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Abstract 

In India, agriculture represents the primary occupation of more than 

60% of the population. In terms of GDP, economic growth, traditional 

aspects, and social aspects, agriculture is essential for the country's 

development. The Indian farmers experienced numerous issues that 

have an impact on their way of life because the expansion in the 

agronomy business has not been as expected during the past two 

decades. Price fluctuation is one of the major issues faced by farmers, 

and as a result, they cannot get a reasonable price for their commodity. 

Also, it is very problematic to decide today without knowing the future 

price. So, this paper focused on finding a solution to the uncertainty 

problem in price faced by farmers that helps them take appropriate 

decisions during the farming process. The paper mainly concerns 

predictive data analytics using the ARIMA model, which predicts the 

price of areca nut products for the next 4 years using the past ten-year 

price dataset. The ARIMA model is a time series approach and a very 

appropriate framework for predicting future prices compared to other 

models. This paper includes a step-by-step procedure for the ARIMA 

techniques for forecasting price of agriculture commodity, and the 

outcomes are represented in the form of tables and graphical 

representations. 
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1. INTRODUCTION 

In India, the agricultural industry is anticipated to contribute 

more than 15% of GDP in 2023. Over 60% of the people in India 

depends on agriculture, making it a primarily agricultural nation. 

The agricultural sector, which lags the other sectors in every way, 

has made relatively little progress in terms of technological 

improvement. The exponential rise in global population drives a 

need for agricultural and food safety [1]. The world's demand for 

food will not be satisfied by the present traditional farming 

practices. Currently, there is a need for the agricultural industry to 

integrate new emerging technologies that will transform 

traditional agriculture into smart agriculture. Because it 

incorporates prediction and recommendation systems, data 

analytics is crucial in the agriculture sector [2]. IT agriculture, 

often referred to as smart agriculture, encompasses the utilization 

of technology and networks in the agricultural sector. This 

advanced approach, known as the smart agriculture system, 

integrates sensor expertise, automated control, digital network 

communication, data storage, and data analysis to provide 

effective solutions for various farming tasks [3]. Many 

technologies help to achieve a smart agricultural system in which 

data analytics plays a significant role, as discussed in the paper. 

The price prediction system needs a price dataset spanning more 

than ten years. Due to the nature of the dataset, employing a time 

series data analytics approach is not only suitable but also highly 

recommended. The Auto-Regressive Integrated Moving Average 

(ARIMA) model, a technique for analysing time series data, is 

utilized for the purpose of forecasting the price of areca nuts 

within the Puttur Taluk of Karnataka State’s Dakshin Kannada 

district. The ARIMA model is a very suitable model to process 

time series datasets [4]. This paper demonstrates how the ARIMA 

model was developed for the price dataset. The research uses data 

analysis tools and packages to attain and compare the 

consequences from the proposed methods using the R 

programming language. The study uses different performance 

metrics and graphs to analyze the results. Simulation analysis is 

conducted on seven distinct categories of price data, including the 

minimum, maximum, and modal prices of the new variety of 

areca nut dataset. A detailed and comparative analysis is 

performed between observed values and predicted values for 

minimum, maximum, and modal prices for areca nuts of the new 

variety. 

1.1 OBJECTIVES 

• To offer a price-uncertainty solution that enables 

stakeholders to make the right choices. 

• Predicting the minimum, maximum, and modal prices for 

areca nuts using the time series model known as the ARIMA 

model. 

• To compare actual and predicted prices, which helps to 

interpret the forecasted result. 

2. METHODOLOGY AND MATERIALS USED 

The daily minimum price, maximum price, and modal price 

data are gathered from 2010 to 2022; the dataset’s structure is 

shown in Table.1. The dataset was received from the government 

website under the Open Government Data (OGD) platform [5]. 

Table.1. Structure of the areca nut price dataset 

Attributes 
Data  

type 
Description 

State_Name Text Name of the state 

District_Name Text Name of the district. 

Market Text Market_Name within the district. 

Commodity string Name of the agricultural product 

Variety string Type of commodity. 

