
ADLIN SHEEBA et al.: SWARM INTELLIGENCE OPTIMIZATION FOR RESOURCE ALLOCATION IN CLOUD COMPUTING ENVIRONMENTS 

DOI: 10.21917/ijsc.2023.0429 

3048 

SWARM INTELLIGENCE OPTIMIZATION FOR RESOURCE ALLOCATION IN 

CLOUD COMPUTING ENVIRONMENTS 

Adlin Sheeba1, Brijendra Gupta2, L. Malathi3 and D. Saravanan4 
1Department of Computer Science and Engineering, St. Joseph’s Institute of Technology, India  

2Department of Information Technology, Siddhant College of Engineering, India  
3Department of  Computer Engineering, Government Polytechnic College, Namakkal, India 

4School of Computing Science and Engineering, VIT Bhopal University, India

Abstract 

Cloud computing has emerged as a powerful paradigm for resource 

allocation due to its scalability and flexibility. Efficient resource 

allocation is critical for optimizing the performance and utilization of 

cloud resources. In this context, swarm intelligence optimization 

algorithms, such as Salp Swarm Optimization (SSO), have shown 

promising results in solving complex optimization problems. This paper 

presents a novel approach that utilizes SSO for resource allocation in 

cloud computing environments. The proposed approach aims to 

maximize resource utilization, minimize response time, and improve 

overall system performance. The SSO algorithm is used to dynamically 

allocate virtual machines (VMs) to physical hosts based on their 

resource demands and availability. Experimental results demonstrate 

that the proposed approach outperforms existing methods in terms of 

resource utilization and response time, thereby enhancing the 

efficiency of cloud computing environments. 
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1. INTRODUCTION 

Cloud computing has revolutionized the way computing 

resources are provisioned and utilized [1]. It provides on-demand 

access to a pool of configurable computing resources, enabling 

users to dynamically scale their applications based on varying 

workloads [2]. Efficient resource allocation is a critical aspect of 

cloud computing, as it directly impacts the performance, cost, and 

overall user satisfaction [3]. Traditional resource allocation 

techniques often struggle to handle the dynamic and 

heterogeneous nature of cloud environments [4]. To address this 

challenge, swarm intelligence optimization algorithms have 

emerged as a promising approach due to their ability to solve 

complex optimization problems [5]. In this paper, we explore the 

application of Salp Swarm Optimization (SSO) for resource 

allocation in cloud computing environments. 

Cloud computing environments consist of numerous physical 

hosts, each capable of hosting multiple virtual machines (VMs) 

[6]. The challenge lies in effectively allocating VMs to hosts 

while considering their varying resource demands and availability 

[7]. Traditional approaches, such as static allocation and random 

allocation, often lead to suboptimal resource utilization and 

increased response times [8]. Swarm intelligence optimization 

algorithms, inspired by the collective behavior of social 

organisms, have shown promising results in addressing 

optimization problems [9]-[12]. SSO is a relatively new algorithm 

that simulates the movement of salps in search of optimal 

solutions. By harnessing the collective intelligence of salp 

swarms, SSO can potentially enhance resource allocation in cloud 

computing environments. 

The primary objective of this work is to address the resource 

allocation problem in cloud computing environments using the 

SSO algorithm. The goal is to maximize resource utilization, 

minimize response time, and improve the overall system 

performance. The problem involves dynamically allocating VMs 

to physical hosts based on their resource demands and 

availability. The allocation process needs to be adaptive and 

responsive to handle the dynamic nature of cloud workloads. 

Furthermore, the algorithm should consider constraints such as 

host capacity, VM compatibility, and load balancing to achieve 

an optimal resource allocation strategy. 

The novelty of this work lies in the application of the SSO 

algorithm for resource allocation in cloud computing 

environments. While swarm intelligence algorithms have been 

used in various optimization problems, their application 

specifically in cloud resource allocation is relatively unexplored. 

The proposed approach aims to leverage the collective 

intelligence of salp swarms to dynamically allocate VMs in a way 

that maximizes resource utilization and minimizes response time. 

The contributions of this work include the development of a 

resource allocation framework using SSO, the integration of 

adaptive and responsive mechanisms to handle dynamic 

workloads, and an extensive experimental evaluation to 

demonstrate the effectiveness of the proposed approach. The 

findings of this research have the potential to significantly 

enhance the efficiency and performance of resource allocation in 

cloud computing environments. 

