
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2023, VOLUME: 13, ISSUE: 04

DOI: 10.21917/ijsc.2023.0426

3027

IMPROVING BYZANTINE FAULT TOLERANCE IN SWARM ROBOTICS

COLLECTIVE DECISION-MAKING SCENARIO VIA A NEW BLOCKCHAIN

CONSENSUS ALGORITHM

Theviyanthan Krishnamohan
Department of Computer Science and Engineering, University of Westminster, United Kingdom

Abstract

Swarm robotics applies concepts of swarm intelligence to robotics.

Discrete consensus achievement is one of the major behaviors found in

swarm robotics. Various algorithms have been developed for discrete

consensus achievement. However, existing discrete consensus

achievement algorithms are vulnerable to Byzantine robots.

Blockchain has been successfully used to mitigate the negative effect

of Byzantine robots. Nevertheless, since the blockchain solution uses

the Proof-of-Work blockchain consensus algorithm, it is vulnerable to

the 51% attack. Besides, the swarm also takes longer to achieve

consensus. This research proposes a novel blockchain consensus

algorithm called Proof-of-Identity—which uses a private-public key

pair and a swarm controller—to create a dynamically permissioned

blockchain that would negate the 51%-attack problem associated with

the Proof-of-Work algorithm while also reducing the consensus time.

This proposed solution was tested against the classical solution and the

existing blockchain solution using the collective perception scenario.

Test results show that the Proof-of-Identity algorithm prevents the

51%-attack problem while improving the consensus time in comparison

to the existing blockchain solution without affecting the exit

probability.

Keywords:

Blockchain, Swarm Robotics, Proof Of Identity, Proof Of Work,

Blockchain Consensus Algorithm, Collective Perception

1. INTRODUCTION

Swarm robotics uses multiple, simple robots to collectively

solve real-life problems. Collective decision-making is one of the

applications of swarm robotics. In collective decision-making,

robots in a swarm try to collectively come to a consensus on one

particular decision. Consensus achievement is a type of collective

decision-making scenario where robots collectively choose one

among several choices.

Several strategies exist to solve consensus achievement

scenarios. However, such solutions are vulnerable to Byzantine

robots. Blockchain-based solutions were developed to provide

protection against Byzantine robots. However, blockchain

introduced a new Byzantine problem in the form of the 51%

attack. Further, these solutions also performed poorly in

comparison to the existing solutions. Such issues with the

blockchain-based solutions can be zeroed down to the Proof-of-

Work (PoW) blockchain consensus algorithm used.

This paper proposes a novel blockchain consensus algorithm

called Proof of Identity (PoI) to provide improved Byzantine fault

tolerance to consensus achievement strategies in swarm robotics.

Through performance and security testing, this study shows that

the PoI algorithm offers immunity against the 51% attack while

improving performance.

This paper first discusses swarm robotics before providing a

primer on blockchain. Then, existing classical and blockchain-

based solutions are explored. Subsequently, the methodology of

the solution is discussed by explaining the PoI algorithm and the

benchmarking tool that was developed. Finally, the experiment

setup and test results are expounded before the findings are

discussed and the conclusion is presented.

2. SWARM ROBOTICS

Swarm robotics applies concepts of swarm intelligence to

robotics in order to solve problems that single, monolithic, or

multi-agent robots cannot solve.

Swarm intelligence is heavily inspired by biological systems

found in nature such as ant colonies, bee colonies, bird flocking,

and bacterial growth. These systems solve complex problems via

the coordination of simple individuals. A good example of this is

insect societies that contain simple and homogenous individuals

that find the best route to a source by communicating using

pheromones without centralization or synchronization [1].

Swarm robotics can be formally defined as “the study of how

large number of relatively simple physically embodied agents can

be designed such that a desired collective behavior emerges from

the local interactions among agents and between the agents and

the environment” [2].

2.1 CLASSIFICATION OF SWARM ROBOTICS

Brambilla et al. [3] classify the existing works into two major

taxonomies, viz. methods and collective behaviors.

The methods taxonomy is based on the methods used to design

swarm robotics systems. The collective-behaviors taxonomy is

based on the basic problem-solving behaviors of swarms.

