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Abstract 

Third-party liability is the most important sub-category in automobile 

insurance, that is why actuaries seek always to design the ideal price 

list by classifying the insureds into homogeneous classes. However, the 

heterogeneity persists in the priori tariffication. For that, actuaries use 

the Bonus Malus system to redistribute the cost of claims more 

equitably between insureds by rewarding good insureds with a bonus 

and penalizing bad insureds with a Malus. Nevertheless, the classical 

approach used in the conception of Bonus Malus systems is limited to 

the parametric methods that need to make the hypothesis of the number 

of claims distribution and don’t consider the cost of claims. In this 

direction, this paper seeks to avoid this issue by using machine learning 

algorithms, in response to offering a fair Bonus Malus System. Two 

models of posteriori tariffication will be built. In addition, three 

algorithms will be used, in occurrence, the CART Classification And 

Regression Tree method, SVM the Support Vector Machine for 

regression, and KNN the K-Nearest Neighbor. The suggested models 

take into account, not only the number of claims but also the 

importance of the cost of claims. A numerical illustration shows the 

flexibility of posteriori premiums calculated by our models in relation 

to the risk levels. This work is a start for new actuarial research which 

seeks to use artificial intelligence in the design of bonus malus systems. 
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1. INTRODUCTION 

Actuaries always seek to offer premiums that reflect the real 

risk and fairly distribute losses among policyholders in the auto 

insurance portfolio. For that, they use a priori tariffication model. 

This method consists of using a priori explanatory variables 

(Gender, age, type of vehicle, engine power, …) in order to 

segment the insureds into homogeneous risk classes where drivers 

of the same risk class pay the same premium. However, the risk 

classes are still heterogeneous due to other posteriori variables 

like the driving behavior which has not been retained in the priori 

pricing and has an impact on the insured claim frequency. 

Some premiums are found not fair for some good drivers. 

With a view to adjusting the insured's annual premium, the 

insurers use a posterior tariffication model. The famous posterior 

tariffication model used is Bonus-Malus System in third-party 

liability automobile insurance. This system calculates the 

posteriori premium by considering the past claims experience. 

Indeed, the Bonus-Malus System takes into account the number 

of claims and the amounts of claims during the last period in view 

of the potential of past claims to better predict future claims. 

However, most experience rating systems use only the number of 

claims of a policyholder to determine its premium [1] since the 

number of claims and the amount of claims are often assumed to 

be independent [2].  

The objective to introduce a Bonus-Malus System in the 

insurance industry is to recompense the good insured (claim-free 

policyholders) and to penalize the bad drivers responsible for one 

or more accidents. In fact, the bad driver is penalized by a Malus, 

a surplus of the premium, and the good driver is recompensed by 

a Bonus, a discount of the premium. The Bonus-Malus System 

aims to encourage insureds to drive carefully and to better assess 

individual risks [3]. 

Bonus-Malus Systems (BMSs) were introduced in Europe in 

the early 1960s [2]. This system is called merit-rating or no-claim 

discount system in other countries. Since July 6, 2006, in 

Morocco, the Bonus-Malus System has been replaced by a new 

system called Coefficient Reduction Increase. This system has the 

same logic as Bonus-Malus System by awarding a reduction on 

the insurance premium to good drivers and increasing the 

premiums of bad drivers, but the system applies a multiplier 

coefficient (from 90% to 250%) instead of transferring the insured 

between predefined levels. In fact, each two years free claims are 

recompensed by 10% reduction in the third liability auto basic 

premium, and for one or more accidents, engaging or likely to 

engage the insured liability totally or partially during one year, 

penalized by 20% increase in the premium in case of the material 

damage and 30% for each bodily accident without however 

exceed 250% of the basic premium. 

Actuaries always try to offer a fair Bonus-Malus system. For 

this, actuaries and researchers study how to improve this system 

but in general, all their works relate to the analysis of the 

hypotheses on the probability distributions of the number of 

claims. The difference in the assumptions can make some 

difference in the posterior premium. In addition, the classical 

approach of Bonus-Malus does not take into consideration the 

cost of claims and the risk profiles determined at the priori 

tariffication. 

This article aims to address a new conception of Bonus-Malus 

System or Coefficient Reduction Increase system in Morocco. In 

this regard, we propose to use new tools to calculate the posterior 

premium, in the occurrence of the Machine Learning algorithms. 

