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Abstract 

Swarm robotics applies concepts of swarm intelligence to robotics. 

Discrete consensus achievement is one of the major behaviors found in 

swarm robotics. Various algorithms have been developed for discrete 

consensus achievement. However, existing discrete consensus 

achievement algorithms are vulnerable to Byzantine robots. 

Blockchain has been successfully used to mitigate the negative effect 

of Byzantine robots. Nevertheless, since the blockchain solution uses 

the Proof-of-Work blockchain consensus algorithm, it is vulnerable to 

the 51% attack. Besides, the swarm also takes longer to achieve 

consensus. This research proposes a novel blockchain consensus 

algorithm called Proof-of-Identity—which uses a private-public key 

pair and a swarm controller—to create a dynamically permissioned 

blockchain that would negate the 51%-attack problem associated with 

the Proof-of-Work algorithm while also reducing the consensus time. 

This proposed solution was tested against the classical solution and the 

existing blockchain solution using the collective perception scenario. 

Test results show that the Proof-of-Identity algorithm prevents the 

51%-attack problem while improving the consensus time in comparison 

to the existing blockchain solution without affecting the exit 

probability. 
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1. INTRODUCTION 

Swarm robotics uses multiple, simple robots to collectively 

solve real-life problems. Collective decision-making is one of the 

applications of swarm robotics. In collective decision-making, 

robots in a swarm try to collectively come to a consensus on one 

particular decision. Consensus achievement is a type of collective 

decision-making scenario where robots collectively choose one 

among several choices.  

Several strategies exist to solve consensus achievement 

scenarios. However, such solutions are vulnerable to Byzantine 

robots. Blockchain-based solutions were developed to provide 

protection against Byzantine robots. However, blockchain 

introduced a new Byzantine problem in the form of the 51% 

attack. Further, these solutions also performed poorly in 

comparison to the existing solutions. Such issues with the 

blockchain-based solutions can be zeroed down to the Proof-of-

Work (PoW) blockchain consensus algorithm used.  

This paper proposes a novel blockchain consensus algorithm 

called Proof of Identity (PoI) to provide improved Byzantine fault 

tolerance to consensus achievement strategies in swarm robotics. 

Through performance and security testing, this study shows that 

the PoI algorithm offers immunity against the 51% attack while 

improving performance. 

 

This paper first discusses swarm robotics before providing a 

primer on blockchain. Then, existing classical and blockchain-

based solutions are explored. Subsequently, the methodology of 

the solution is discussed by explaining the PoI algorithm and the 

benchmarking tool that was developed. Finally, the experiment 

setup and test results are expounded before the findings are 

discussed and the conclusion is presented.   

2. SWARM ROBOTICS 

Swarm robotics applies concepts of swarm intelligence to 

robotics in order to solve problems that single, monolithic, or 

multi-agent robots cannot solve. 

Swarm intelligence is heavily inspired by biological systems 

found in nature such as ant colonies, bee colonies, bird flocking, 

and bacterial growth. These systems solve complex problems via 

the coordination of simple individuals. A good example of this is 

insect societies that contain simple and homogenous individuals 

that find the best route to a source by communicating using 

pheromones without centralization or synchronization [1].  

Swarm robotics can be formally defined as “the study of how 

large number of relatively simple physically embodied agents can 

be designed such that a desired collective behavior emerges from 

the local interactions among agents and between the agents and 

the environment” [2]. 

2.1 CLASSIFICATION OF SWARM ROBOTICS 

Brambilla et al. [3] classify the existing works into two major 

taxonomies, viz. methods and collective behaviors.  

The methods taxonomy is based on the methods used to design 

swarm robotics systems. The collective-behaviors taxonomy is 

based on the basic problem-solving behaviors of swarms. 

Collective behaviors are divided into four main groups: 

spatially organizing behaviors, navigation behaviors, collective 

decision-making behaviors, and other collective behaviors.  

This research deals with collective decision-making 

behaviors. Collective decision-making is having a swarm agree 

on a certain decision. This can be divided into consensus 

achievement and task allocation. Consensus achievement is 

choosing one option among several others while task allocation is 

distributing different tasks among robots. This research focuses 

on consensus-achievement behavior.  

