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Abstract 

With multiple methods to extract explanations from a black box model, 

it becomes significant to evaluate the correctness of these Explainable 

AI (XAI) techniques themselves. While there are many XAI evaluation 

methods that need manual intervention, in order to be objective, we use 

computable XAI evaluation methods to test the basic nature and sanity 

of an XAI technique.  We pick four basic axioms and three sanity tests 

from existing literature that the XAI techniques are expected to satisfy. 

Axioms like Feature Sensitivity, Implementation Invariance,  

Symmetry preservation and sanity tests like Model parameter 

randomization, Model-Outcome relationship, Input transformation 

invariance are used. After reviewing the axioms and sanity tests, we 

apply it on existing XAI techniques to check if they satisfy them or not. 

Thereafter, we evaluate our lattice based XAI technique with these 

axioms and sanity tests using a mathematical approach. This work 

proves these axioms and sanity tests to establish the correctness of 

explanations extracted from our Lattice based XAI technique. 
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1. INTRODUCTION 

Artificial Intelligence systems are quite popular and it is 

everyone’s dream to perform routine tasks using trained AI 

models. As AI continues to penetrate wider areas of tasks and is 

allowed to make autonomous decisions, justifying these decisions 

also becomes quite critical. Most often, a Machine Learning or a 

Deep Learning model is trained on a dataset and later deployed in 

production as the model improves in its accuracy. It is the 

property of the model to expose the function that is fit to the curve 

or not. Especially in Deep Learning, these functions are not 

explicitly available. This led to the growth of Explainable AI 

techniques that bring out different kinds of explanations. Some of 

them excel at global explanation of the model, while some bring 

out the best explanation around an instance [1]. There are a large 

number of techniques that are well tuned to images and produce 

heat maps as explanations [2-3], [20]. In our work, we propose a 

novel XAI technique using a Formal Concept Lattice [5]. This 

technique can generate global, local, similar and contrastive 

explanations and has been tested on tabular data and images [6]. 

It has also been compared to standard techniques to prove its 

credibility [7]. Lack of such explainability can put users away 

from adopting AI into their domain of work [8] and rather adopt 

standard white box models that may not suit all domains. In order 

to avoid such extreme opinions, it is necessary to encourage XAI 

techniques [9]. There is little doubt that XAI techniques will 

continue to rise in prominence and produce much needed work 

for the future [10]. 

As these XAI techniques continue to grow, it would be 

worthwhile to evaluate these techniques themselves. We need to 

evaluate whether the explanations are good, whether they satisfy 

the user and if it led to the improvement of trust in the model. 

There can be multiple ways an XAI technique can produce 

explanations in order to build trust in the model. It can evaluate if 

the model is performing its primary task or not. If it performs the 

primary task, it can bring out the mental model behind the model 

which can be compared by the user to his/her own mental model 

to understand how the model works. It can explain why a 

particular instance was mapped by the model to a specific 

outcome and why not other outcomes. It may answer questions on 

what happens if some of the features changed values or what 

change in feature values would force the model to change its 

decision. In effect, an XAI technique needs to have many aspects 

- understandability, sufficiently detailed, complete, correct, useful 

and trustworthy [11]. 

In order to measure these aspects, most often domain experts 

are needed to study these aspects and verify it. It needs time and 

resources to conduct these studies, analyze feedback forms and 

measure scales of these aspects. There are also computational 

methods to measure some of these aspects in XAI. Fidelity of an 

XAI technique measures the correctness of the technique in 

generating true explanations for model predictions [12]. One such 

method to measure fidelity is by comparative evaluation. It 

compares the XAI technique under question to an existing, well 

accepted, XAI technique that is already proven to do well. In [13], 

a set of empirical evaluations are designed to compare their 

technique’s consistency with an existing technique like LIME. 

Another example is [14], where it is compared with LIME and 

DeepLIFT [15]. Another method to measure fidelity is to compare 

the explanations against inherently interpretable models or white 

box models. LIME [1] itself compares its explanations to 

inherently interpretable models like linear or logistic regression. 

Specific to Deep Learning models on images and saliency based 

XAI techniques, Congruence and Annotation classification are 

two metrics to measure the correctness of an XAI technique. 