This developed approach makes it possible to estimate the 

posterior premiums of the Bonus-Malus System directly using 

Machine Learning models by using the CART Classification And 

Regression Tree method, SVM the Support Vector Machine for 

regression, and KNN the K-Nearest Neighbor. Furthermore, we 

try to take into consideration the amounts of claims and the priori 

risks classification. Our goal is to offer a fair posterior premium 

that encourages drivers to be cautious on the road and protect the 

insurer’s customer portfolio from escaping to adversary 

companies in a more competitive environment. 
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2. RELATED WORKS 

On the side of the insured, it is not clear enough how the 

insurance company allocates bonus-malus according to their 

history of claims. In this perspective, professionals in the field and 

researchers are trying to improve the Bonus-Malus System in 

order to better reflect the history of claims and to make it more 

clarified to policyholders. However, the main problem that 

researchers are trying to solve in previous work is the assumptions 

about the probability distributions for the number of claims.  

Among others, Dionne & Vanasse  [4]  develop a methodology 

that integrates a priori and a posteriori information into a single 

statistical model. In order to estimate the accident distribution, 

they introduce Poisson and negative binomial models. They 

conclude that the negative binomial model with a regression 

component reasonably approximates the true accident distribution 

[4]. Morillo & Bermúdez [5] observe that the maluses are very 

high, and they are higher when the risks have a low frequency. To 

solve this problem, they propose a Poisson–Inverse Gaussian 

model using an exponential loss function. 

 Pierre-Loti-Viaud [6] proposes to enlarge the model of mixed 

Poisson distributions by considering mixed negative binomial 

distributions to adjust the observed correlation between the 

successive numbers of claims. Pitrebois et al. [7] work to design 

bonus-malus scales involving different types of claims assuming 

a multinomial partitioning scheme, to avoid using multivariate 

Beta distributions [7]. Guerreiro et al. [8] introduce an alternative 

approach that considers the automobile insurance portfolios as 

open portfolios by considering that the number of new policies 

entering the portfolio follows the Poisson distribution. Inoussa [9] 

proposes a statistical approach to Bonus-Malus Systems in order 

to directly estimate bonus-malus relativities using statistical tools, 

regression models, via the maximum likelihood method. 

 Ni, Constantinescu, et al. [10] employ the Bayesian approach 

to derive the Bonus Malus premium rate for Weibull claim 

severities distribution by modelling the number of claims as a 

Negative Binomial distribution. In another work, Ni, Li, et al. [11] 

focus on the modelling of claim severities using a hybrid 

structure, Weibull distribution is suggested for constructing 

smaller-sized claims, and Pareto distribution is applied to model 

large ones [11]. Gómez-Déniz [12] presents a statistical model 

which distinguishes between different types of claims, 

incorporating a bivariate distribution based on the assumption of 

dependence. 

Tzougas et al. [13] employ two-component mixture 

distributions for the construction of Optimal Bonus-Malus 

Systems with frequency and severity components. In the last work 

quoted in this section, Oh et al. [14] propose a Bonus-Malus 

System that incorporates the association between frequency and 

severity into the posterior risk adjustment. They use a copula-

based bivariate random effects model to accommodate the 

dependence between claim frequency and severity [14]. 

The issue of the classical approach used in some studies cited 

above is the different assumptions of the number of claims 

distributions that make the number of claims inadequate for the 

driver. Consequently, the posterior premium in its turn is 

inadequate for some insurers. For some studies, they did not take 

into account the cost of claims, as a result, the driver who makes 

an accident with a small cost of claims will be penalized by the 

same malus as the driver who has declared an important cost of 

claims because they have declared the same number of claims. In 

addition, there is no relationship between the prior tariffication 

and the posteriori tariffication so the Bonus-Malus System does 

not take into account the risk profiles determined at the first 

tariffication.  

For all these reasons, this paper suggests building a new 

Bonus-Malus System based on Machine Learning algorithms. In 

addition, this work will introduce new techniques from artificial 

intelligence to the literature on the Bonus-Malus system. 

3. METHODOLOGY 

In a Bonus-Malus System, the insured move each year in an 

increasing class scale according to their loss ratio during the 

previous year. A year marked by no claim allows the insured to 

go down to a lower level (Bonus) and a year marked by claims 

punished the insured to climb to the next level (Malus). 