3. BLOCKCHAIN 

Blockchain was invented to decentralize monetary systems 

through a distributed ledger. However, over time, blockchain has 
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started to be used to create decentralized applications as well [4] 

[5].  

A ledger is a chain of blocks that stores transactions. A 

private-public key pair is used to perform transactions. All nodes 

in a blockchain network get a copy of this ledger [6].  

A transactor sends money to a recipient by using the 

recipient’s public key. The transaction is signed using the 

transactor’s private key. A transactor must have already received 

the money to be able to send it. This is verified by checking if 

there are transactions in the chain that are addressed to the 

transactor’s public key.  

To prevent double spending, the order of transactions should 

be recorded. So, transactions are packed into blocks and the 

blocks are chained together using hashes. This makes the order 

immutable. The blocks are generated through a process called 

mining. The nodes that generate blocks are called miners. 

Miners compete to generate the next block. The winner is 

decided by a consensus algorithm. PoW is the most popular 

consensus algorithm at present. This algorithm decides the winner 

by checking if the hash value of a block is less than a specified 

value. The difficulty of mining a block can be adjusted by 

lowering or raising this value. Miners add a nonce value to their 

block to try to produce a block with a hash value below the 

specified value.  

Producing the right hash value is done through trial and error. 

This work takes CPU time. The right hash value serves as proof 

of the miner’s work.  Thus, this algorithm is called Proof of Work. 

To modify the order of blocks, the work done since that block has 

to be repeated. This is expensive, thus, making the blockchain 

immutable.  

4. RELATED WORK 

4.1 CLASSICAL APPROACH 

Valentini, Brambilla, et al. [7] introduced the collective 

perception scenario to test three different consensus-achievement 

strategies. In this scenario, the swarm tried to find the color of the 

majority of the tiles in a square grid that had black and white tiles. 

This scenario had two states, namely the exploration state and the 

dissemination state, and these were tantamount to the waggle 

dance of the bee populations [8]. 

Robots start with an opinion when the experiment is started. 

This opinion is about the color of the majority of the tiles.  In the 

exploration state, the robots explore their environments through 

random walk and rotations for a random amount of time. If a robot 

detects an obstacle within 30cm, then it turns in the opposite 

direction and continues its motion. In the meantime, the robots 

scan the color of the floor using their ground sensors. The quality 

pi of an opinion i, where i  {a, b} (a corresponds to black and b 

to white), is defined as the amount of time the robot detected the 

color of its opinion (ti) over the amount of time the robot spent in 

the exploration state (t).   

 pi =  ti/t (1) 

After the exploration state, robots switch to the dissemination 

state. During this state, while performing random walk and 

rotations, robots also broadcast their opinion to their neighbors. 

Towards the end of this state, robots update their opinion with the 

best opinion. The consensus strategy used decides how the best 

opinion is chosen. 

4.1.1 Direct Modulation of Majority-based Decision (DMMD): 

When this strategy is used, a robot remains in the 

dissemination state for a random amount of time proportional to 

the quality of its opinion. This allows a robot with a higher quality 

opinion to broadcast its opinion to a lot of neighbors.  

During the dissemination state, robots also receive the 

opinions of their neighboring robots. By the end of this state, the 

robots choose the opinion of the majority of their neighboring 

robots as their own and begin the next cycle. [9][10]. 

4.1.2 Direct Modulation of Voter-based Decision (DMVD): 

The DMVD strategy differs from the DMMD only in its 

decision-making mechanism. Just like DMMD, DMVD also 

modulates its dissemination time using the quality of its opinion.  

However, when DMVD is used, robots choose the opinion of 

a random neighbor as their own [11].  

4.1.3 Direct Comparison (DC): 

Unlike in DMMD and DMVD, the dissemination time is not 

modulated in DC. Instead, the dissemination time is randomly 

chosen. Besides, the robots broadcast the quality of their opinion 

in addition to their opinion. Towards the end, robots compare the 

quality of their opinion with that of a random neighbor and choose 

the greater of the two as their opinion [7].  