Collective behaviors are divided into four main groups:

spatially organizing behaviors, navigation behaviors, collective

decision-making behaviors, and other collective behaviors.

This research deals with collective decision-making

behaviors. Collective decision-making is having a swarm agree

on a certain decision. This can be divided into consensus

achievement and task allocation. Consensus achievement is

choosing one option among several others while task allocation is

distributing different tasks among robots. This research focuses

on consensus-achievement behavior.

3. BLOCKCHAIN

Blockchain was invented to decentralize monetary systems

through a distributed ledger. However, over time, blockchain has

THEVIYANTHAN KRISHNAMOHAN: IMPROVING BYZANTINE FAULT TOLERANCE IN SWARM ROBOTICS COLLECTIVE DECISION-MAKING SCENARIO VIA A NEW

BLOCKCHAIN CONSENSUS ALGORITHM

3028

started to be used to create decentralized applications as well [4]

[5].

A ledger is a chain of blocks that stores transactions. A

private-public key pair is used to perform transactions. All nodes

in a blockchain network get a copy of this ledger [6].

A transactor sends money to a recipient by using the

recipient’s public key. The transaction is signed using the

transactor’s private key. A transactor must have already received

the money to be able to send it. This is verified by checking if

there are transactions in the chain that are addressed to the

transactor’s public key.

To prevent double spending, the order of transactions should

be recorded. So, transactions are packed into blocks and the

blocks are chained together using hashes. This makes the order

immutable. The blocks are generated through a process called

mining. The nodes that generate blocks are called miners.

Miners compete to generate the next block. The winner is

decided by a consensus algorithm. PoW is the most popular

consensus algorithm at present. This algorithm decides the winner

by checking if the hash value of a block is less than a specified

value. The difficulty of mining a block can be adjusted by

lowering or raising this value. Miners add a nonce value to their

block to try to produce a block with a hash value below the

specified value.

Producing the right hash value is done through trial and error.

This work takes CPU time. The right hash value serves as proof

of the miner’s work. Thus, this algorithm is called Proof of Work.

To modify the order of blocks, the work done since that block has

to be repeated. This is expensive, thus, making the blockchain

immutable.

4. RELATED WORK

4.1 CLASSICAL APPROACH

Valentini, Brambilla, et al. [7] introduced the collective

perception scenario to test three different consensus-achievement

strategies. In this scenario, the swarm tried to find the color of the

majority of the tiles in a square grid that had black and white tiles.

This scenario had two states, namely the exploration state and the

dissemination state, and these were tantamount to the waggle

dance of the bee populations [8].

Robots start with an opinion when the experiment is started.

This opinion is about the color of the majority of the tiles. In the

exploration state, the robots explore their environments through

random walk and rotations for a random amount of time. If a robot

detects an obstacle within 30cm, then it turns in the opposite

direction and continues its motion. In the meantime, the robots

scan the color of the floor using their ground sensors. The quality

pi of an opinion i, where i {a, b} (a corresponds to black and b

to white), is defined as the amount of time the robot detected the

color of its opinion (ti) over the amount of time the robot spent in

the exploration state (t).

 pi = ti/t (1)

After the exploration state, robots switch to the dissemination

state. During this state, while performing random walk and

rotations, robots also broadcast their opinion to their neighbors.

Towards the end of this state, robots update their opinion with the

best opinion. The consensus strategy used decides how the best

opinion is chosen.

4.1.1 Direct Modulation of Majority-based Decision (DMMD):

When this strategy is used, a robot remains in the

dissemination state for a random amount of time proportional to

the quality of its opinion. This allows a robot with a higher quality

opinion to broadcast its opinion to a lot of neighbors.

During the dissemination state, robots also receive the

opinions of their neighboring robots. By the end of this state, the

robots choose the opinion of the majority of their neighboring

robots as their own and begin the next cycle. [9][10].

4.1.2 Direct Modulation of Voter-based Decision (DMVD):

The DMVD strategy differs from the DMMD only in its

decision-making mechanism. Just like DMMD, DMVD also

modulates its dissemination time using the quality of its opinion.

However, when DMVD is used, robots choose the opinion of

a random neighbor as their own [11].