Consequently, the insured pays a premium according to her level 

occupied in the Bonus-Malus System and based on the pre-

determined premium at the a priori pricing. 

So, in order to develop our Bonus-Malus model, we first 

proceed to present the a priori tariffication to determine the 

premiums to be paid on subscription by the new drivers. Next, we 

outline the principle of the classical approach, the a posteriori 

tariffication. Then, we develop our approach proposed in this 

article, and finally, we give a numerical illustration to better 

understand our method. 

3.1 PRIORI TARIFFICATION 

Through a priori tariffication, actuaries seek to segment 

policyholders into homogeneous risk classes so that policyholders 

of the same class pay an identical pure premium. The calculated 

pure premium is established according to the explanatory 

variables known as a priori. Indeed, insurers develop models that 

predict the number of claims (N) and the cost of claims (X) based 

on risk classification variables such as gender, type of fuel, engine 

power, etc. The pure premium determined at a priori tariffication 

is the multiplication of the frequency of claims by the average cost 

of claims according to frequency-cost model. 

 prime pure = E[N]*E[X] (1) 

In order to model this pure premium and determine the 

relationship between the number of claims or the cost of claims 

and the a priori variables, actuaries tend to use generalized linear 

models (GLM). Generalized linear models associate the response 

variable with a probability law which must belong to the 

exponential family as in Eq.(2): 
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GLM related the deterministic component β0+β1X1+β2X2+ 

⋯+βkXk and the random component by a link function that 

describes the relationship between the linear combination and the 

mathematical expectation μ of the response variable.  

 g(μ) = β0+β1X1+β2X2+ ⋯+βkXk  (1) 

Most of the time, actuaries model the number of claims either 

by the Poisson distribution, the Binomial distribution, or the 
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Negative Binomial distribution. Thus, they model the cost of 

claims either by the Gamma, Log Normal, or Inverse-Gaussian 

distribution. 

For instance, the density function of Poisson law (Eq.(4)) and 

Gamma law (Eq.(5)):  
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3.2 POSTERIORI TARIFFICATION: CLASSICAL 

APPROACH  

The posteriori premium that the insured will pay according to 

the last claim experience is equal to the priori premium multiplied 

by the relativity level rl related to the level l occupied in the 

Bonus-Malus System. 

 posteriori premium = priori premium* rl (6) 

The insured changes his position each year in accordance with 

system transition rules in addition to the probability matrix of 

transition. In fact, before estimating the relativities it is necessary 

first to determine the probabilities matrix of transition. For 

instance, this matrix gives the probability that an insured in level 

1 𝑙1 will be in level 2 𝑙2  after a given period with annual claim 

frequency (𝜗). 

The insured changes his position each year in accordance with 

system transition rules in addition to the probability matrix of 

transition. In fact, before estimating the relativities it is necessary 

first to determine the probabilities matrix of transition. For 

instance, this matrix gives the probability that an insured in level 

1 l1  will be in level 2 l2   after a given period with annual claim 

frequency (ϑ). 

 pl1l2(ϑ)=Pr[Lt+1(ϑ)=l2|Lt(ϑ)=l1]   l1,l2∈{1,2,…,s} (7)
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where Nt+1 is the number of claims in t+1 and s is the maximal 

level. 

The probabilities matrix of transition P(ϑ) is a Markovian 

matrix because the movement in levels only depends on the 

previous level and the number of claims from the previous period. 
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The transition rules are also represented in the form of a matrix 

T(k) with values 0 or 1. tij(k)=1  means the insured transferred 

from level 1 to level 2. 
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Once the number of levels and transition rules of the Bonus-

Malus System are defined, the relativity level is determined by 

minimizing the mean square difference between the unknown 

relativity Θ and the relativity level rl related to the level l_as 

proposed by [15].  
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where Pr[L=l] is the proportion of the policyholders at level l in 

Bonus-Malus System. λθ is the frequency of claims. 

The solution that minimizes the equation: 
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So, the posteriori premium will be the product of the base 

premium and the relativity level  rl. 

3.3 POSTERIORI TARIFFICATION: MACHINE 

LEARNING MODEL   

First, we will calculate the priori tariffication to build price 

classes. Then we will proceed to the posteriori pricing. We will 

build two models of the Bonus-Malus system; the first model 

consists in modeling the cost of claims according to the number 

of claims during the previous period, the class of risk, and the 

importance of risk, if it is a claim with a low amount or a very 

large amount. In the second model, the cost of claims is modeled 

based only on the number of claims and the risk class. 