Congruence measures the proportion of model attention within 

expert annotated regions, while Annotation classification 

measures how much of the expert annotation the model pays 

attention to [16]. These are similar to precision and recall specific 

to images. Even in these two methods it is evident that a domain 

expert was involved in creating the annotation apriori 

There are also computational methods to measure the basic 

sanity of XAI techniques without involvement of a domain expert. 

In this work, we restrict ourselves to evaluating the XAI technique 

using these sanity tests and basic axioms. Section 2 introduces 

these tests and axioms. Section 3 reviews these metrics on existing 

XAI techniques. Section 4 introduces the formal concept lattice 

and our lattice based XAI technique. Section 5 proves the set of 

axioms and sanity tests for our lattice based XAI technique. 

Section 6 contains conclusions and future work. 

2. AXIOMS AND SANITY TESTS FOR XAI 

We consider three axioms and four sanity tests to evaluate an 

XAI technique: Feature Sensitivity-a axiom, Feature Sensitivity-
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b axiom, Implementation Invariance axiom,  Symmetry 

preserving axiom [17], Model parameter randomization 

sensitivity test, Input transformation invariance test and the 

Model-Outcome relationship sensitivity test [18]. 

• Feature Sensitivity-a: If two instances differ in one feature 

but have different predictions from a trained model, then the 

differing feature should be highlighted in the model 

explanation brought out from the XAI technique. 

•  Feature Sensitivity-b: If the trained model does not 

depend on some variable, then the explanation brought from 

the XAI technique should not highlight this variable. 

• Implementation Invariance: Two trained models are 

functionally equivalent if their outputs are equal for all 

inputs, despite having different implementations. A good 

XAI technique should provide identical explanations for two 

functionally equivalent networks. 

• Symmetry preserving: Two input variables are symmetric 

with respect to a function if swapping them does not change 

the function. An XAI technique is Symmetry preserving, if 

for all inputs that have identical values for symmetric 

variables, the symmetric variables receive identical 

attributions. 

• Model Parameter Randomization Sensitivity: Explanation of 

a model from an XAI technique is compared to the 

explanation from the copy of the model with randomly 

initialized parameters. A good XAI technique should be able 

to differ substantially in its explanation output for the two 

cases. 

• Model-Outcome Relationship Sensitivity: Explanation of a 

model from an XAI technique is compared to the 

explanation on the model with the same architecture but 

trained with the copy of the data set with permuted labels. A 

good XAI technique should depend on the relation between 

the instances and the labels. 

• Input transformation sensitivity: If a data instance is 

modified such that it does not affect the model outcome, 

explanations for the original and the modified instance must 

be equivalent. A good XAI technique must demonstrate such 

input transformation invariance. 

3. AXIOMS AND SANITY TEST EVALUATION 

FOR EXISTING XAI TECHNIQUES 

We review the techniques presented in [17] and [18] together 

with the results of the three axioms and four sanity tests as stated 

in the previous section to evaluate an XAI technique: Feature 

Sensitivity-a axiom, Feature Sensitivity-b axiom, Implementation 

Invariance axiom, Symmetry preservation axiom, Model 

Parameter Randomization sensitivity test, Model-Outcome 

Relationship sensitivity test and Input transformation sensitivity 

test. 

For a deep network that classifies a given input, the gradient 

of the output with respect to each input for each class, captures 

the importance of each input feature for a specific output class. 

The product of this gradient and the input feature values is a good 

starting point as attribution of a feature towards a class. But [17] 

states that all gradient based methods break the sensitivity-a 

axiom and proves it with a simple one variable network. They 

break this axiom as the function flattens out despite having a 

change of value from the one at the baseline. Hence it leads 

gradients to focus on irrelevant features as captured in the fireboat 

picture and its gradients, as shown in Fig 1 from [17]. 

 

Fig.1. Fireboat picture and its gradients 

Deconvolutional Networks [19] visualize concepts learnt by 

neurons in higher layers of a convolutional neural network by 

inverting the data flow, moving from neuron activations in a 

specific layer back to the image. The resulting reconstructed 

image shows the part of the input image that is most responsible 

to activate this neuron. A schematic illustration from [19] of this 

technique is shown in Fig 2. 

 

Fig.2. Schematic representation of Deconvolution from [19] 

To examine a convolutional neural network, a 

deconvolutional network is attached to each of its layers providing 

a continuous path back to the image. All other activations in a 

layer are set to zero except the specific neuron and pass the feature 

maps as input to the deconvolutional layer. 