4.1.3 Direct Comparison (DC):

Unlike in DMMD and DMVD, the dissemination time is not

modulated in DC. Instead, the dissemination time is randomly

chosen. Besides, the robots broadcast the quality of their opinion

in addition to their opinion. Towards the end, robots compare the

quality of their opinion with that of a random neighbor and choose

the greater of the two as their opinion [7].

Consensus is achieved when all the robots end up with the

same opinion.

4.2 BLOCKCHAIN APPROACH

Strobel et al. [12] attempted to solve the Byzantine problem in

the classical DMMD, DMVD, and DC strategies using

blockchain. The authors found that the classical solutions faltered

when faulty or malicious robots kept broadcasting the wrong

opinion and they showed that blockchain could make these

strategies immune to Byzantine robots.

In the blockchain approach, the exploration state was the same

as it was in the classical approach. However, in the dissemination

state, instead of broadcasting their opinion, robots voted using the

smart contract. A vote was cast every 5 ticks (10 ticks made a

second), so the higher the quality, the higher the number of votes

was.

After voting, robots executed the decision-making strategy by

calling the smart contract. When DMMD was used, the opinions

of two pseudorandom robots were chosen and the opinion of the

majority was chosen as the best opinion. When DMVD was used,

the opinion of a pseudorandom robot was chosen as the best

opinion.

When DC was used, robots passed both their opinion and its

quality to the smart contract and picked the opinion of the higher

quality between its own opinion and that of a pseudorandom

robot.

Strobel et al. [13] employed exogenous fault detection to

identify Byzantine robots. A vote from a robot was rejected if it

was based on an outdated opinion or if the blockchain versions

were different. An outdated opinion is an opinion that has not

been updated during the last 25 blocks. Besides, robots could cast

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2023, VOLUME: 13, ISSUE: 04

3029

a maximum of 50 votes when DMMD and DMVD were used and

only one vote when DC was used.

Even though Strobel et al. (2018) solved the Byzantine

problem using this approach, consensus time was found to be

higher when compared to the classical approaches. This was

because of the PoW consensus algorithm.

Additionally, since PoW is resource-intensive, it is not

suitable to run on simple robotics devices. Moreover, PoW

introduced a new Byzantine problem in the form of the 51%

attack, which meant that the Byzantine problem was not

completely resolved.

The PoW algorithm can be compromised by a node or a group

of nodes with a hash rate in excess of 50% of the total hash rate

of the network [14]. This attack is known as the 51% attack and

the solution of Strobel et al. (2018) is vulnerable to it.

5. METHODOLOGY

5.1 PROOF OF IDENTITY (POI)

The PoI algorithm allows only authorized nodes to mine

blocks and thus, creates a permissioned blockchain. However, in

contrast to the typical Proof-of-Authority (PoA) algorithms, the

authorized nodes are not declared before the blockchain is run

[15]. To allow new miners into the network during runtime, the

PoI algorithm introduces a novel swarm controller that uses a

private-public key pair to sign authorized miners. This allows PoI

to create dynamically permissioned blockchains.

When the swarm controller is spun up, a private-public key

pair is generated. To add a new miner, the miner first sends its

coinbase to the swarm controller. The swarm controller signs the

coinbase with its private key and returns its signature. The miner

also obtains the swarm controller’s public key.

When mining a block, a miner adds its signature to the header

of the block and seals it. When verifying blocks, the verifying

node decrypts the signature of the block with the public key of the

swarm controller and checks if the decrypted value is equal to the

coinbase of the miner. If the values match, then the authenticity

of the miner can be affirmed.

This solves the 51% attack threat because no node, however

powerful it might be, cannot compromise the network if it is not

authorized by the swarm controller. At the same time, since the

algorithm does not involve producing the right block through trial

and error, the performance concerns are also rectified.

