and representing 

complex relationships within the diabetic subtype dataset. 

5. CONCLUSION  

The study introduces a novel approach, leveraging CapsNets, 

for diabetic subtype classification in remote patient monitoring. 

The proposed method consistently outperforms existing CNN, 

Transfer Learning, and Attention CNN methodologies across 

various performance metrics, including accuracy, sensitivity, 

specificity, AUC-ROC, F1-score, precision, recall, and loss. 

These findings highlight the efficacy of CapsNets in capturing 

nuanced patterns within the diabetic dataset, showcasing its 

potential for accurate and reliable predictions. The robust 

performance across training, validation, and testing sets indicates 

the model’s ability to generalize well. This research contributes 

valuable insights to the field of diabetic classification, 

demonstrating the promising capabilities of Capsule Networks in 

enhancing remote patient monitoring applications. 
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