Guided Backpropagation [20] modifies deconvolutional 

networks to make image reconstructions more accurate. It 

combines the techniques from backpropagation and 

deconvolution to reduce the attribution signal to zero at a ReLU 

when the gradient is negative or if the input to ReLU at the time 

of forward pass was negative. This idea is represented in Fig.3, as 

presented in [20]. 
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Fig.3. Combined technique of Guided Backpropagation from 

[20] 

In effect, this combination stops negative gradients from 

flowing backwards, thereby not allowing those corresponding 

neurons to decrease the activation of the unit that is being 

visualized. 

But [17] states that Deconvolution and Backpropagation fail 

sensitivity-a axiom, since both these methods back propagate 

through a ReLU node only if it is turned on at the input, which 

makes it similar to gradients. Hence the attribution can be zero for 

features with zero gradient at the input even though there is a non-

zero gradient at the baseline. 

DeepLift [15] is another technique that uses backpropagation 

to calculate its attribute scores but uses difference with respect to 

a reference state rather than instantaneous gradients. Hence it 

circumvents the saturation problem that the prior two techniques 

fall into. This technique also gives separate consideration to 

positive and negative contributions at non-linear units, hence 

revealing dependencies that may be missed out by the other 

techniques. The choice of reference input is critical for gaining 

insightful results from this technique. In [6], we compare our 

lattice based XAI technique to DeepLift. 

Layer-wise relevance propagation [21] propagates the 

prediction backward in the network with a conservation property. 

Relevance scores at the given layer are used to calculate the 

relevance scores at the previous layer by using the extent to which 

the previous layer neuron contributed in activating the neuron in 

the given layer. A simple schematic diagram representing this 

idea is shown in Fig.4 from [21]. 

 

Fig.4. Layer wise relevance propagation from [21] 

Moving from layer to its previous layers, the relevance scores 

are scaled using the weights learned in the forward pass leading 

to noise reduction. 

But [17] states that both DeepLift and LRP fail the 

implementation invariance axiom. Both techniques replace 

instantaneous gradients by discrete gradients and still use 

backpropagation to compute attribution scores. Since the chain 

rule does not hold for discrete gradients, it is very much possible 

that there are multiple sets of values with which the same function 

can be achieved. If the network converges to one set instead of the 

other, it leads to different attribution scores for an equivalent 

network, thereby failing to satisfy implementation invariance. 

Integrated Gradients [17] is a technique that combines 

gradients with Layer wise relevance propagation or DeepLift 

without their weaknesses of loss of sensitivity and 

implementation variance. It computes the gradients at all the 

points along the straight line from the baseline to the input and 

accumulates them all. In other words it calculates the path integral 

of the gradients along the straight line path from the baseline to 

the input. This technique satisfies sensitivity and implementation 

invariance. It also provides another desirable property called 

completeness, where the attributions add up to the difference 

between the network output between the baseline and the input. 

Gradient-weighted class activation mapping (Grad-CAM) [2] 

is a technique that builds over class activation mapping without 

needing any architectural changes or the necessity for re-training. 

It enhances the class discriminative features compared to guided 

backpropagation. While Grad-CAM produces class 

discriminative low resolution feature maps, it is fused with point 

wise multiplication to produce Guided Grad-CAM that is both 

class discriminative and high resolution. In class activation 

mapping, the convolutional feature maps from the penultimate 

convolutional layer are global average pooled and linearly 

transformed to produce a score for each class. It computes the 

linear combination of the final feature maps using the learned 

weights of the final layer. But it needs architectural changes when 

there are multiple fully connected layers before the output layer. 

These are replaced by convolutional layers and the network is re-

trained. But in Grad-CAM, the weights are directly produced by 

computing a global average pool of the gradients of the class score 

function with respect to the feature maps of a convolutional layer. 

SmoothGrad [3] is another simple technique to visually 

sharpen gradient based heat maps. To an image of interest, it 

generates more samples by adding noise to the image. It then 

averages the heat maps for each of the sampled images. Such a 

technique of adding noise at training time has a de-noising effect 

on the heat maps. 