Consensus is achieved when all the robots end up with the 

same opinion. 

4.2 BLOCKCHAIN APPROACH 

Strobel et al. [12] attempted to solve the Byzantine problem in 

the classical DMMD, DMVD, and DC strategies using 

blockchain. The authors found that the classical solutions faltered 

when faulty or malicious robots kept broadcasting the wrong 

opinion and they showed that blockchain could make these 

strategies immune to Byzantine robots. 

In the blockchain approach, the exploration state was the same 

as it was in the classical approach. However, in the dissemination 

state, instead of broadcasting their opinion, robots voted using the 

smart contract. A vote was cast every 5 ticks (10 ticks made a 

second), so the higher the quality, the higher the number of votes 

was.  

After voting, robots executed the decision-making strategy by 

calling the smart contract. When DMMD was used, the opinions 

of two pseudorandom robots were chosen and the opinion of the 

majority was chosen as the best opinion. When DMVD was used, 

the opinion of a pseudorandom robot was chosen as the best 

opinion.  

When DC was used, robots passed both their opinion and its 

quality to the smart contract and picked the opinion of the higher 

quality between its own opinion and that of a pseudorandom 

robot. 

Strobel et al. [13] employed exogenous fault detection to 

identify Byzantine robots. A vote from a robot was rejected if it 

was based on an outdated opinion or if the blockchain versions 

were different. An outdated opinion is an opinion that has not 

been updated during the last 25 blocks. Besides, robots could cast 
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a maximum of 50 votes when DMMD and DMVD were used and 

only one vote when DC was used. 

Even though Strobel et al. (2018) solved the Byzantine 

problem using this approach, consensus time was found to be 

higher when compared to the classical approaches. This was 

because of the PoW consensus algorithm. 

Additionally, since PoW is resource-intensive, it is not 

suitable to run on simple robotics devices. Moreover, PoW 

introduced a new Byzantine problem in the form of the 51% 

attack, which meant that the Byzantine problem was not 

completely resolved. 

The PoW algorithm can be compromised by a node or a group 

of nodes with a hash rate in excess of 50% of the total hash rate 

of the network [14]. This attack is known as the 51% attack and 

the solution of Strobel et al. (2018) is vulnerable to it. 

5. METHODOLOGY 

5.1 PROOF OF IDENTITY (POI) 

The PoI algorithm allows only authorized nodes to mine 

blocks and thus, creates a permissioned blockchain. However, in 

contrast to the typical Proof-of-Authority (PoA) algorithms, the 

authorized nodes are not declared before the blockchain is run 

[15]. To allow new miners into the network during runtime, the 

PoI algorithm introduces a novel swarm controller that uses a 

private-public key pair to sign authorized miners. This allows PoI 

to create dynamically permissioned blockchains. 

When the swarm controller is spun up, a private-public key 

pair is generated. To add a new miner, the miner first sends its 

coinbase to the swarm controller. The swarm controller signs the 

coinbase with its private key and returns its signature. The miner 

also obtains the swarm controller’s public key. 

When mining a block, a miner adds its signature to the header 

of the block and seals it. When verifying blocks, the verifying 

node decrypts the signature of the block with the public key of the 

swarm controller and checks if the decrypted value is equal to the 

coinbase of the miner. If the values match, then the authenticity 

of the miner can be affirmed.   

This solves the 51% attack threat because no node, however 

powerful it might be, cannot compromise the network if it is not 

authorized by the swarm controller. At the same time, since the 

algorithm does not involve producing the right block through trial 

and error, the performance concerns are also rectified.  

 

Fig.1. A diagrammatic representation of the PoI algorithm 

5.2 BENCHMARKING TOOL 

The benchmarking tool was developed to benchmark the 

performance of the PoI algorithm using the collective perception 

scenario on top of the benchmarking tool developed by Valentini, 

Brambilla, et al. (2016), and Strobel et al. (2018). This 

benchmarking tool improves the existing tool by introducing a 

live dashboard to carry out experiments, a database to store 
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experiment data, and a service layer to facilitate communication 

between the dashboard and the simulator.  