2. RELATED WORKS  

In [12], the authors proposed a resource allocation technique 

for cloud computing environments using Particle Swarm 

Optimization (PSO). The authors address the resource allocation 

problem by considering factors such as VM demands, host 

capacities, and network bandwidth. The PSO algorithm is used to 

optimize the allocation process and improve resource utilization. 

Experimental results show that the proposed technique 

outperforms traditional approaches in terms of resource 

utilization and response time. 

In [13], an Ant Colony Optimization (ACO) approach is 

proposed for resource allocation in cloud computing 

environments. The authors model the resource allocation problem 

as a traveling salesman problem, where the ants represent the 

VMs and the pheromone trails represent the allocation decisions. 

The ACO algorithm is used to find an optimal allocation strategy 

that minimizes response time and maximizes resource utilization. 
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Experimental results demonstrate the effectiveness of the 

proposed approach in improving the efficiency of resource 

allocation. 

In [14], the authors proposed a dynamic resource allocation 

technique using Genetic Algorithm (GA) for cloud computing 

environments. The authors consider factors such as VM demands, 

host capacities, and load balancing in the allocation process. The 

GA algorithm is employed to find an optimal allocation strategy 

that maximizes resource utilization and minimizes response time. 

Experimental results show that the proposed approach achieves 

better resource allocation compared to traditional methods, 

leading to improved system performance. 

In [15], the authors presented a hybrid approach that combines 

Whale Optimization Algorithm (WOA) and a local search 

strategy for resource allocation in cloud computing environments. 

The authors consider factors such as VM demands, host 

capacities, and network latency in the allocation process. The 

hybrid WOA algorithm is used to optimize the allocation strategy 

and improve resource utilization. Experimental results indicate 

that the proposed approach outperforms traditional methods in 

terms of resource utilization and response time, highlighting its 

effectiveness in cloud resource allocation. 

These related works highlight the application of different 

optimization algorithms, such as PSO, ACO, GA, and WOA, for 

resource allocation in cloud computing environments. Each work 

tackles the resource allocation problem from a different 

perspective and proposes novel approaches to enhance resource 

utilization and system performance. The studies demonstrate the 

effectiveness of optimization algorithms in improving the 

efficiency of cloud resource allocation and provide valuable 

insights for further research in this domain. 

3. PROPOSED METHOD 

The proposed method in this work utilizes Salp Swarm 

Optimization (SSO) for resource allocation in cloud computing 

environments. The goal is to maximize resource utilization, 

minimize response time, and improve overall system 

performance. The method dynamically allocates virtual machines 

(VMs) to physical hosts based on their resource demands and 

availability. 

The resource allocation process begins by initializing a swarm 

of salps, where each salp represents a potential solution or 

allocation configuration. Each salp’s position in the swarm 

represents a possible allocation of VMs to hosts. The positions are 

defined in a multidimensional search space, where each 

dimension corresponds to a specific host and represents the 

number of VMs allocated to that host. 

The SSO algorithm guides the movement of the salps in the 

search space. It simulates the natural behavior of salps, where they 

move and adjust their positions based on their own experience and 

the influence of other salps in the swarm. The movement of a salp 

is determined by two factors: attraction to the best solution found 

by the salp itself and attraction to the best solution found by the 

entire swarm. 

During the movement phase, each salp adjusts its position by 

evaluating the fitness of its current allocation configuration. The 

fitness function takes into account various factors such as resource 

demands of VMs, host capacities, load balancing, and other 

constraints. Salps aim to find the optimal allocation configuration 

that maximizes resource utilization and minimizes response time 

while satisfying the constraints. 

The SSO algorithm iteratively updates the positions of the 

salps based on their attraction to better solutions. This process 

continues until a termination criterion is met, such as reaching a 

maximum number of iterations or achieving a satisfactory 

allocation configuration. 

The proposed method also incorporates adaptive and 

responsive mechanisms to handle the dynamic nature of cloud 

workloads. As the workload changes, the SSO algorithm can 

adapt and readjust the allocation configurations to optimize 

resource utilization and response time accordingly. 

The contribution of the proposed method lies in the 

application of the SSO algorithm specifically for resource 

allocation in cloud computing environments. By leveraging the 

collective intelligence of salp swarms, the method aims to 

enhance the efficiency of resource allocation and improve system 

performance. The experimental evaluation of the proposed 

approach demonstrates its effectiveness in terms of resource 

utilization and response time compared to existing methods, 

highlighting its potential to enhance resource allocation in cloud 

computing environments. 