In [18], the Inception V3 architecture trained on the ImageNet 

dataset was used with random weights (model parameter 

randomization test). Random weights were applied independently 

to each layer and also in a cascading pattern, i.e.  applied from the 

beginning till the specific layer of the network. This modified 

network was used on different XAI techniques to test if they 

produced different explanations or not. The Fig 5 shows the 

results of this experiment with independent randomization and 

Fig 6 shows the results of this experiment with cascading 

randomization from [18]. 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2023, VOLUME: 14, ISSUE: 02 

3183 

 

Fig.5. XAI techniques on independently random weighted 

Inception V3 network from [18] 

 

Fig.6. XAI techniques on cascading random weighted Inception 

V3 network from [18] 

While most of the techniques pass this test on a bird image for 

independent randomization, it is clear that Guided 

backpropagation and Guided GradCAM pass the test only for the 

lower layers. It also shows that the gradient and GradCAM 

techniques are sensitive to both independent and cascading 

parameter randomization which is expected from a good XAI 

technique. Again, Guided backpropagation and Guided Grad-

CAM are insensitive to the cascading model parameter 

randomization and are sensitive only in the last column where all 

the weights of the network are completely randomized. While 

Integrated gradients shows some promise during independent 

randomization, it clearly reveals part of the bird during cascading 

weight randomization which is not expected from a good XAI 

technique. 

 

Fig.7. XAI techniques of randomly labeled MNIST dataset from 

[18] 

Another test result from [18] is the model-outcome 

relationship sensitivity, when the model is trained on a dataset 

with permuted labels. A model achieving high training accuracy 

on such a permuted label dataset can only memorize the labels 

instead of learning the structure. If such a model is asked to be 

explained by an XAI technique, it should not indicate the pattern 

or structure behind an artifact. If it does then it does not pass the 

model-outcome relationship sensitivity test. The Fig.7 from [18] 

shows the output from different XAI techniques on the MNIST 

dataset. 

Yet again, both Guided Backpropagation and Guided Grad-

CAM techniques reveal the structure of the digit as the reason 

behind model classification, thereby not passing the model-

outcome relationship sensitivity test. While gradient and its 

SmoothGrad variants show random pixels, Grad-CAM shows 

disconnected patches, convincingly passing the test. Integrated 

Gradients and its SmoothGrad variant also show change in the 

sign of the attributions, but yet reveal the structure. These two 

techniques cannot be considered to have passed the test 

convincingly. 

We summarize our review in Table.1 for the Feature 

Sensitivity-a axiom, Feature Sensitivity-b axiom, Implementation 

Invariance axiom, Symmetry preservation axiom, Model 

Parameter Randomization sensitivity test and Model-Outcome 

Relationship sensitivity test. 

Table.1. Summary of the review 

 I II III IV V VI 

Gradient X ✔ ✔ ✔ ✔ ✔ 

Guided Back 

Propagation 
✔ ✔ ✔ ✔ X X 

Deconvolution X ✔ ✔ ✔ - - 

GradCAM ✔ ✔ ✔ ✔ ✔ ✔ 

Guided GradCAM ✔ ✔ ✔ ✔ X X 

Integrated Gradients ✔ ✔ ✔ ✔ X X 

DeepLIFT ✔ ✔ X ✔ - - 

Layer wise  

Relevance Propagation 
✔ ✔ X ✔ - - 

The Table.1 makes it clear that mere visual inspection of the 

heatmaps does not prove its credibility. Though GradCAM 

satisfies all the axioms and passes the tests, it can produce only 

low resolution heatmaps. But its associated guided GradCAM 

technique, which can produce high resolution heatmaps, does not 

pass all the tests. 

3.1 XAI USING THE FORMAL CONCEPT 

LATTICE 

A context is a triple (G,M,I), where G is a set of objects, M is 

a set of attributes and I the relation between them. The notation 

gIm means that the object g has the attribute m. 

For a set A⊆G, define A/={m ϵ M | gIm ∀ g ϵ A} [A/ is the set 

of attributes common to all the objects in A] 

For a set B⊆M, define B/={g ϵ G | gIm ∀ m ϵ B} [B/ is the set 

of objects which have all attributes in B] 

A concept of the context (G,M.I) is a pair (A,B) such that, 

A⊆G, B⊆M, A/=B and B/=A. A is called the extent and B the intent 

of the concept (A,B). 