Arrival_Date string Price date in dd/mm/yyyy format. 

Min_Price double The minimum price of the commodity. 

Max_Price double Maximum price of the commodity. 

Modal_Price double The average price of the commodity. 
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Class String 
Very High, Very Low, High, Medium, 

Low 

According to Table.1, the pricing dataset consists of nine 

parameters, five of which are categorical and four of which are 

numerical. The dataset only includes daily areca nut prices for 

Puttur Taluk in Dakshin Kannada District in the State of 

Karnataka [6]. There are five different kinds of areca nuts 

available, but this research emphases on type called new variety. 

In order to create an ARIMA model for forecasting, we, therefore, 

gather a dataset of a new variety of areca nuts. 

When an autonomous variable in a linear regression model or 

multilinear regression model cannot be measured, observed, or 

has insufficient frequency, the recommendation is to opt for the 

univariate time sequence model, or ARIMA approach, which uses 

a systematic development process to forecast the time sequence 

data [7]. The ARIMA appraoch is a highly suitable, accurate, and 

popular method for forecasting time sequence data. The proposed 

research explores various approaches for predicting prices. As 

suggested by the name, it uses three different techniques: moving 

average, integration (differencing), and autoregression. Three 

parameters—p, d, and q—will be used in this component model. 

In the model, the moving average parameter (q) signifies the 

regression error, while the integrated parameter (d) indicates time 

series differentiation. The autoregressive parameter (p) specifies 

that the variable being modeled is regressed against its own 

lagged values. Before processing non-stationary data, the ARIMA 

Model converts it to stationary data. The ARIMA approach is 

widely recommended to predict linear time sequence data [8]. The 

below diagram defines the flowchart of a price prediction system 

using the ARIMA model. 

 

As depicted in Fig.1, the pricing dataset, which was 

downloaded from the Open Government Data (OGD) website [6], 

contains 50,000 records of the Puttur taluk’s daily areca nut price. 

The dataset has mislaid values that are filled using the linear 

regression method during the data pre-processing stage. Several 

data types are included in the database, all of which need to be 

further processed through data cleansing and data type validation 

before being made accessible for processing and analysis. The 

stationarity is checked in the following stage using the augmented 

Mickey Fuller test [9]. In this proposition trial, the null 

proposition considers the series as non-stationary, while the 

alternate hypothesis assumes the sequence is stationary. For 

assessing stationarity, the autocorrelation function (ACF) and 

Partial Autocorrelation Function (PACF) plots of the original 

series are employed. 

Original series must be differentiated if they are not stationary 

in direction to make them stationary. Once the series is stationary, 

use the ARIMA model method in the following stage. The Fig.2 

depicts the ARIMA model procedure. 

The Fig.2 illustrates the three processes of the ARIMA 

methodology, which include identification, estimation, and 

diagnostic testing. To determine the p, d, and q values for the 

ARIMA approach is a stimulating task. The ACF and PACF 

correlograms of different series are employed to recognize the AR 

and MA process terms. It is recommended to explore alternative 

models, which are crucial in constructing the ARIMA model. 

After model formulation, all potential models are executed to 

determine important factors, change (instability), record-

probability, AIC, BIC, and RMSE values. The resulting statistical 

values are organized in a table to guide the selection of the most 

suitable model. Additionally, deposits of the chosen ARIMA 

approach are estimated. Furthermore, the ACF and PACF 

correlograms of these residuals are plotted to perform a diagnostic 

check on the selected model [10]. 

Fig.1. Flow chart of the price prediction system 

 

Fig.2. ARIMA model process 

3. STATIONARITY AND DIFFERENCING 

A time series with stationary characteristics remains 

unaffected by the time period in which it was observed. Time 

series displaying seasonality and patterns, however, are not 

considered stationary. Conversely, white noise within a series is 

stationary, maintaining a constant appearance across different 

time points. Additionally, a series exhibiting cyclic behaviour 

without trend or seasonality is also categorized as stationary. 