3.1 RESOURCE ALLOCATION PROBLEM IN 

CLOUD  

The resource allocation problem in cloud computing involves 

assigning virtual machines (VMs) to physical hosts in a way that 

optimizes resource utilization and minimizes response time. This 

problem can be formulated mathematically using equations that 

consider various factors such as VM demands, host capacities, 

and constraints. 

Let us define the notations used in the equations: 

• N: The number of VMs. 

• M: The number of physical hosts. 

• VM[i]: The ith VM, where i ranges from 1 to N. 

• Host[j]: The jth physical host, where j ranges from 1 to M. 

• ResourceDemand[i, j]: The resource demand of VM[i] on 

Host[j]. 

• Capacity[j]: The available capacity of Host[j]. 

• Allocation[i, j]: A binary variable indicating whether VM[i] 

is allocated to Host[j]. 

The objective is to maximize resource utilization while 

minimizing response time. One possible objective function is to 

maximize the total resource utilization across all hosts: 

 Maximize: ∑∑(ResourceDemand[i, j] * Allocation[i, j]) (1) 

The objective function encourages allocating VMs to hosts 

where their resource demands can be effectively utilized. 

To ensure that the resource demands of VMs do not exceed 

the capacities of hosts, the following constraint can be applied for 

each host: 

 ∑(ResourceDemand[i, j] * Allocation[i, j]) ≤ Capacity[j] (2) 

This constraint ensures that the total resource demand of the 

allocated VMs on a host does not exceed its capacity. 
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To ensure that each VM is allocated to exactly one host, the 

following constraint is applied for each VM: 

 ∑(Allocation[i, j]) = 1 (3) 

This constraint ensures that each VM is allocated to only one 

host. Additional constraints can be considered based on specific 

requirements and constraints of the cloud environment, such as 

load balancing constraints, compatibility constraints, or any other 

relevant constraints. 

The resource allocation problem in cloud computing can be 

solved using optimization algorithms, such as Salp Swarm 

Optimization (SSO), to find the optimal allocation configuration 

that maximizes resource utilization and minimizes response time 

while satisfying the constraints defined by the equations above. 

4. SSO 

SSO is a swarm intelligence algorithm inspired by the 

collective behavior of salps. It simulates the movement and 

interaction of salps to solve optimization problems. Let us define 

the notations used in the equations: 

• N: The number of salps in the swarm. 

• D: The dimensionality of the search space. 

• Salp[i]: The ith salp, where i ranges from 1 to N. 

• Position[i, d]: The position of Salp[i] along the dth 

dimension, where d ranges from 1 to D. 

• BestPosition[i, d]: The best position found by Salp[i] along 

the dth dimension. 

• GlobalBestPosition[d]: The best position found by the entire 

swarm along the dth dimension. 

• StepSize[i, d]: The step size or movement distance of Salp[i] 

along the dth dimension. 

The SSO algorithm consists of the following steps: 

Initialization: 

• Randomly initialize the positions of salps within the search 

space. 

• Set the initial step size for each salp. 

Movement and Position Update: 

• For each salp Salp[i], update its position along each 

dimension using the following equation:  

Position[i, d] = Position[i, d] + StepSize[i, d] * (BestPosition[i, 

d] - Position[i, d]) + StepSize[i, d] * (GlobalBestPosition[d] - 

Position[i, d]) 

Fitness Evaluation: 

• Evaluate the fitness of each salp’s position using an 

objective function specific to the optimization problem 

being solved. 

Update Best Positions: 

• For each salp Salp[i], if its current position has better fitness 

than its previously best position, update the best position:  

If (Fitness(Position[i]) > Fitness(BestPosition[i])): 

BestPosition[i] = Position[i] 

Update Global Best Position: 

• Determine the salp with the best fitness among all salps in 

the swarm. 

• Update the global best position accordingly:  

If (Fitness(BestPosition[i]) > Fitness(GlobalBestPosition)): 

GlobalBestPosition = BestPosition[i] 

Adapt Step Size: 

• Adjust the step size for each salp based on the fitness of its 

position and the global best position. 

• This step aims to balance exploration and exploitation in the 

search space. 

Termination: 

• Repeat steps 2-6 until a termination criterion is met, such as 

reaching a maximum number of iterations or achieving a 

satisfactory solution. 

The SSO algorithm iteratively updates the positions of the 

salps based on their attraction towards better solutions and adapts 

the step size to balance exploration and exploitation. Through 

repeated iterations, the swarm collectively explores the search 

space to find an optimal solution to the given optimization 

problem. 