If (A1,B1) and (A2,B2) are concepts of a context (G,M,I), then 

(A1,B1) is a subconcept of (A2,B2) (or (A1,B1) is a superconcept 
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of (A2,B2)), denoted by (A1,B1) ≤ (A2,B2) (or (A2,B2) ≤ (A1,B1)) 

if A1 ⊆ A2, equivalently B2 ⊆ B1 (or A2 ⊆ A1, equivalently B1 

⊆ B2). The relation ≤ is called the hierarchical order of the 

concepts. The ordered set of concepts is called the concept lattice 

of the context (G,M,I). Concept lattices are represented using a 

hasse line diagram [4]. The Table.2 contains a simple formal 

context and Fig 8, its concept lattice. 

Table.2. Formal context of a few species with their attributes 

(columns split into two parts) 

 

Breathes  

in water 

(a) 

Can  

fly 

(b) 

Has  

beak 

(c) 

Has  

hands 

(d) 

Has  

skeleton 

(e) 

Bat  X   X 

Eagle  X X  X 

Monkey    X X 

Parrot Fish X  X  X 

Penguin   X  X 

Shark X    X 

Lantern Fish X    X 

 

 Has  

wings 

(f) 

Lives  

in water 

(g) 

Is  

viviparous 

(h) 

Produces  

light 

(i) 

Bat X  X  

Eagle X    

Monkey   X  

Parrot Fish  X   

Penguin X X   

Shark  X   

Lantern Fish  X  X 

 

Fig.8. Concept Lattice of the formal context in Table 2 

In [5], we first build a formal concept lattice from the given 

dataset and extract implications. With the instance support of each 

implication and a user provided implication cutoff, we generate a 

synthetic dataset that respects all the implications whose support 

is greater than or equal to the implication cutoff. We then build a 

formal concept lattice with this newly generated synthetic dataset. 

The crux behind this step is to cover all kinds of data points 

without generating unnecessary points that were not implied from 

the original dataset. We use this formal concept lattice to extract 

global, local, similar and contrastive explanations of a black box 

model around an instance of interest. Model outcome of the data 

instances in the synthetic dataset formal concept lattice is 

communicated to all its super concepts. At each node the union of 

all the sub concept outcomes is computed and communicated 

recursively. For local, similar and contrastive explanation, this 

lattice is traversed to find minimum feature combinations that lead 

to a specific outcome. Given a data instance, we find the path from 

the root of the lattice to the specific data instance recording the 

change in the set of outcomes. Multiple paths from the root to the 

instance indicate equivalent change in outcomes. Using this 

invariant/varying set of outcomes, as the lattice is traversed, we 

generate the contrastive and similar explanations that explain the 

set of features that impacted a change or not. 

4. AXIOMS AND SANITY TEST EVALUATION 

FOR LATTICE BASED XAI TECHNIQUE 

We prove the correctness for all the chosen axioms and sanity 

tests for our lattice based XAI technique. 

4.1 FEATURE SENSITIVITY - A 

This axiom states that if two instances differ in a specific 

feature and have different predictions from the model, then this 

feature should be brought out in the explanation presented by the 

XAI technique under consideration. 

A context is a triple (G,M,I), where G is a set of objects, M is 

a set of attributes and I the relation between them. A concept of 

the context (G,M,I) is a pair (A,B) such that, A⊆G, B⊆M, A/=B 

and B/=A, where A is the extent and B the intent of the concept 

(A,B). In our work, we consider a feature and its specific value 

together as an attribute. Hence M consists of a feature Fi with its 

value Vi. 

Let us consider two concepts (A1,B1) and (A2,B2) that are part 

of the formal concept lattice, with outcomes C1 and C2 

respectively, such that, |B1|=|B2|=|M| and C1≠C2. Let us also 

assume (Fi,V1) ∊ B1 and (Fi,V2) ∊ B2, such that, V1≠V2 and same 

values for rest of the features Fj, for j≠i. From the definition of the 

formal concept lattice, it implies that there must be a concept 

(A3,B3), where A3=A1∪A2 and B3=B1∩B2, with |B3|=|M|-1. B3 

consists of all attributes except the feature Fi. After lattice 

construction, the outcomes are communicated from subconcepts 

to superconcepts. Each superconcept maintains a union of all the 

outcomes it receives and passes it below to its superconcepts 

recursively. This implies that the outcomes computed at the 

concept (A3,B3) must contain {C1,C2}. In drawing contrastive 

explanation from the lattice, the traversal records changes in 

outcome in the lattice, specifically, where nodes contain outcomes 

that differ from the outcomes of their subconcepts. The concept 

(A3,B3) would be found in this process as its outcomes contain 
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{C1,C2}, whereas its subconcept (A1,B1) has outcome C1 and its 

subconcept (A2,B2) has outcome C2. This implies that the 

contrastive explanation brings out feature Fi with value V1 leading 

to outcome C1 and changing F1 to value V2 would lead to outcome 

C2, thereby highlighting the differing feature, proving the feature 

sensitivity - a axiom. 