In both models, we multiply the estimated value of the cost of 

claims by the frequency of claims of the associated risk class 

extracted from the a priori pricing. The a priori frequency of 

claims is used to relativize the posteriori premiums to the risks 

already determined. Therefore, the calculation of the posteriori 

pure premium in the two models is expressed as follows: 

 pppost,t+1 = fk*cost of claimst (14) 

In the case of 1st model: 

 pppost,t+1=fk*E(X|C=k,N=n,W=w), 

 k={1,….,K}, n={0,….,N}, w={H,L} (15) 

In the case of 2nd model: 

 pppost,t+1=fk*E(X|C=k,N=n), 

 k={1,….,K}, n={0,….,N} (16) 

where fk is the frequency of claims for rate class k, n is the number 

of claims declared in year t, N is the maximum number of claims 

declared and W is the weight of the declared amount takes two 

indices, i.e. H: high or L: low.   

By using the first model we avoid the problem of having an 

insured declaring a number of claims with a low amount pays an 

identical increase coefficient to one who declared the same 

number of claims with a very high amount. 

The Increase Reduction Coefficient will not be a fixed 

coefficient but a variable coefficient depending on the number of 

claims, the risk class, and the extent of the claim. The coefficient 

will be calculated as follows: 
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In order to compare the two models, we use the notion of 

financial equilibrium [16]. A bonus-malus system is said to have 

the property of financial equilibrium when the collected 

premiums remain sTable.over time. In other words, when there is 

an equivalence between the total of the premiums a priori and the 

total of the premiums a posteriori knowing that the average 

amount of total claims is not modified [16]. 
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where Ni is the total number of insureds. 

3.4 MACHINE LEARNING ALGORITHMS 

Machine learning is a branch of artificial intelligence that 

seeks to learn from data in order to predict or classify outputs. 

Machine Learning algorithms can be classified into three types 

depending on whether the data are labelled or not: supervised 

learning, unsupervised learning, and reinforcement learning. 

The Machine Learning algorithms used in this article are K-

means, KNN, SVR, and decision trees. The first algorithm is used 

for the classification of claim amounts into high and low amounts. 

However, other algorithms are used for modelling claims costs. 

The performance of each machine learning algorithm used for 

modelling claims costs will be evaluated by Root Mean Squared 

Error (Eq.(19)). 
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where yi is the observed value and ˆ
iy is the predicted value. 

3.4.1 K-Means: 

K-means is an unsupervised Machine Learning algorithm for 

classification. It makes it possible to group similar observations 

in the same cluster distinct from other clusters. 

In order to group data in the same cluster, the algorithm 

measures the dissimilarity distances. If the distance between two 

observations is reduced, the two observations belong to the same 

cluster. 

Among the most usable measures of distances, the Euclidean 

distance: 
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The K-means algorithm tries in an iterative way to minimize 

the distance between the observation and the center of a cluster. 

3.4.2 Support Vector Regressor (SVR): 

SVR is an adapted form of the Support Vector Machine 

classification algorithm dedicated to regression. SVR is a non-

parametric supervised Machine Learning technique that does not 

depend on Gauss-Markov assumptions. On the other hand, it uses 

Kernel functions to transform the data, which makes it possible to 

build nonlinear models. SVR is a convex optimization problem 

since it is based on a maximum margin principle. 

3.4.3 K Nearest Neighbors (KNN): 

KNN is a supervised machine learning algorithm that is 

suiTable.for both regression and classification problems. The 

KNN technique consists of calculating a Euclidean (as in Eq.(20)) 

or Manhattan (as in Eq.(21)) distance according to which the 

number K nearest neighbors will be retained. 
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3.4.4 Decision Tree: 

The decision tree is the most famous machine learning 

algorithm in the category of supervised learning. This algorithm 

makes it possible to make predictions in the case of regression and 

a classification in the case of classification problems. The 

decision tree technique consists in separating at each node of the 

tree the explanatory variables according to decision rules in order 

to predict the leaves which contain the predicted response values. 

Data separation is based on the principle of minimizing the square 

sum of the errors in the two child nodes right and left. 
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The crucial advantage of the decision tree is the ease of 

interpretation and implementation. 