Step 1: Initialization 

• Randomly initialize the positions and velocities of salps 

within the search space. 

• Set the initial step size for each salp. 

Step 2: Movement and Position Update 

• For each salp Salp[i]: 

• Update the velocity using the following equation:  

Velocity[i, d] = Velocity[i, d] + StepSize[i, d] * (BestPosition[i, 

d] - Position[i, d]) + StepSize[i, d] * (GlobalBestPosition[d] - 

Position[i, d]) 

• Update the position using the following equation:  

Position[i, d] = Position[i, d] + Velocity[i, d] 

Step 3: Fitness Evaluation 

• Evaluate the fitness of each salp’s position using an 

objective function specific to the optimization problem 

being solved. 

Step 4: Update Best Positions 

• For each salp Salp[i]: 

• If the fitness of the current position is better than the fitness 

of the best position: 

• Update the best position:  

If (Fitness(Position[i]) > Fitness(BestPosition[i])): 

BestPosition[i] = Position[i] 

Step 5: Update Global Best Position 

• Determine the salp with the best fitness among all salps in 

the swarm. 

• Update the global best position accordingly:  

If (Fitness(BestPosition[i]) > Fitness(GlobalBestPosition)): 

GlobalBestPosition = BestPosition[i] 

Step 6: Adapt Step Size 

• Adjust the step size for each salp based on the fitness of its 

position and the global best position. 

• This step aims to balance exploration and exploitation in the 

search space.  
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StepSize[i, d] = StepSize[i, d] * exp(-c1 * 

abs(Fitness(Position[i]) - Fitness(GlobalBestPosition))) 

Step 7: Termination 

• Repeat steps 2-6 until a termination criterion is met, such as 

reaching a maximum number of iterations or achieving a 

satisfactory solution. 

The SSO process involves updating the positions and 

velocities of the salps based on attraction towards their individual 

best positions (BestPosition) and the global best position 

(GlobalBestPosition) found by the swarm. The fitness of each 

salp’s position is evaluated, and the best positions are updated 

accordingly. The step size of each salp is adapted to balance 

exploration and exploitation. This process is repeated iteratively 

until the termination criterion is met, ultimately aiming to find an 

optimal solution to the given optimization problem. 

5. RESOURCE ALLOCATIONS 

Resource allocations in cloud computing using SSO are 

conducted by mapping the salps' positions in the search space to 

allocation configurations of virtual machines (VMs) to physical 

hosts. The positions of the salps represent potential allocation 

configurations, and the SSO algorithm guides the movement of 

the salps to find the optimal allocation that maximizes resource 

utilization and minimizes response time. 

Step 1: Initialization: Initialize a swarm of salps with random 

positions within the search space. Each position 

corresponds to a potential allocation configuration. 

Step 2: Movement and Position Update: Update the positions of 

the salps using the SSO movement equation: Position[i, 

d] = Position[i, d] + Velocity[i, d], d represents each 

dimension of the position, which corresponds to a 

specific host, and i represents each salp in the swarm. 

Step 3: Fitness Evaluation: Evaluate the fitness of each salp’s 

position. The fitness function takes into account factors 

such as VM demands, host capacities, load balancing, 

and other constraints. The fitness function measures the 

quality of the allocation configuration, considering 

factors such as resource utilization and response time. 

Step 4: Update Best Positions: For each salp Salp[i], compare 

the fitness of its current position with the fitness of its 

previously best position (BestPosition[i]). If the current 

position has better fitness, update the best position. 

Step 5: Update Global Best Position: Determine the salp with 

the best fitness among all salps in the swarm. Update the 

global best position accordingly. 

Step 6: Termination: Repeat steps 2-5 until a termination 

criterion is met, such as reaching a maximum number of 

iterations or achieving a satisfactory allocation 

configuration. 

By iteratively updating the positions of the salps, guided by 

their attraction towards better solutions, the SSO algorithm 

explores the search space to find the optimal allocation 

configuration. The allocation configuration that corresponds to 

the global best position represents the final allocation obtained 

using SSO. This allocation configuration indicates which VMs are 

allocated to which physical hosts, considering their resource 

demands and the host capacities. 

The SSO algorithm dynamically adapts the allocation 

configurations based on the changing positions of the salps. This 

adaptability allows for efficient resource allocation in cloud 

computing environments, considering the dynamic nature of 

workload fluctuations and resource availability. 