Fig.1. A diagrammatic representation of the PoI algorithm

5.2 BENCHMARKING TOOL

The benchmarking tool was developed to benchmark the

performance of the PoI algorithm using the collective perception

scenario on top of the benchmarking tool developed by Valentini,

Brambilla, et al. (2016), and Strobel et al. (2018). This

benchmarking tool improves the existing tool by introducing a

live dashboard to carry out experiments, a database to store

Swarm Controller

Validator

Signature

New Block

Signature

Node

Signature

Node

Signature

Consensus Algorithm

Verifies if the block was

mined by an authorized

validator

Blockchain

Signs

Mines

Propagated to

all nodes

Distributes its

public key

Adds to blockchain

THEVIYANTHAN KRISHNAMOHAN: IMPROVING BYZANTINE FAULT TOLERANCE IN SWARM ROBOTICS COLLECTIVE DECISION-MAKING SCENARIO VIA A NEW

BLOCKCHAIN CONSENSUS ALGORITHM

3030

experiment data, and a service layer to facilitate communication

between the dashboard and the simulator.

Fig.2. The user interface of the benchmarking tool

5.2.1 Architecture of the Benchmarking Tool:

Fig.3. Layered architecture of the benchmarking tool

The architecture of the prototype consists of the frontend

layer, service layer, simulator layer, and blockchain layer. The

frontend layer provides the user of this prototype with a user

interface to interact with the prototype. The service layer sits in

between the frontend layer and the simulator layer and provides

the necessary APIs to the frontend layer to communicate with the

simulator layer. The simulator layer interacts with the blockchain

layer to solve the collective perception scenario using the smart

contract deployed in the blockchain. The forthcoming section

discusses these layers and the modules belonging to them

elaborately.

1. Front-end Layer

This layer consists of the Graphical User Interface (GUI) that

a user will be using to interact with the prototype. It consists of

the following modules:

• Experiment Creation Form: This is a form that allows a user

to configure the parameters of the experiment such as the

number of robots, the decision rule to be used, the

percentage of black and white tiles, the number of Byzantine

robots and the approach to be used.

• Experiment Queue: Since, to benchmark different solutions,

a user may need to run experiments in batches, experiments

created using the Experiment Creation Form are added to

this queue. This queue allows users to delete experiments

that are later deemed unnecessary, specify the number of

times each experiment should be repeated, and provides a

button to start running the experiments in the queue.

• Experiment Data View: This view shows the result of each

experiment live as it is completed in a tabular format. This

view also allows the user to download the results as a

Comma-Separated-Values (CSV) file. Moreover, this view

also shows a progress bar to give the user an idea about how

many experiments have been completed and how many

more remain.

2. The Service Layer

This layer allows the frontend layer to communicate with the

simulator layer by providing the necessary APIs. The

configurations of the experiment entered through the frontend

layer are fed to the simulator via this layer. This layer also

communicates the results of the experiment from the simulator

layer to the frontend layer. The modules contained in this layer

are as follows:

• REST API Service: This provides REST API services to be

consumed by the frontend layer. Users can configure

experiments, start experiments and get experiment results

using these REST API services. The experiment

configurations sent to this service by the frontend are also

persisted in a database in the data layer.

• Websocket: This allows live experiment results to be

streamed to the frontend layer so that users can view the

experiment results in a GUI that gets updated automatically.

• Message Queue: This is used to capture the experiment

results from the simulator layer. This allows process-to-

process communication between the server and the

simulator. The experiment results in the message queue are

also persisted in a database in the data layer.

3. The Simulator Layer

This is the layer where the experiments are run. This layer gets

the experiment configuration from the service layer, runs the

experiments, and communicates the results of the experiments

back to the service layer using the message queue. This layer

consists of the following modules:

• Test Grid: This is the environment in which the robots will

operate on. This is a 200 × 200cm2 grid consisting of 10 ×

10cm2 tiles of colors black and white. The ratio between the

number of black and white tiles is configurable. Moreover,

this grid is bounded by walls that can be detected by the

robots to avoid collisions.

• e-puck Robot: This is a small robot with a footprint of 7cm2

that is used to sense the color of the tiles and to take part in

the consensus achievement task to find the color of the

majority of the tiles. When blockchain is used, this robot also

acts as a miner.

Frontend Layer

Simulation Layer

Blockchain Layer

Experiment

Creation Form
Experiment Queue

Experiment Data

View

Websocket REST API Service Message Queue

Data Layer

Test Grid e-puck Robot ARGoS 3
Database

Swarm

Controller
Miner Validator Blockchain

Service Layer

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2023, VOLUME: 13, ISSUE: 04

3031

• ARGoS 3: This is the simulator that controls the robots. This

simulator runs the robots on the test grid and finds out if a

consensus has been reached or not. Apart from this, the

simulator also gathers evaluation metrics such as the exit

probability and consensus time and communicates them to

the service layer.