To change from one state to another state, differencing is 

employed to stabilize the series’ mean by eliminating trends and 

seasonality. The data after differencing represents the variance of 
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successive observations in the main series. This can be 

mathematically expressed as:  

 
tyx  = yxt-yxt-1 (1) 

As the data after difference only consists of the t-1 value, 

calculating the difference is not feasible. 

 
1yx = yx1 - yx1-1 (2) 

When the data after difference is white noise, then it can be 

written as: 

 yxt - yxt-1 = εt (3) 

Here εt represents the white noise component, 

Reordering this equation results in a random walk prototypical 

for differencing: 

 yxt = yxt-1+ εt (4) 

This model is mainly used for non-stationary data series. It 

allows to perform integer mean, in which case... 

 yxt – yxt-1 = c + εt (5) 

 yxt = c + yxt-1 + εt (6) 

In this context, the parameter “c” represents the modal change 

of successive data values. If “c” is non negative, it signifies an 

increase in the value of yt, resulting in an upward drift of yxt. 

Conversely, if “c” is negative, it implies a downward drift of yxt. 

[11]. 

3.1 SECOND ORDER DIFFERENCING 

Second-order differencing refers to taking the difference 

between consecutive elements of a time series twice. It is a 

process used to remove trends and seasonality in a more 

aggressive manner than first-order differencing. It involves 

subtracting the previous value from the current one, and then 

deducting the previous value of the already differenced series 

from current differenced value. This can be useful when the data 

still exhibits some form of trend or seasonality after the first-order 

differencing. Second-order differencing can help to form the 

stationary in accurate, which is often required for certain 

statistical analyses and modelling techniques. It can be denoted 

as: 

 1tt t
yx yx yx

−
= −  (7) 

 1t t t
yx yx yx

−
= −  (8) 

 = (yxt - yxt-1) (yxt-1-yxt-2)  (9) 

 = yxt-2yxt-1+2yxt-2 (10) 

In this scenario, t
yx consists of t-2 values. Therefore, it is 

recommended to apply differencing twice (second-order 

differencing) without necessarily going beyond this level [12]. 

3.2 SEASONAL DIFFERENCING 

A seasonal difference is characterized by the disparity in a 

current value and a prior value within the same seasonal period. 

This distinction is articulated as: 

 
tyx = yxt - yxt-m (11) 

Here, “m” represents the quantity of intervals, also referred to 

as lag-m changes, signifying the act of extracting observations at 

a delay of m intervals. 

If the seasonal data has the characteristics of white noise, then 

the real series equation can be represented as: 

 yxt = yxt-m + εt (12) 

Predictions derived using this structure are equivalent to the 

most recent values from the corresponding season [13]. 

If 
tyx  = yxt-yxt-m represents a seasonally changing values, then 

the second differenced values is obtained by taking the difference 

between consecutive elements of the
ty series, which can be 

expressed as: 

 1t t t
yx yx yx

−
= −  

 = (yxt-yxt-m) - (yxt-m - yxt-m-1) 

 = yxt - yxt-1 - yxt-m + yxt-m-1 (13) 

It makes no difference in the result if we apply both values, 

but it is strongly recommended to perform seasonal difference and 

then first difference. 

3.3 BACKSHIFT (LAG) NOTATION 

When working with time series lags, the backshift operator B 

or lag operator L is a notation. It is indicated as: 

 Byxt = yxt-1 (14) 

When this operator is applied to a time series of length “yx,” 

the data is shifted back by one period [12]. Like this, applying B 

twice to a time series yt causes the data to be shifted back to 2 

periods. It is indicated as: 

 B(Byxt) = B2yxt = yxt-2 (15) 

This operator is an appropriate tool for explaining the concept 

change from one state to another state. The first difference can be 

formulated below notation: 

 tyx = yxt-yxt-1 = yxt-Byxt = (1-B) yxt (16) 

In this context, the first difference is symbolically expressed 

as 1-B, Same way, the second difference can be expressed as: 

 t
yx = yxt-2yxt +yxt-2 = (1-2B+B2) yxt = (1-B)2yxt (17) 

In a universal context, the nth-order equation can be expressed 

as: (1-B)nyxt 

3.4 AUTOREGRESSIVE MODEL 

An autoregressive model, often abbreviated as AR model, is a 

approach for data series with time component that predicts a 

future value based on its own past values. This approach, the 

current value of a object is assumed to be a direct mixture of its 

previous values, with some added noise.  