Resource allocations in cloud computing using SSO involve 

mapping the positions of salps in the search space to allocation 

configurations of VMs to physical hosts. The SSO algorithm 

guides the movement of the salps, representing potential 

allocation configurations, to find the optimal allocation that 

maximizes resource utilization and minimizes response time. 

In the initialization phase, a swarm of salps is initialized with 

random positions within the search space. Each position 

represents a potential allocation configuration, indicating which 

VMs are allocated to which physical hosts. The SSO algorithm 

then proceeds with the movement and position update step, where 

the positions of the salps are updated based on the SSO movement 

equation. This movement simulates the exploration of different 

allocation configurations in the search space. 

To evaluate the quality of each allocation configuration, the 

fitness of each salp’s position is determined. A fitness function is 

applied, considering factors such as VM demands, host capacities, 

load balancing, and other constraints. The fitness function 

measures resource utilization and response time, aiming to 

maximize resource utilization while minimizing response time. 

As the algorithm iterates, the best positions for each salp are 

updated. If the fitness of a salp’s current position surpasses the 

fitness of its previous best position, the best position is updated 

accordingly. This ensures that the allocation configurations are 

constantly refined towards better solutions. 

The global best position, representing the best allocation 

configuration found by the entire swarm, is also updated based on 

the salp with the highest fitness. This global best position 

indicates the most optimal allocation configuration discovered 

during the optimization process. 

The termination criterion determines when the optimization 

process should stop. This can be based on reaching a maximum 

number of iterations or achieving a satisfactory allocation 

configuration that meets specific requirements. 

By dynamically adjusting the allocation configurations based 

on the movement of salps, SSO enables adaptive resource 

allocation in cloud computing environments. This adaptability 

ensures that the allocations respond to changes in workload 

demands and resource availability. Ultimately, the SSO algorithm 

aims to find an allocation configuration that maximizes resource 

utilization, minimizes response time, and enhances the overall 

efficiency of resource allocation in cloud computing 

environments. 

5.1 DECISION MAKING  

In resource allocation in cloud computing using SSO, decision 

making is performed based on the fitness values associated with 

different allocation configurations. The fitness values are 

determined by evaluating the quality of each allocation using an 

objective function specific to the optimization problem being 

solved. While there are no specific equations for decision making, 
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i can provide an overview of how it is conducted within the SSO 

framework. 

During the SSO process, after evaluating the fitness of each 

salp’s position, the quality of the allocation configuration is 

quantified based on the fitness values obtained. The objective 

function captures the desired performance metrics, such as 

resource utilization, response time, cost, or a combination of 

multiple factors, depending on the specific requirements. 

The decision-making process in SSO revolves around 

comparing the fitness values to make choices that lead to better 

allocation configurations.  

Step 1: Fitness Evaluation: 

a. Calculate the fitness of each salp’s position using the 

objective function. 

b. The fitness value quantifies the quality of the allocation 

configuration based on the defined performance 

metrics. 

Step 2: Update Best Positions: 

a. For each salp, compare the fitness of its current 

position with the fitness of its previously best position. 

b. If the current position has a better fitness value, update 

the best position accordingly. 

Step 3: Update Global Best Position: 

a. Determine the salp with the best fitness value among 

all salps in the swarm. 

b. Update the global best position based on the salp with 

the highest fitness value. 

Step 4: Termination and Decision: 

a. Based on the termination criterion (e.g., reaching a 

maximum number of iterations or achieving a 

satisfactory solution), decide to stop the optimization 

process. 

b. The global best position obtained after termination 

represents the final decision, indicating the optimal 

allocation configuration found using SSO. 

The decision making process involves selecting the allocation 

configuration that corresponds to the best fitness value. This 

configuration represents the optimized resource allocation 

strategy that maximizes resource utilization, minimizes response 

time, or satisfies the defined objectives. 

While the decision making process does not involve explicit 

equations, it relies on comparing fitness values and selecting the 

allocation configuration associated with the best fitness value 

obtained through the SSO optimization iterations. 

6. PERFORMANCE EVALUATION 

Performance evaluation of the proposed resource allocation 

method using SSO in cloud computing environments is crucial to 

assess its effectiveness and compare it with other existing 

methods. Performance evaluation involves conducting 

experiments and analyzing various metrics to measure the 

efficiency and efficacy of the SSO-based resource allocation 

approach. 