4. The Blockchain Layer

The blockchain layer consists of the blockchain, the mining

nodes, the validators, and the swarm controller. The e-puck robots

in the simulator layer publish their opinion to the blockchain and

receive updated opinions from the smart contract running on the

blockchain. The functionality of the modules in this layer is

discussed below.

• Swarm Controller: This module signs the coinbase of the

miners with its own private key and distributes its public key

to the miners. This allows the PoI algorithm to create a

dynamically permissioned blockchain.

• Miner: The e-puck robots also act as miners who mine

blocks to be added to the blockchain. When the robots

publish their opinions as transactions, the miners verify

these transactions and add them to a new block before

sealing them with the signature.

• Validator: The e-puck robots also act as validators. The

validators validate the blocks mined by the miners before

adding them to their blockchain. The blocks are validated by

verifying the signature found in the blocks using their

coinbase and the public key of the swarm controller.

• Blockchain: The smart contract that runs the decision rule

algorithm is deployed in the blockchain.

5. The Data Layer

The data layer consists of a database that is used to persist the

experiment results so that this data can be later serialized into a

different format or used as it is for data analysis. Aside from this,

experiment configurations sent by the frontend to the REST API

service are also persisted in the database.

5.2.2 The Functioning of the Benchmarking Tool:

The Fig.3 shows the data flow diagram that shows how data

flows between different components of the benchmarking tool.

Accordingly, it can be seen that a user first inputs the experiment

configuration to the frontend app, which is then sent to the REST

API service. This data is persisted in a database while being fed

into the ARGoS 3 simulator. The simulator then configures the e-

puck robots using this configuration data.

The e-puck robots sense the color of the tiles in the test grid

and transact their opinion about the color to the blockchain

miners. The miners verify these transactions, pack them into

blocks and broadcast them to the validators. The validators

validate these blocks and add them to their blockchain. The

blockchain smart contract runs the decision rules and updates the

e-puck robots with the new opinion. The ARGoS 3 simulator

reads the opinions of the robots to decide if a consensus has been

reached.

Once consensus is reached, the evaluation metrics of the

experiment are pushed to the message queue. These metrics are

persisted in the database and emitted to the frontend using a

WebSocket so that the user can view the data live.

Fig.4. The data flow diagram of the benchmarking tool

6. TESTING

6.1 COLLECTIVE PERCEPTION EXPERIMENT

The collective perception scenario was used to benchmark the

research prototype. The collective perception scenario involves a

fixed number of robots coming to a consensus on the color of most

tiles in a grid.

For the purposes of this research, 10 e-puck robots were

deployed in a 200cm x 200cm grid bounded by four walls. The

grid had 400 tiles each of area 10cm x 10cm. The tiles were either

black or white in color and the ratio between the number of black

and white tiles determined the difficulty of the challenge. The

difficulty of the challenge is given by the following equation:

 ρb = b/w (2)

where:

ρb is the difficulty of choosing white as the best opinion

b is the percentage of black tiles

w is the percentage of white tiles

At the beginning of the experiment, one half of the robots

started with the opinion black, and the other half started with the

opinion white. During the experiments, robots changed their

opinions based on the decision rules used and the experiment

ended when all robots had the same opinion. In the experiments

performed, white was always the color of most of the tiles. This

was done to ensure the results of these experiments could be

compared to those of the existing research works.

The experiments were executed in discreet time steps called

ticks with 10 ticks forming a second. During the experiment, two

Developer Frontend App Websocket

REST API Service Database Message Queue

ARGoS 3

e-puck Robot

Blockchain

Test Grid

Miner Validator Swarm Controller

Experiment

Configuration
Experiment

Data

Experiment

Configuration

Experiment

Configuration
Experiment

Data

Experiment

Data

Experiment

Configuration

Start

Signal

Opinion

New

Opinion Tile

Color

Signature Block

Public Key

Block

Experiment

Data

Transaction with opinion

THEVIYANTHAN KRISHNAMOHAN: IMPROVING BYZANTINE FAULT TOLERANCE IN SWARM ROBOTICS COLLECTIVE DECISION-MAKING SCENARIO VIA A NEW

BLOCKCHAIN CONSENSUS ALGORITHM

3032

robots could communicate with one another only when the

distance between them was under 50cm.