Mathematically, an autoregressive model of order “p” (AR(p)) 

can be expressed as: 

 yxt = c + Ὼ1 * yxt-1 + Ὼ2 * yxt-2 +...+ Ὼp * yxt-p+εt (18) 

where: 

yxt is the present value of series at time t. 

c is a persistent object. 

Ὼ1, Ὼ2, ..., Ὼp are the autoregressive factors. 
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yxt-1, yxt-2, ..., yxt-p are the past values of the time series up to order 

“p”. 

εt represents the white noise. 

The model order “p” determines how many past values are 

considered for prediction. The coefficients ϕ1, ϕ2, ..., ϕp are 

estimated from the historical data. The larger the order “p”, the 

more complex the model becomes, which might capture intricate 

temporal patterns but also makes it more prone to overfitting. 

Autoregressive models are useful for capturing trends and 

dependencies in time series data, particularly when past values 

significantly influence future values. 

3.5 MOVING AVERAGE MODEL 

A Moving Average (MA) model the forecasting model of 

series data with time component that predicts a future value by 

means of direct mixture of previous errors (also known as the 

residual errors) and a white noise term. In contrast with the 

autoregressive model, which considers previous values of the 

variable being forecasted, the MA approach uses past forecast 

errors to make predictions. 

Mathematically, a MA approach of order “q” (MA(q)) can be 

represented as: 

 yxt = ℧ + εt + Ὼ1 * εt-1 + Ὼ2 * εt-2 + ... + Ὼq * εt-q (19) 

where: 

yxt is the present value of series at time t. 

℧ is the series mean value. 

εt represents the white noise. 

Ὼ1, Ὼ2, ..., Ὼq are the parameters representing the weights of the 

past forecast errors up to order “q”. 

The model order “q” determines how many past forecast 

errors are considered for prediction. The parameters Ὼ1, Ὼ2,..., 

Ὼq are estimated from the historical data. The larger the order “q”, 

the more complex the model becomes, capturing dependencies in 

the error terms. 

MA models are useful for removing random noise from time 

series data and can be effective when there is a correlation 

between forecast errors. Combining MA and autoregressive (AR) 

components leads to the Autoregressive Moving Average 

(ARMA) model, which is more flexible and capable of handling 

a wider range of time series patterns. [13]. 

3.6 NON-SEASONAL ARIMA MODEL 

A Non-Seasonal ARIMA model is a technique to forecast data 

series with time component that combines autoregressive (AR), 

differencing (I), and moving average (MA) components to model 

and predict non-seasonal data series with time component. 

The ARIMA approach is expressed as ARIMA (p, d, q), 

where: 

“p” represents the order of the AR component, which identifies 

the link between current value of the series with old value. 

“d” represents the order of order of change between current and 

old value, which helps in making the time series stationary by 

removing trends. 

 

“q” represents the direction of MA component, which identifies 

the link between present and old forecasting errors. 

A Non-Seasonal ARIMA model involves: 

• AR component: Identifies the direct link between the current 

value and past values up to order “p”. 

• Differencing (I) factor: Expresses the rate of change in data 

series with time component to make stationary one, with the 

order of differencing denoted by “d”. 

• MA component: Explores the link between current and past 

errors during the forecasting of data series with time 

component up to order “q”. 

By combining these components, a Non-Seasonal ARIMA 

model can effectively capture and predict various non-seasonal 

patterns present in the data series with time component. It is a 

versatile and massy used approach in time series analysis and 

forecasting, often applied to economic, financial, and other data 

exhibiting non-seasonal trends and behaviors. 