3.5 NUMERICAL ILLUSTRATION  

To illustrate our concept, we use an open-source claims 

database. The machine learning algorithms are implemented and 

performed using the Rstudio computer tool through the packages 

available on this platform such as (gplots), (rpart), and (e1071). 

 

Fig.1. The Clustering of the Cost of the Claims with K-Means 

Algorithm 

First, we construct a priori pricing. We retain two explanatory 

variables of the number of claims and the cost of claims most used 

in the motor insurance market in Morocco, namely "engine 

power" and "type of fuel". Thus, we use for the priori pricing the 

generalized linear models (appendix 1). Indeed, we use the 

Poisson distribution for the modelling of the number of claims and 

the gamma distribution for the cost modelling. After the 

development of the a priori tariff classes which give us 24 tariff 

classes corresponding to each engine power associated with each 

type of fuel (appendix 1), we proceed to the classification of the 
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costs of the claims using the K-means algorithm with four clusters 

(figure 1). For the four clusters, the average cost is 5818,501, 

1081,595, 1192,959 and 1080,819 respectively. 

Then, we create a new base which contains the number of 

claims during the period t N={0,1,2,3,4}, the class of tariffs 

C={1,..,k,..24}, the class of claims cost (H: high or L: low) and 

the cost of claims. 

For the first model, we model the cost of claims according to 

the three new variables mentioned above and for the second 

model, we model the cost of claims only according to the class of 

tariffs and the number of claims during the period t. Finally, we 

proceed to the calculation of the posteriori tariffs and the 

Coefficient of Reduction Increase. 

4. RESULTS 

4.1 RESULTS OF COST MODELLING: FIRST 

MODEL  

In order to choose the model that predicts the cost of claims 

well, we use Root Mean Squared Error RMSE. 

Table.1. Root Mean Squared Error of the First Model 

Model RMSE train data RMSE test data 

Decision Tree CART 1202.634 1195.358 

SVR (kernel=radial) 1251.599 1246.902 

SVR (kernel=linear) 1260.461 1263.742 

SVR (kernel=polynomial) 1247.553 1253.822 

KNN regression 1171.162 1240.114 

According to Root Mean Squared Error RMSE, the decision 

tree is the model that best minimizes this error with 1202.634 at 

the training base and 1195.358 at the test base. The KNN 

algorithm has the lowest error according to the training base but 

does not perform well the model at the test base. The SVR with a 

linear kernel function is the worst performing model on both 

bases. 

The decision tree according to the CART method retained 

after pruning with an error equal to 0.8994127 consists of 3 splits 

and 4 leaves.  

 

Fig.2. Decision Tree of the First Model 

According to this tree, for example, for an insured who will 

declare three claims with a very high amount, the estimated cost 

of loss is 2293. 

4.2 RESULTS OF COST MODELLING: SECOND 

MODEL  

Table.2. Root Mean Squared Error of the Second Model 

Model RMSE train data RMSE test data 

Decision Tree CART 1277.404     1274.283 

SVR (kernel=radial)   1303.632     1308.663 

SVR (kernel=linear)  1302.894     1299.512 

SVR (kernel=polynomial)  1305.019     1302.928 

KNN regression    1257.516     1297.412 

According to Root mean squared error, SVR with a kernel 

radial basis function is the model that does not minimize this error 

well with 1308.633 at the test base. The KNN algorithm has the 

lowest error according to the training base but does not perform 

well the model at the test base. On the other hand, the decision 

tree model with the CART method is the most efficient model in 

the two bases with an error equal to 1277.404 at the training base 

and 1274.283 at the test base. 

The decision tree retained after pruning with a minimum error 

equal to 1.0134 consists of 2 splits and 3 leaves. 

 

Fig.3. Decision Tree of the Second Model 

The tree (figure 3) shows for example that regardless of the 

class of tariff occupied by the insured, the estimated cost of claims 

for a declared number less than or equal to 2 is 1293. 

4.3 RESULTS OF POSTERIOR TARIFFICATION: 

FIRST MODEL  

The Table.3 below presents the posteriori premiums to be paid 

according to the class of the insured, the number of claims during 

the period, and the importance of the amount of the cost of claims.  