 

Fig.2. The user interface of the benchmarking tool 

5.2.1 Architecture of the Benchmarking Tool: 

 

Fig.3. Layered architecture of the benchmarking tool 

The architecture of the prototype consists of the frontend 

layer, service layer, simulator layer, and blockchain layer. The 

frontend layer provides the user of this prototype with a user 

interface to interact with the prototype. The service layer sits in 

between the frontend layer and the simulator layer and provides 

the necessary APIs to the frontend layer to communicate with the 

simulator layer. The simulator layer interacts with the blockchain 

layer to solve the collective perception scenario using the smart 

contract deployed in the blockchain. The forthcoming section 

discusses these layers and the modules belonging to them 

elaborately. 

1. Front-end Layer 

This layer consists of the Graphical User Interface (GUI) that 

a user will be using to interact with the prototype. It consists of 

the following modules: 

• Experiment Creation Form: This is a form that allows a user 

to configure the parameters of the experiment such as the 

number of robots, the decision rule to be used, the 

percentage of black and white tiles, the number of Byzantine 

robots and the approach to be used. 

• Experiment Queue: Since, to benchmark different solutions, 

a user may need to run experiments in batches, experiments 

created using the Experiment Creation Form are added to 

this queue. This queue allows users to delete experiments 

that are later deemed unnecessary, specify the number of 

times each experiment should be repeated, and provides a 

button to start running the experiments in the queue.  

• Experiment Data View: This view shows the result of each 

experiment live as it is completed in a tabular format. This 

view also allows the user to download the results as a 

Comma-Separated-Values (CSV) file. Moreover, this view 

also shows a progress bar to give the user an idea about how 

many experiments have been completed and how many 

more remain. 

2. The Service Layer 

This layer allows the frontend layer to communicate with the 

simulator layer by providing the necessary APIs. The 

configurations of the experiment entered through the frontend 

layer are fed to the simulator via this layer. This layer also 

communicates the results of the experiment from the simulator 

layer to the frontend layer. The modules contained in this layer 

are as follows: 

• REST API Service: This provides REST API services to be 

consumed by the frontend layer. Users can configure 

experiments, start experiments and get experiment results 

using these REST API services. The experiment 

configurations sent to this service by the frontend are also 

persisted in a database in the data layer. 

• Websocket: This allows live experiment results to be 

streamed to the frontend layer so that users can view the 

experiment results in a GUI that gets updated automatically.  

• Message Queue: This is used to capture the experiment 

results from the simulator layer. This allows process-to-

process communication between the server and the 

simulator. The experiment results in the message queue are 

also persisted in a database in the data layer. 

3. The Simulator Layer 

This is the layer where the experiments are run. This layer gets 

the experiment configuration from the service layer, runs the 

experiments, and communicates the results of the experiments 

back to the service layer using the message queue. This layer 

consists of the following modules: 

• Test Grid: This is the environment in which the robots will 

operate on. This is a 200 × 200cm2 grid consisting of 10 × 

10cm2 tiles of colors black and white. The ratio between the 

number of black and white tiles is configurable. Moreover, 

this grid is bounded by walls that can be detected by the 

robots to avoid collisions. 

• e-puck Robot: This is a small robot with a footprint of 7cm2 

that is used to sense the color of the tiles and to take part in 

the consensus achievement task to find the color of the 

majority of the tiles. When blockchain is used, this robot also 

acts as a miner.  
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• ARGoS 3: This is the simulator that controls the robots. This 

simulator runs the robots on the test grid and finds out if a 

consensus has been reached or not. Apart from this, the 

simulator also gathers evaluation metrics such as the exit 

probability and consensus time and communicates them to 

the service layer. 

4. The Blockchain Layer 

The blockchain layer consists of the blockchain, the mining 

nodes, the validators, and the swarm controller. The e-puck robots 

in the simulator layer publish their opinion to the blockchain and 

receive updated opinions from the smart contract running on the 

blockchain. The functionality of the modules in this layer is 

discussed below. 