The mathematical representation of a Non-Seasonal ARIMA 

approach is expressed as: 

 t
yx = z + π1 * 1tyx −

+ π2 * 2tyx −
+ ...+πp * 

tyx t- (p) - Ǿ1  

 * εt’- 1 - Ǿ12 * εt’-2 - ... - Ǿ1q * εt’-q (20) 

where: 

t
yx is the second-order differenced series (after applying 

differencing “d” times). 

z is a constant term. 

π1, π2, ..., πp are the autoregressive coefficients, representing the 

relationship with past values up to order “p”. 

1tyx −
,

2tyx −
,…, ( )t p

yx
−

are the past values of the second-order 

differenced series up to order “p”. 

Ǿ11, Ǿ12, ..., Ǿ1q are the moving average coefficients, representing 

the relationship with past forecast errors up to order “q”. 

εt’-1, εt’-2, ..., εt’-q are the past forecast errors up to order “q”. 

This equation represents how the current value of the second-

order differenced series ( )ty is modeled based on its own past 

values and past forecast errors. The goal of fitting an ARIMA 

model is to estimate the values of the parameters ϕ1, ϕ2, ..., ϕp, θ1, 

θ2, ..., θq, and the constant c from historical data in order to make 

accurate predictions for future values of the time series [14]. 

4. IMPLEMENTATION AND RESULT 

ANALYSIS 

The modal price of areca nuts of the new variety contains data 

from January 2014 to December 2022. In the process of selecting 

a suitable model, it is imperative to initially assess the stationarity 

of the dataset containing modal prices. The Fig.3 below shows the 

year-wise time plot of the modal price data series. 
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Fig.3. Time plot for minimum price data of type New Variety 

The modal price data plot for the new variety indicates a clear 

rising and declining trend from 2014 to 2022. So, this series has a 

trend component and is non-stationary series. Furthermore, 

utilizing the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) of the raw data is 

recommended to examine its stationarity [15]. The Fig.4 below 

shows the ACF and PACF of the modal price data for the new 

variety. 

 

(a) 

 

(b) 

Fig.4. ACF (a) and PACF (b) of modal price data of type new 

variety 

In the above figure, it is clearly indicated that ACF is gradually 

decreasing as the number lag increases, and one substantial spike 

that exceeds the standard error (SE) band shows the modal price 

data series of the new variety is not stationary [16]. It is a clear 

sign that we need to perform first differencing to convert the 

original series into stationary series [17]. Fig.5 illustrates the 

AutoCorrelation Function (ACF) and Partial AutoCorrelation 

Function (PACF) of the modal price data for the new variety, after 

the differencing process. 

 

(a) 

 

(b) 

Fig.5. ACF and PACF of modal price data of type new variety 

after differencing 

Based on the information derived from the AutoCorrelation 

Function (ACF) and Partial AutoCorrelation Function (PACF), 

the process of differencing the initial series aids in determining 

the order for the ARIMA model. In this scenario, the value of d is 

set to 2, signifying the need for the first difference to convert the 

original series into a stationary form [18]. When examining Fig.5, 

the ACF displays a diminishing trend at higher lags while 

presenting a noteworthy peak at lag 0. In relation to the PACF 

demonstrated in Fig.5, where the first lag of PACF is negative, 

the order for p is determined to be 0. Additionally, based on the 

declining pattern observed in the ACF, the order for q is 

determined to be 2 [19].  

To attain more conclusive results and enhance the model’s 

accuracy, various alternatives are taken into account. These 

alternatives encompass potential configurations such as ARIMA 

(0,0,0), ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,0,1), 

ARIMA (0,0,1), ARIMA (1,0,0), ARIMA (2,2,2), ARIMA 

(0,2,2), and ARIMA (2,1,2). This comprehensive exploration 

aims to refine the model selection process. 

The best ARIMA model can be selected for each areca nut’s 

daily minimum, maximum, and modal prices of both CCQA and 

the new verify type. Multiple performance criteria like Akaike 

Information Criteria (AIC), Root Mean Square Error (RMSE), 

Mean Absolute Errors (MAE), Mean Percent Forecast Error 

(MPFE), Bayesian Information Criteria (BIC), and log-likelihood 

are used for selecting the best model [20].  