The premium presented in Table.3 is only the multiplication 

of the costs of claims estimated by the first decision tree model 

and the annual frequency of each tariff class estimated a priori 

(appendix 1). 
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Table.3. The posteriori premiums grid with the First Model 

 
Number of claims N=n and importance of cost claims 

W=w 

Class 

k 
n=0 

n=1 

w=L 

n=1 

w=H 

n=2 

w=L 

n=2 

w=H 

n>=3      

w=L 

n>=3 

w= H 

1 148,35 148,35 355,91 228,27 355,91 228,27 516,19 

2 164,52 164,52 394,70 253,15 394,70 253,15 572,46 

3 167,13 167,13 400,96 257,16 400,96 257,16 581,53 

4 154,06 154,06 369,61 237,06 369,61 237,06 536,07 

5 168,52 168,52 404,31 259,31 404,31 259,31 586,39 

6 193,25 193,25 463,62 297,35 463,62 297,35 672,40 

7 186,03 186,03 446,30 286,24 446,30 286,24 647,29 

8 177,97 177,97 426,96 273,84 426,96 273,84 619,24 

9 174,14 174,14 417,78 267,95 417,78 267,95 605,93 

10 159,29 159,29 382,14 245,09 382,14 245,09 554,24 

11 206,31 206,31 494,95 317,44 494,95 317,44 717,85 

12 209,58 209,58 502,80 322,48 502,80 322,48 729,23 

13 193,19 193,19 463,49 297,26 463,49 297,26 672,22 

14 211,33 211,33 506,99 325,17 506,99 325,17 735,31 

15 242,33 242,33 581,36 372,87 581,36 372,87 843,18 

16 223,17 223,17 535,40 343,39 535,40 343,39 776,51 

17 218,37 218,37 523,89 336,01 523,89 336,01 759,82 

18 199,74 199,74 479,19 307,34 479,19 307,34 695,00 

19 198,01 198,01 475,03 304,67 475,03 304,67 688,96 

20 248,24 248,24 595,55 381,97 595,55 381,97 863,75 

21 248,29 248,29 595,68 382,05 595,68 382,05 863,94 

22 311,29 311,29 746,80 478,98 746,80 478,98 1083,13 

23 205,14 205,14 492,15 315,65 492,15 315,65 713,79 

24 257,24 257,24 617,14 395,81 617,14 395,81 895,07 

The a priori premiums are the initial premiums that do not 

correspond to a specific level in the bonus malus grid, if the 

insured has caused no loss the premium is readjusted, and the 

insured is placed at level 1 with 0 claims, and after he moves in 

the grid according to the number of claims he has made and their 

importance. By way of illustration, a policyholder from class 1 

who has paid a prior premium equal to 266, if he has not claimed 

any accident, will enter the malus bonus grid from the 1st level, 

and he will pay a premium equal to 148 with a reduction 

coefficient equal to 55% (Table.4). If he has declared four large 

claims (H), he will be punished by an increased coefficient equal 

to 193% which corresponds to a premium of 516. 