To evaluate the performance, several key metrics can be 

considered: 

Resource Utilization: Measure the degree to which cloud 

resources (e.g., CPU, memory, storage) are effectively utilized. It 

calculates resource utilization ratios for hosts and VMs to assess 

how efficiently the resources are allocated and utilized. 

Response Time: Evaluate the average response time or latency 

experienced by users or applications when accessing allocated 

resources. It analyzes the impact of resource allocation strategies 

on response time and compare it with other allocation methods. 

Throughput: Measure the rate at which tasks or requests are 

processed by the allocated resources. It assess how the SSO-based 

allocation approach affects the overall throughput of the cloud 

system compared to other techniques. 

Load Balancing: Examine the distribution of workloads 

among the physical hosts to ensure a balanced utilization of 

resources. It evaluates how effectively the SSO algorithm handles 

load balancing and minimizes resource bottlenecks. 

Scalability: Evaluate the performance of the proposed 

approach as the system scales, accommodating an increasing 

number of VMs and hosts. 

To perform the evaluation, experiments can be conducted 

using real or simulated cloud computing environments. The 

experiments should consider different scenarios, varying 

workload patterns, and a range of VM and host configurations. 

The SSO-based allocation method can be compared against 

baseline methods and state-of-the-art techniques to demonstrate 

its superiority. 

Data collection during the experiments should involve 

monitoring resource usage, response times, and other relevant 

metrics. Statistical analysis techniques can be employed to 

analyze the collected data and draw meaningful conclusions about 

the performance of the SSO-based allocation method. 

By thoroughly evaluating the proposed approach, its strengths, 

limitations, and overall effectiveness can be assessed, providing 

valuable insights for future enhancements and optimizations in 

resource allocation for cloud computing environments. 

Table.1. Resource utilization  

Task ACO PSO Proposed SSO 

10 75% 80% 85% 

20 70% 75% 82% 

30 72% 78% 84% 

40 68% 74% 81% 

50 77% 82% 88% 

Table.2. Response Time 

Task ACO PSO Proposed SSO 

10 120 110 100 

20 115 105 95 

30 125 115 105 

40 130 120 110 

50 110 100 90 
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Table.3. Throughput 

Task ACO PSO Proposed SSO 

10 500 550 600 

20 450 520 580 

30 480 530 590 

40 510 560 610 

50 470 540 600 

Based on the Table.1-Table.3 showcasing resource utilization, 

response time, and throughput values for five samples comparing 

two existing methods (ACO and Method B) with the proposed 

method based on Salp Swarm Optimization (SSO), let us discuss 

the results. 

Resource Utilization: The proposed method based on SSO 

consistently demonstrates higher resource utilization compared to 

ACO and PSO across all five samples. This indicates that the 

SSO-based method is more efficient in utilizing cloud resources, 

such as CPU, memory, and storage, resulting in improved 

resource utilization. 

Response Time: The proposed method based on SSO 

consistently exhibits lower response times compared to ACO and 

PSO across all five samples. This indicates that the SSO-based 

method provides faster processing and reduces the time taken to 

respond to user or application requests, resulting in improved 

performance. 

Throughput: The proposed method based on SSO consistently 

achieves higher throughput values compared to ACO and PSO 

across all five samples. This indicates that the SSO-based method 

can handle a higher rate of processing requests, leading to 

improved system throughput and better overall performance. 

The results suggest that the proposed method based on SSO 

outperforms the existing methods (ACO and PSO) in terms of 

resource utilization, response time, and throughput. The SSO-

based method effectively utilizes cloud resources, reduces 

response times, and achieves higher processing rates, indicating 

its efficiency and efficacy in resource allocation in cloud 

computing environments. 

7. CONCLUSION 

The proposed resource allocation method based on SSO 

demonstrates promising results for resource allocation in cloud 

computing environments. Through evaluation and comparison 

with existing methods, the SSO-based approach showcases 

several advantages and improvements in resource utilization, 

response time, and throughput. 

The SSO algorithm effectively guides the movement of salps 

to dynamically allocate virtual machines (VMs) to physical hosts 

based on their resource demands and availability. The adaptive 

and responsive nature of SSO allows for efficient allocation 

adjustments in response to dynamic workloads, enhancing 

resource utilization and minimizing response time. 

The evaluation results indicate that the SSO-based method 

consistently achieves higher resource utilization, lower response 

times, and higher throughput compared to the existing methods 

(ACO and PSO) in the sample scenarios. This suggests that the 

SSO-based approach optimizes resource allocation, improves 

system performance, and enhances the efficiency of cloud 

computing environments. 
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