To obtain more conclusive evidence and progress the 

exactness of the model, several alternatives to the ARIMA model 

are considered [21]. Based on the lowest AIC value, highest log-

likelihood, largest significant coefficient, and lowest RMSE 

value, we compared different alternative models and presented 

them in Table 3. 

Table.3. Comparison of alternative models with estimation 

criteria for modal price series of the type new variety 

Alternative models  

ssmodelsddmodels 

/Estimation Criteria 

AIC 
Log- 

likelihood 
RMSE 

ARIMA (0, 0, 0) 168.28 -82.14 6962.792 

ARIMA (1, 1, 0) 144.61 -70.3 5173.231 

ARIMA (1, 1, 1) 145.65 -69.82 4427.231 

ARIMA (1, 0, 1) 167.02 -79.51 4208.925 

ARIMA (0, 0, 1) 165.61 -79.81 4534.819 

ARIMA (1, 0, 0) 167.05 -80.52 5435.222 
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ARIMA (2, 2, 2) 126.83 -58.41 1994.187 

ARIMA (0, 2, 2) 125.79 -59.89 3521.459 

ARIMA (2, 1, 2) 149.63 -69.82 4441.165 

In above Table.3, it is very clear that the ARIMA (0, 2, 2) 

model beats all other models with the lowest AIC value, highest 

log-likelihood value, and lowest RMSE value. So, all the criteria 

are in favor of ARIMA (0, 2, 2). So, we take ARIMA (0, 2, 2) for 

the diagnostic check. In addition, based on the Ljung-Box test, we 

accepted the null hypothesis that the residuals are white noise 

[22]. Thus, it can be identified that the suitable model based on 

ACF and PACF is ARIMA (0, 2, 2). 

Once we have selected the suitable model for all types of data 

series, we proceed with the application of the model to generate 

the next 3 years’ forecasted values using the respective models. 

The forecasted outcomes for the modal prices of the new variety 

of areca nut are presented both in tabular format and through 

graphical representation. 

The year-wise predicted modal price of the areca nut of the 

new variety is calculated from 2016 to 2025. The first two years’ 

dataset is considered training data, and actual prediction is done 

after the year 2016. Below Table.4 represents the actual and 

predicted prices for the modal price of areca nuts of the new 

variety, and the forecast is done based on the ARIMA (0, 2, 2) 

model for the next 4 years. 

Table.4. Prediction of the areca nut modal price of the type new 

variety 

Year Actual Price Predicted Price 

2014 20000  

2015 20000  

2016 13500 16833 

2017 13500 15667 

2018 20500 18833 

2019 19500 19833 

2020 27250 25417 

2021 36250 32667 

2022 3554 36607 

2023  34832 

2024  35422 

2025  35498 

2026  36646 

 

Fig.6. Forecasted result of the modal price of the type new 

variety 

The Fig.6 shows the predicted areca nut modal price from 

2016 to 2026. The predicted modal price of areca nut for the years 

2023, 2024, 2025, and 2026 is represented graphically in Fig.6 

and shown in Table.4. 

The Fig.7 depicts the comparison of actual and predicted 

results of the modal price of areca nut for the new variety. 

 

Fig.7. Actual price and predicted price of the areca nut using the 

ARIMA model 

The Fig.7 depicted that from 2016 to 2022, the actual price 

and predicted price showed similar values for the ARIMA (0, 2, 

2). The predicted modal price for the years 2023, 2024, 2025, and 

2026 indicates that the future modal price of areca nut will 

increase slightly. 

5. CONCLUSION 

The agriculture sector is facing many issues that can be 

overcome by incorporating smart agricultural system. Data 

analytics theatres an important role in achieving a smart 

agricultural system. With the aid of a price prediction system, 

stakeholders in the areca nut product can make appropriate 

decisions that lead them to achieve profitability in business. The 

ARIMA model is a suitable model to achieve short-term 

prediction for time series datasets. This result will be accurate 

only in normal conditions, and sometimes price fluctuations will 

vary significantly under some external conditions. So, we can 

apply this model to predict the price of any commodity if a dataset 

is available. 
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