Table.4. The Coefficient Reduction Increase with the First 

Model 

 Number of claims N=n and W=w 

Class k n=0 
n=1 

w=L 

n=1 

w=H 

n=2 

w=L 

n=2 

w=H 

n>=3      

w=L 

n>=3 

w= H 

1 55,72 55,72 133,67 85,73 133,67 85,73 193,87 

2 52,91 52,91 126,94 81,41 126,94 81,41 184,10 

3 53,22 53,22 127,68 81,89 127,68 81,89 185,17 

4 49,01 49,01 117,58 75,41 117,58 75,41 170,54 

5 51,56 51,56 123,70 79,34 123,70 79,34 179,41 

6 59,00 59,00 141,53 90,78 141,53 90,78 205,27 

7 55,25 55,25 132,54 85,01 132,54 85,01 192,23 

8 52,76 52,76 126,57 81,17 126,57 81,17 183,56 

9 50,95 50,95 122,24 78,40 122,24 78,40 177,29 

10 46,42 46,42 111,36 71,42 111,36 71,42 161,51 

11 52,44 52,44 125,81 80,69 125,81 80,69 182,46 

12 52,75 52,75 126,54 81,16 126,54 81,16 183,53 

13 48,54 48,54 116,45 74,69 116,45 74,69 168,89 

14 51,09 51,09 122,57 78,61 122,57 78,61 177,76 

15 58,52 58,52 140,40 90,05 140,40 90,05 203,63 

16 52,28 52,28 125,43 80,45 125,43 80,45 181,92 

17 50,48 50,48 121,11 77,67 121,11 77,67 175,65 

18 45,95 45,95 110,23 70,70 110,23 70,70 159,87 

19 44,21 44,21 106,07 68,03 106,07 68,03 153,84 

20 54,02 54,02 129,59 83,11 129,59 83,11 187,95 

21 43,74 43,74 104,94 67,30 104,94 67,30 152,20 

22 53,54 53,54 128,46 82,39 128,46 82,39 186,31 

23 34,59 34,59 82,99 53,23 82,99 53,23 120,36 

24 34,12 34,12 81,86 52,50 81,86 52,50 118,72 

The Table.4 presents the increase and reduction coefficients 

that are not fixed and which apply to the basic premium, in this 

case, the a priori premium at each movement in the grid. The 

increase reduction coefficient varies from 34% up to 205%. And 

each insured moves horizontally by coefficients that are specific 

to their level of risk. 

4.4 RESULTS OF POSTERIOR TARIFFICATION: 

SECOND MODEL  

In the second model, we retain only the number of claims and 

the a priori pricing class. The premiums calculated in Table.5 are 

the product of the annual frequency and the cost of claims 

according to the second decision tree model. According to this 

second model, there are only two levels for each class, namely 

whether the insured has declared a number of claims less than or 

equal to two or greater than or equal to three. 

Table.5. The Posteriori Premiums Grid with the Second Model 

  number of claims N=n 

Class k  n<3  n>=3  

1 291,07 350,73 

2 322,80 388,96 

3 327,92 395,13 

4 302,28 364,24 

5 330,66 398,42 

6 379,16 456,87 

7 365,00 439,81 

8 349,18 420,75 

9 341,68 411,70 
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10 312,53 376,58 

11 404,79 487,75 

12 411,21 495,48 

13 379,06 456,74 

14 414,64 499,62 

15 475,46 572,91 

16 437,87 527,61 

17 428,46 516,27 

18 391,90 839,27 

19 388,50 831,98 

20 487,06 1043,06 

21 487,17 1043,29 

22 610,76 1307,97 

23 402,50 861,96 

24 504,72 1080,88 

According to this model, the Bonus Malus grid underestimates 

the a priori premium because for most classes, even if the insured 

has not declared any claims, the premium is readjusted upwards 

so that it can correspond to the associated risk. For instance, if an 

insured from the class of risk is equal to 4 and he does not declare 

any claims in the period, he will get a Bonus equal to 4% 

(Table.6). So, he will pay 314*0.04 = 302 as the next posteriori 

premium. 

Table.6. The Coefficient Reduction Increase with the Second 

Model 

  number of claims N=n 

Classes k  n<3  n>=3  

1 109,32 131,73 

2 103,81 125,09 

3 104,42 125,82 

4 96,16 115,87 

5 101,17 121,90 

6 115,75 139,48 

7 108,40 130,61 

8 103,51 124,72 

9 99,97 120,46 

10 91,07 109,74 

11 102,89 123,98 

12 103,49 124,70 

13 95,24 114,76 

14 100,24 120,78 

15 114,83 138,36 

16 102,58 123,61 

17 99,05 119,35 

18 90,15 193,06 

19 86,75 185,77 

20 105,98 226,96 

21 85,82 183,79 

22 105,06 224,98 

23 67,87 145,35 

24 66,95 143,37 

4.5 FINANCIAL EQUILIBRIUM   

Table.7. Financial Balance Summary Table 

Number of insured 49 985 

Number of claims 7 475 

Total priori premium 18 377 765,55 

Total posteriori  

premium  

Model 1 9 755 331,957 

Model 2 18 360 510,42 

The total of the a priori premiums amount to 18 377 765.55 on 

the other hand the total of the posteriori premiums only gives rise 

to an amount of 9 755 331.957 which is not equal to the total of 

the priori premiums. However, the second model manages to 

achieve the threshold of financial equilibrium since the total 

amount of premiums collected according to this model amounts 

to 18 360 510.42, which is approximately equal to the total 

amount of priori premiums.  

5. DISCUSSION 

The first model of posteriori tariffication presented in the 

Table.3 allows us to integrate not only the number of claims 

declared but also the amounts of claims and their importance. 