4.2 FEATURE SENSITIVITY - B 

This axiom states that if two instances differ in a specific 

feature but have the same predictions from the model, then this 

feature should not be brought out in the explanation presented by 

the XAI technique under consideration. 

Let us consider two concepts (A1,B1) and (A2,B2) that are part 

of the formal concept lattice, with outcomes C1 for both, such that, 

|B1|=|B2|=|M|. Let us also assume (Fi,V1) ∊ B1 and (Fi,V2) ∊ B2, 

such that, V1≠V2 and same values for rest of the features Fj, for 

j≠i. From the definition of the formal concept lattice, it implies 

that there must be a concept (A3,B3), where A3=A1∪A2 and 

B3=B1∩B2, with |B3|=|M|-1. B3 consists of all attributes except the 

feature Fi. After lattice construction, the outcomes are 

communicated from subconcepts to superconcepts. Each 

superconcept maintains a union of all the outcomes it receives and 

passes it below to its superconcepts recursively. This implies that 

the outcomes computed at the concept (A3,B3) must contain {C1}. 

In drawing contrastive explanation from the lattice, the traversal 

seeks to find concepts in the lattice where nodes contain outcomes 

that differ from the outcomes of their subconcepts. The concept 

(A3,B3) would not be found in this process as its outcome is {C1}, 

the same outcome as both its subconcepts (A1,B1) and (A2,B2). In 

fact, these nodes would be found while drawing out similar 

explanation, stating that changing feature Fi from value V1 to V2 

does not change the outcome. This implies that the contrastive 

explanation will not bring out feature Fi, thereby not highlighting 

the differing feature, proving the feature sensitivity - b axiom. 

4.3 IMPLEMENTATION INVARIANCE 

The axiom states that if two trained models are functionally 

equivalent then the XAI technique should provide identical 

explanations for the two. 

Let F1 and F2 be two different models that predict the same 

outcome for all the data instances of any dataset. In our lattice 

based XAI technique, the formal concept lattice is constructed on 

the generated synthetic dataset respecting implications based on 

user provided implication cutoff. In this lattice, we communicate 

the outcomes of the dataset instances to their superconcepts 

recursively. Since the lattice is constructed on the generated 

synthetic dataset, which is common for both the models, the 

constructed lattices will be identical for both F1 and F2. Since the 

outcomes match for both models F1 and F2 for any data instance, 

the set of outcomes that is communicated from each data instance 

to the superconcepts would also be identical throughout the 

lattice. Effectively, this means that both the lattice and the 

outcomes are identical for F1 and F2. Explanations are drawn out 

from the lattice and hence it would be identical for a data instance 

across F1 and F2 as their lattices are identical. Let us assume that 

the outcome of F1 and F2 differ for only one data instance I. If so, 

then the set of collected outcomes would also differ in the two 

lattices and hence the path traversed in order to generate the 

explanation would also differ, hence modifying the explanation 

for F1 and F2. But when there are no differing outcomes, 

explanations are identical. This proves implementation invariance 

of the lattice based XAI technique. 

4.4 SYMMETRY PRESERVING 

This axiom states that two input variables are symmetric with 

respect to a function if swapping them does not change the 

function outcome. An XAI technique is Symmetry preserving, if 

for all inputs that have identical values for symmetric variables, 

the symmetric variables receive identical attributions. 

This is trivially proven for the lattice based XAI technique as 

explanations are drawn from a formal concept lattice, where a 

concept consists of a pair (A,B) such that, A⊆G, B⊆M, A/=B and 

B/=A, of the context (G,M,I). In a subset of features and their 

values, the order of their presence is not considered, proving the 

symmetry preserving nature. 

4.5 MODEL PARAMETER RANDOMIZATION 

SENSITIVITY 

In this sanity test, explanation of a model from an XAI 

technique is compared to the explanation from the copy of the 

model with randomly initialized parameters. A good XAI 

technique should differ substantially in their explanation of the 

two cases. 