• Swarm Controller: This module signs the coinbase of the 

miners with its own private key and distributes its public key 

to the miners. This allows the PoI algorithm to create a 

dynamically permissioned blockchain.  

• Miner: The e-puck robots also act as miners who mine 

blocks to be added to the blockchain. When the robots 

publish their opinions as transactions, the miners verify 

these transactions and add them to a new block before 

sealing them with the signature.  

• Validator: The e-puck robots also act as validators. The 

validators validate the blocks mined by the miners before 

adding them to their blockchain. The blocks are validated by 

verifying the signature found in the blocks using their 

coinbase and the public key of the swarm controller.  

• Blockchain: The smart contract that runs the decision rule 

algorithm is deployed in the blockchain. 

5. The Data Layer 

The data layer consists of a database that is used to persist the 

experiment results so that this data can be later serialized into a 

different format or used as it is for data analysis. Aside from this, 

experiment configurations sent by the frontend to the REST API 

service are also persisted in the database. 

5.2.2 The Functioning of the Benchmarking Tool: 

The Fig.3 shows the data flow diagram that shows how data 

flows between different components of the benchmarking tool. 

Accordingly, it can be seen that a user first inputs the experiment 

configuration to the frontend app, which is then sent to the REST 

API service. This data is persisted in a database while being fed 

into the ARGoS 3 simulator. The simulator then configures the e-

puck robots using this configuration data.  

The e-puck robots sense the color of the tiles in the test grid 

and transact their opinion about the color to the blockchain 

miners. The miners verify these transactions, pack them into 

blocks and broadcast them to the validators. The validators 

validate these blocks and add them to their blockchain. The 

blockchain smart contract runs the decision rules and updates the 

e-puck robots with the new opinion. The ARGoS 3 simulator 

reads the opinions of the robots to decide if a consensus has been 

reached.  

Once consensus is reached, the evaluation metrics of the 

experiment are pushed to the message queue. These metrics are 

persisted in the database and emitted to the frontend using a 

WebSocket so that the user can view the data live. 

 

Fig.4. The data flow diagram of the benchmarking tool 

6. TESTING 

6.1 COLLECTIVE PERCEPTION EXPERIMENT 

The collective perception scenario was used to benchmark the 

research prototype. The collective perception scenario involves a 

fixed number of robots coming to a consensus on the color of most 

tiles in a grid. 

For the purposes of this research, 10 e-puck robots were 

deployed in a 200cm x 200cm grid bounded by four walls. The 

grid had 400 tiles each of area 10cm x 10cm. The tiles were either 

black or white in color and the ratio between the number of black 

and white tiles determined the difficulty of the challenge. The 

difficulty of the challenge is given by the following equation: 

 ρb = b/w  (2) 

where: 

ρb is the difficulty of choosing white as the best opinion 

b is the percentage of black tiles 

w is the percentage of white tiles 

At the beginning of the experiment, one half of the robots 

started with the opinion black, and the other half started with the 

opinion white. During the experiments, robots changed their 

opinions based on the decision rules used and the experiment 

ended when all robots had the same opinion. In the experiments 

performed, white was always the color of most of the tiles. This 

was done to ensure the results of these experiments could be 

compared to those of the existing research works.   

The experiments were executed in discreet time steps called 

ticks with 10 ticks forming a second.  During the experiment, two 
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robots could communicate with one another only when the 

distance between them was under 50cm.  

The experiments had the following configurable parameters, 

and experiments were run for every value of each of these 

parameters. The parameters and the values they took are given in 

Table.1. 

Table.1. The experiment parameters and their values 

Parameter Values 

Difficulty 0.52, 0.56, 0.61, 0.67, 0.72, 0.79, 0.85, 0.92 

Decision Rules DMMD, DMVD, DC 

Approach Classical, Proof of Work (PoW), PoI 

The following metrics were used for benchmarking: 

• Exit probability: The number of correct consensus decisions 

over the total number of runs. 

• Consensus time: The time taken by a swarm to achieve the 

correct consensus. 

Tests were run for the following approaches: 

• Classical: The original approach used by Valentini et al. 

(2016). 