Consequently, this model makes it possible to individualize the 

Malus like the Bonus and to introduce more transparency since 

the insured is not supposed to have more increased premium if he 

has not made claims whose cost is very high.  

So, our model has gained some scores in terms of transparency 

and individualization of claims but in terms of financial balance 

has not reached the threshold which requires, even more research 

and study to improve it. 

In the second system (Table.5), the insured has not a lot of 

levels to experience according to his level of risk. For some 

classes, if the insured makes more than 3 claims will be severely 

punished but if he makes no claims, he will pay a premium less 

than the last year and the same or more than the first priori 

premium. 

This system with just two levels allows the insurer to collect 

the same amount if the company applies the priori tariffication. 

As a result, our second model has gained scores in terms of 

financial balance but in terms of transparency still needs to be 

improved. 

This attempt to introduce machine learning techniques into the 

design of the Bonus-Malus System has the advantage of offering 

posterior premiums more suited to the risk profile taking into 

account the cost of claims, but it remains to be improved in other 

studies to review the problem of financial balance or to propose 

other techniques resulting from artificial intelligence can be used 

in the Bonus-Malus System in substitution to the classical 

approach. 
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6. CONCLUSION 

The insurer work in a competitive environment that 

necessitates offering a competitive product. Among these, we find 

the Bonus-Malus System. With this view in mind, this article 

presents a new conception of Bonus-Malus System or Coefficient 

Reduction Increase system in Morocco based on new tools, in 

occurrence, the Machine Learning algorithms. In contrast to the 

classical approach used in the literature, the most advantage of 

machine learning algorithms is that they do not depend on the 

assumptions of the number claims distributions provided in the 

traditional methods.  

We presented as a first attempt the possibility of estimating 

the posterior premium of the Bonus-Malus System directly using 

CART Classification And Regression Tree method, SVM the 

Support Vector Machine for regression, and KNN the K-Nearest 

Neighbor. In this study, we considered not only the number of 

claims but also the cost of claims. In addition, both models 

suggested taking into account the priori risk profiles determined 

at the priori tariffication by considering the class risk in the 

modelling.  

In general, the first model is optimal because it makes it 

possible to offer a fair Bonus-Malus System, each policyholder 

pays a posteriori premium that best corresponds to his level of risk 

taking into account the priori annual frequency of claims at each 

tariff class and the insured's recent personal driving experience. 

This will encourage insureds to drive carefully and renew their 

contracts with the insurer. 

 However, this work, which remains to be improved, is only 

the beginning of other research on the use of machine learning in 

the design of Bonus-Malus Systems which is not yet developed 

and remains limited to conventional approaches. Therefore, 

researchers are encouraged to investigate other possibilities for 

using machine learning in the Bonus-Malus System or improving 

these proposed models. 

APPENDIX 1 

Table.8. A Priori Tariffication Grid 

Classes 
Type of 

fuel 

Power 

engine 
Frequency  Cost  Premium  

1 Essence  11 0,22511578 1182,73 266 

2 Essence 6 0,24965441 1245,49 311 

3 Essence 9 0,25361253 1238,29 314 

4 Essence 4 0,23378475 1344,59 314 

5 Essence 7 0,25572834 1278,11 327 

6 Essence 12 0,29324214 1117,04 328 

7 Diesel  11 0,28228986 1192,83 337 

8 Essence 10 0,27005666 1249,16 337 

9 Essence 5 0,26425211 1293,36 342 

10 Essence 8 0,24170738 1419,72 343 

11 Diesel 6 0,31306071 1256,69 393 

12 Diesel 9 0,3180241 1249,36 397 

13 Diesel 4 0,29316053 1357,66 398 

14 Diesel 7 0,32067728 1289,91 414 

15 Diesel 12 0,36771869 1126,04 414 

16 Diesel 10 0,33864466 1260,42 427 

17 Diesel 5 0,33136588 1305,44 433 

18 Diesel 8 0,30309533 1434,29 435 

19 Essence 13 0,30046325 1490,54 448 

20 Essence 14 0,37669144 1220,02 460 

21 Diesel 13 0,3767738 1506,62 568 

22 Diesel 14 0,47236214 1230,77 581 

23 Essence 15 0,31128948 1905,06 593 

24 Diesel 15 0,39034964 1931,40 754 
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