The experiments had the following configurable parameters,

and experiments were run for every value of each of these

parameters. The parameters and the values they took are given in

Table.1.

Table.1. The experiment parameters and their values

Parameter Values

Difficulty 0.52, 0.56, 0.61, 0.67, 0.72, 0.79, 0.85, 0.92

Decision Rules DMMD, DMVD, DC

Approach Classical, Proof of Work (PoW), PoI

The following metrics were used for benchmarking:

• Exit probability: The number of correct consensus decisions

over the total number of runs.

• Consensus time: The time taken by a swarm to achieve the

correct consensus.

Tests were run for the following approaches:

• Classical: The original approach used by Valentini et al.

(2016).

• PoW: The blockchain-based approach used by Strobel,

Ferrer and Dorigo (2018) using the PoW consensus

algorithm.

• PoI: The blockchain-based approach used by Strobel, Ferrer

and Dorigo (2018) using the PoI consensus algorithm.

Thus, altogether, 72 different types of experiments were

planned. To avoid random errors and variations, each type of

experiment was repeated 10 times. Consequently, 720

experiments were run in total.

6.2 EXPERIMENT SETUP

The experiments were run on a virtual machine running on a

macOS host. The details of the virtual machine and the host

machine are furnished in Table.2.

Table.2. Experiment setup

 Component Model/Type/Capacity

Virtual

Machine

CPU ARM64

Operating

System
Debian 11.3.0

RAM 14GB

Hypervisor
QEMU 7.0 ARM Virtual

Machine

Host

Machines

CPU Apple M1 Pro

Operating

System
macOS Monterey

RAM 16GB (Unified memory)

6.3 TEST RESULTS

The Fig.5 shows the exit probability obtained for the three

decision rules using the classical, PoW, and PoI approaches on a

column graph.

Fig.5. Exit probability for different decision rules and

approaches

The Fig.5 shows the consensus time obtained for the three

decision rules using the three different approaches on a box plot.

Fig.6. Consensus time for different decision rules and

approaches

The results obtained for the classical as well as the PoW

approaches were mostly consistent with the findings of Strobel,

Ferrer and Dorigo (2018). The DC decision rule with the classical

approach showed the highest exit probability under all but one

difficulty settings. The DC decision rule along with the classical

approach also produced the fastest consensus time.

The DMVD decision rule with the classical approach showed

a steady decline in exit probability with the rise in difficulty

whereas the DMMD rule, though showed an overall decline, had

comparatively more variability. Overall, as far as the exit

probability was concerned, the blockchain approach performed

worse than the classical approach in comparison. Both the PoI and

PoW approaches showed greater parity even though the PoI

performed marginally better under certain circumstances.

The consensus time of both the classical approach and the

blockchain approaches steadily increased with difficulty for the

DC decision rule. However, even though the classical approach

showed a similar steady increase for both the DMMD and DMVD

decision rules, the consensus time of the blockchain approaches

was largely disaffected by the difficulty. This observation is

consistent with that of Strobel, Ferrer and Dorigo (2018).

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2023, VOLUME: 13, ISSUE: 04

3033

However, unlike it was the case with the exit probability, the

consensus time of the PoI approach showed a significant

improvement in comparison to the PoW approach for all decision

rules. Notwithstanding, the consensus time of the PoI approach

was generally higher than that of the classical approach.

7. DISCUSSION

The findings of the tests were very similar to the findings of

Strobel, Ferrer and Dorigo (2018). Generally, the classical

approach had a better exit probability than both the PoI and PoW

approaches. This is due to the limitation of the blockchain

approach as explained by Strobel, Ferrer and Dorigo (2018). In

the classical approach, duplicate opinions from the neighbors are

discarded, while in the blockchain approach, no such

implementation exists. The classical approach was also faster than

the PoI and PoW approaches. This is due to the delays introduced

by the mining process. However, the PoI approach was shown to

be faster than the PoW approach. The test results showed that the

PoI algorithm, developed to nullify the Byzantine robot issue

introduced by the 51%-attack threat inherent to the PoW

algorithm, made consensus achievement faster while not

impacting the exit probability under most circumstances and

slightly improving it under some.