• PoW: The blockchain-based approach used by Strobel, 

Ferrer and Dorigo (2018) using the PoW consensus 

algorithm. 

• PoI: The blockchain-based approach used by Strobel, Ferrer 

and Dorigo (2018) using the PoI consensus algorithm. 

Thus, altogether, 72 different types of experiments were 

planned. To avoid random errors and variations, each type of 

experiment was repeated 10 times. Consequently, 720 

experiments were run in total.  

6.2 EXPERIMENT SETUP 

The experiments were run on a virtual machine running on a 

macOS host. The details of the virtual machine and the host 

machine are furnished in Table.2. 

Table.2. Experiment setup 

 Component Model/Type/Capacity 

Virtual 

Machine 

CPU ARM64 

Operating 

System 
Debian 11.3.0 

RAM 14GB 

Hypervisor 
QEMU 7.0 ARM Virtual 

Machine 

Host 

Machines 

CPU Apple M1 Pro 

Operating 

System 
macOS Monterey 

RAM 16GB (Unified memory) 

6.3 TEST RESULTS 

The Fig.5 shows the exit probability obtained for the three 

decision rules using the classical, PoW, and PoI approaches on a 

column graph.  

 

Fig.5. Exit probability for different decision rules and 

approaches 

The Fig.5 shows the consensus time obtained for the three 

decision rules using the three different approaches on a box plot. 

 

Fig.6. Consensus time for different decision rules and 

approaches 

The results obtained for the classical as well as the PoW 

approaches were mostly consistent with the findings of  Strobel, 

Ferrer and Dorigo (2018). The DC decision rule with the classical 

approach showed the highest exit probability under all but one 

difficulty settings. The DC decision rule along with the classical 

approach also produced the fastest consensus time. 

The DMVD decision rule with the classical approach showed 

a steady decline in exit probability with the rise in difficulty 

whereas the DMMD rule, though showed an overall decline, had 

comparatively more variability. Overall, as far as the exit 

probability was concerned, the blockchain approach performed 

worse than the classical approach in comparison. Both the PoI and 

PoW approaches showed greater parity even though the PoI 

performed marginally better under certain circumstances.  

The consensus time of both the classical approach and the 

blockchain approaches steadily increased with difficulty for the 

DC decision rule. However, even though the classical approach 

showed a similar steady increase for both the DMMD and DMVD 

decision rules, the consensus time of the blockchain approaches 

was largely disaffected by the difficulty. This observation is 

consistent with that of  Strobel, Ferrer and Dorigo (2018). 
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However, unlike it was the case with the exit probability, the 

consensus time of the PoI approach showed a significant 

improvement in comparison to the PoW approach for all decision 

rules. Notwithstanding, the consensus time of the PoI approach 

was generally higher than that of the classical approach. 

7. DISCUSSION 

The findings of the tests were very similar to the findings of 

Strobel, Ferrer and Dorigo (2018). Generally, the classical 

approach had a better exit probability than both the PoI and PoW 

approaches. This is due to the limitation of the blockchain 

approach as explained by Strobel, Ferrer and Dorigo (2018). In 

the classical approach, duplicate opinions from the neighbors are 

discarded, while in the blockchain approach, no such 

implementation exists. The classical approach was also faster than 

the PoI and PoW approaches. This is due to the delays introduced 

by the mining process. However, the PoI approach was shown to 

be faster than the PoW approach. The test results showed that the 

PoI algorithm, developed to nullify the Byzantine robot issue 

introduced by the 51%-attack threat inherent to the PoW 

algorithm, made consensus achievement faster while not 

impacting the exit probability under most circumstances and 

slightly improving it under some.  

8. CONCLUSION 

This research work improved Byzantine fault tolerance in 

swarm robotics by addressing the 51%-attack issue found in the 

existing blockchain solution without compromising on the 

performance. Moreover, the developed solution was also shown 

to perform better than the existing blockchain solution improving 

the practical usability of blockchain-based solutions.  

Besides, this research also created a web application to 

benchmark solutions to the collective perception scenario. This 

application will help future researchers benchmark their solutions 

in a lot more user-friendly manner. 
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