This test assumes without stating that on random initialization 

of a deep learning model, the outcome of the model differs 

substantially compared to the outcomes from the properly trained 

model. Let us assume a model F1 which has been properly trained 

and let its outcome be O for the data instance I. Let F2 be the 

model that has the same design as F1, but has been initialized 

randomly and let its outcome be O’ for the data instance I. In the 

lattice constructed for F1, the data instance I would have outcome 

O and it follows that all its superconcepts would also have O in 

their set of outcomes. In the lattice constructed for F2, the data 

instance I would have outcome O’ and it follows that all its 

superconcepts would also have O’ in their set of outcomes. While 

the concept lattice would remain identical, the set of outcomes 

gathered at each node would differ substantially between the two 

lattices. In deriving an explanation for the data instance I, the 

paths traversed will be similar in both the lattices, but the 

explanation produced will differ as the set of outcomes in the 

nodes differ. This proves that the lattice based XAI technique is 

sensitive to model parameter randomization. 

4.6 MODEL-OUTCOME RELATIONSHIP 

SENSITIVITY 

In this sanity test, explanation of a model from an XAI 

technique is compared to the explanation on the model with the 

same architecture but trained with the copy of the data set with 

permuted labels. A good XAI technique should depend on the 

relation between the instances and the labels and if there is a 

change in the label, the explanation should also differ 

appropriately. Let F1 be the model trained on the original dataset 

and its labels. Let F2 be the model trained on the dataset with 

randomly permuted labels. Let us consider a data instance I which 

has label L1 in F1 and with label L2 in F2. Since the set of data 

instances are the same there will not be any difference between 

the lattices of F1 and F2. But there will be differences in the set of 



BHASKARAN VENKATSUBRAMANIAM AND PALLAV KUMAR BARUAH: EVALUATION OF LATTICE BASED XAI 

3186 

collected outcomes as the labels differ between F1 and F2. In the 

data instance I and its path to the root of the lattice, the collected 

labels would have L1 for the lattice of F1 and L2 for the lattice of 

F2. When considering the explanation for the data instance I, the 

lattice based technique will traverse identical paths for F1 and F2 

but since the labels across these paths differ, there will be a clear 

difference in the explanations, thereby proving model-outcome 

relationship sensitivity. 

4.7 INPUT TRANSFORMATION SENSITIVITY 

In this sanity test, if a data instance is modified such that it 

does not affect the model outcome, explanations for the original 

and the modified instance must be equivalent. A good XAI 

technique must demonstrate such input transformation invariance. 

Let us assume a model F trained on a dataset with n features. Let 

I be a data instance with n features and its specific values, say 

{(f1,v1), (f2, v2), …, (fn,vn)}. Let us consider an index set J, such 

that, there is another instance I' with I' having same values as I on 

all i∉J and different values on all i∈J. For example, if J={2}, then 

I’={(f1,v1), (f2,v2'), …, (fn,vn)}. Let us assume that the model F 

produces the outcome O for both I and I'. In the lattice constructed 

from the dataset, there will be a node K with features {(fi,vi)}, for 

i∉J with outcome O as part of its set of outcomes. In the traversal 

from the root of the lattice to the instance I or I', the rest of the 

path must be the same except the path from node K to the specific 

instance. Hence the explanation will be the same for I and I' from 

the root till node K. From node K to the specific instance, the 

explanation would state different values on the feature index set J 

without any change in the outcome set. Thus while one can 

observe a change in values of features in the index set J, there will 

not be any change in the outcome, which proves Input 

transformation sensitivity.  

5. CONCLUSION AND FUTURE WORK 

It is clear that our Lattice based XAI technique satisfies all the 

axioms and passes all sanity tests. Our earlier approach [5] proved 

some of these empirically, while in this work, we have used a 

mathematical approach to prove these. This clearly proves that 

our Lattice based approach to generate explanations is accurate, 

correct and hence reliable. Evaluation of XAI techniques is an 

emerging area and more such fundamental axioms and sanity tests 

need to be standardized to evaluate any XAI technique. Such 

standardization will clearly bring out the quality of an XAI 

technique. We also intend to apply many more XAI evaluation 

techniques, including methods that need human involvement, in 

order to further prove the credibility of our Lattice based XAI 

technique. 
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