8. CONCLUSION

This research work improved Byzantine fault tolerance in

swarm robotics by addressing the 51%-attack issue found in the

existing blockchain solution without compromising on the

performance. Moreover, the developed solution was also shown

to perform better than the existing blockchain solution improving

the practical usability of blockchain-based solutions.

Besides, this research also created a web application to

benchmark solutions to the collective perception scenario. This

application will help future researchers benchmark their solutions

in a lot more user-friendly manner.

REFERENCES

[1] G. Beni, “From Swarm Intelligence to Swarm Robotics”,

Lecture Notes in Computer Science, Vol. 3342, pp. 1-9,

2005.

[2] E. Şahin, “Swarm Robotics: From Sources of Inspiration to

Domains of Application”, Lecture Notes in Computer

Science, Vol. 3342, pp. 10-20, 2005.

[3] M. Brambilla, E. Ferrante, M. Birattari and M. Dorigo,

“Swarm Robotics: A Review from the Swarm Engineering

Perspective”, Swarm Intelligence, Vol. 7, No. 1, pp. 1-41,

2013.

[4] M. Crosby, “BlockChain Technology: Beyond Bitcoin”,

Available at: http://scet.berkeley.edu/wp-

content/uploads/AIR-2016-Blockchain.pdf, Accessed at

2016.

[5] T. Krishnamohan and K. Janarthanan, “BlockFlow: A

Decentralized SDN Controller using Blockchain”,

International Journal of Scientific and Research

Publications, Vol. 10, No. 3, pp. 1-14, 2020.

[6] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash

System”, Available at: www.bitcoin.org, Accessed at 2009.

[7] G. Valentini, D. Brambilla, H. Hamann and M. Dorigo,

“Collective Perception of Environmental Features in a

Robot Swarm”, Proceedings of International Conference on

Swarm Intelligence, pp. 65-76, 2016.

[8] K. Von Frisch, “The Dance Language and Orientation of

Bees”, Harvard University Press, 1993.

[9] G. Valentini, H. Hamann and M. Dorigo, “Efficient

Decision-Making in a Self-Organizing Robot Swarm: On

the Speed Versus Accuracy Trade-Off”, Proceedings of

International Conference on Swarm Robotics, pp. 1-8, 2021.

[10] G. Valentini, E. Ferrante, H. Hamann and M. Dorigo,

“Collective Decision with 100 Kilobots: Speed versus

Accuracy in Binary Discrimination Problems”, Autonomous

Agents and Multi-Agent Systems, Vol. 30, No. 3, pp. 553-

580, 2016.

[11] G. Valentini, H. Hamann and M. Dorigo, “Self-Organized

Collective Decision Making: The Weighted Voter Model”,

Proceedings of International Conference on Autonomous

Agents and Multiagent Systems, pp. 45-52, 2014.

[12] V. Strobel, E.C. Ferrer and M. Dorigo, “Managing

Byzantine Robots via Blockchain Technology in a Swarm

Robotics Collective Decision Making Scenario”,

Proceedings of International Conference on Autonomous

Agents and Multiagent Systems, pp. 1-13, 2021.

[13] A.L. Christensen, R. O’Grady and M. Dorigo, “From

Fireflies to Fault-Tolerant Swarms of Robots”, IEEE

Transactions on Evolutionary Computation, Vol. 13, No. 4,

pp. 754-766, 2009.

[14] N. Anita and M. Vijayalakshmi, “Blockchain Security

Attack: A Brief Survey”, Proceedings of International

Conference on Computing, Communication and

Networking Technologies, pp. 1-6, 2019.

[15] M.S. Ferdous, M.J.M. Chowdhury, M.A. Hoque and A.

Colman, “Blockchain Consensus Algorithms: A Survey”,

Available: http://arxiv.org/abs/2001.07091, Accessed at

2021.

