
B SOWMIYA et al.: CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

DOI: 10.21917/ijsc.2023.0413

2922

CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS

FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

B. Sowmiya1, K. Saminathan2 and M. Chithra Devi3
1,2PG and Research Department of Computer Science, A.V.V.M. Sri Pushpam College, Affiliated to Bharathidasan University, India

3Department of Computer Science, Queens College of Arts and Science for Women, Affiliated to Bharathidasan University, India

Abstract

Paddy is a major food crop serving more than half the population of

people in the world. It is inevitable to improve the quantity and quality

of food crop with the growing population. Different factors including

soil fertility, water availability, erratic climate variations, diseases, and

pests, have an impact on paddy crop yield. It is crucial to identify the

root cause for the reduction in yield of paddy. Early disease diagnosis

prevents the plants from getting worst through its consecutive stage.

The concern with manually diagnosing plant leaf diseases with the

naked eye is that the results can be less accurate and even unreliable.

Automatic disease diagnosis eliminates the need for experts and

provides accurate results. This paper will assist the farmers to identify

the leaf diseases automatically with the aid of Convolutional Neural

Networks. This research includes paddy leaf disease categories:

bacterial blight, blast, tungro, brown spot and healthy leaves. The

dataset contains 800 images, 160 images from each of the five

categories. Images are resized to 256 * 256 pixels and normalized. The

network architecture created with convolutional, maxpooling, flatten

and dense layers. The Dataset is divided into training and validation set

in 70:30 ratios and model is trained with 20 epochs of batch size 16.

The novelty of the study is the implementation of extended Huber loss

function for minimizing the loss. Furthermore, it is cross compared

with existing loss functions. The Proposed model has achieved 96.63%

training accuracy and 86.61% validation accuracy with 5 classes.

Performance of model is evaluated with confusion matrix with

precision, recall, F1-score and support as parameters.

Keywords:

Paddy Disease Detection, Preprocessing, Classification, Huber Loss,

Convolutional Neural Network

1. INTRODUCTION

In India, 54.6% of people are dependent mostly on agriculture

for their living. The economy of a country depends on the

agriculture. As per the report of Ministry of Agriculture and

Farmers’ Welfare, APEDA, Ministry of Commerce, rice crop

turns around 6.89 billion US dollar for the FY 2022 (from April

2021 until December 2021). As per Union budget 2022-23,

Rs.8,514 crore allocated to Department of Agricultural Research

and Education to increase production of crops and soil

enhancement [1]. Paddy is one among the more demanding food

crop in South Asia. But the plant diseases decrease productivity

of crop [2]. Agricultural productivity impacts the economy of our

country. 18% of India’s GDP is obtained from the agricultural

sector. With the growing population, it is essential to increase

productivity by preventing plant from diseases [3]. The health of

food crop is essential for attaining crop security and sustainability

in agriculture. But, due to variety of factors, plants are affected by

diseases, which in turn will affect the quality and quantity of crop.

Proper pesticides should be applied on the early stage of disease

to avoid soil pollution. Plants are affected by pathogens, fungi,

bacteria, viruses and other microbes. Early detection of diseases

in plants will result in increase in quantity and quality of crop

yield. By usual way, plants are detected for illnesses through

manual identification through naked eyes. It needs expert

consultation which is time consuming and expensive [4]. Diseases

can be identified in all the parts of plant. Yet the symptoms are

clearly visible in leaves because the leaves have plane nature and

easy to interpret without any difficulties compared to other parts

of plant [5]. Numerous improvements are made following the

introduction of the green revolution in India. Pesticides and

fertilizers are its consequences, have both positive and negative

sides. Though plants are protected, soil gets polluted. So, it’s vital

to use pesticides without damaging crops [6].

As manual leaf disease has several drawbacks like time

consumption, need of expert consultation, poor accuracy, etc., the

technology assists in finding proper solutions. Through the

tremendous advancements in the field of image processing with

machine learning, deep learning and artificial intelligence, there

have been solutions to most of the problems in agricultural sector.

With the aid of these technologies, the farmer can detect plant

diseases without the guidance of expert. So, automated process of

leaf disease diagnosis is introduced to produce better results [7].

Early disease diagnosis is essential not only to improve crop yield

and quality of crop but also to prevent the plants from diseases

[8]. Now days CNN has gained more attention than traditional

machine learning due to its automatic feature extraction which is

time consuming, and CNN provides end-to-end learning.

Convolutional Neural Networks is also found to perform better

than Neural Networks [9].

The objective of study is to develop an efficient automated

system with convolutional neural networks that can diagnose

diseases like bacterial blight, blast, brown spot, tungro and

healthy leaf, with fast and accurate result at least expense.

The rest of the paper is organized as follows. Section 2

explores the existing work done by various researchers with tools

and techniques. Section 3 presents the implementation of

proposed system with the detailed explanation of proposed CNN

architecture utilized. Section 4 comprises discussion of results

with enough visualization. Finally, section 5 concludes the paper

with the futuristic work.

2. LITERATURE REVIEW

The research work of same problem that has already been done

is elaborated in this part. Researchers have developed a range of

methods for computer vision-based plant leaf disease diagnostics.

The literature heavily relies on CNN.

In a study by Sharma et al. [2], a CNN model is created to

predict and classify diseases in paddy plant. As bacterial, viral and

fungal are three disease families, the authors considered brown

spot, leaf smut and bacterial leaf blight. Training samples pass

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2923

under convolution layer, max pooling layer, flatten layer, dense

layer, fully connected layer. Data augmentation like horizontal

flip, vertical flip, shearing, and brightening of images is carried

out on dataset, which is self-collected. Test samples are loaded.

Data is fit and model is trained on training samples. Accuracy of

model is predicted with test dataset. An accuracy of 90.32% is

achieved in test set and 93.58% is achieved the training set.

Shrestha et al. proposed CNN based model for disease

detection in a variety of crops, as CNN approaches regularization

in a simpler fashion. Dataset is loaded and are converted to numpy

array. Data is labeled and split into training and testing sets.

Model is built and trained and tested on training and testing set.

Disease is predicted. Filters acquire the ability to recognize

abstract concepts like a person face boundary. Instead of being

predetermined, they are self-learned. The results of the filter are

feature maps. Input image is passed into convolution layer that

extracts characteristics and maintains in a feature map. Feature

map is passed to pooling layer, where 2D filter applied and this

layer summarizes the feature present in a region of feature map.

The most prominent features of previous layer will be the output

for next layer, max pooling layer. Fully connected layer is a feed

forward neural network, which contains the vital information

from all the layers. With 3000 images with 15 classes, model

shows training accuracy of 97.2% and test accuracy of 88.80%

and not overfitted [3].

Tejaswini et al. have considered frequent rice diseases: brown

spot, hispa, leaf blast along with healthy leaves. Different DL

methods like VGG-16, VGG-19, ResNet, Xception, 5-layer CNN.

VGG-16 is a 16-layer CNN. VGG-19 is a 19-layer CNN. ResNet

solves the vanishing gradient decent problem. Xception has 71

layers. Convolution, pooling and fully connected layers is the

layers involved. 5-layer CNN has two additional layers: dropout

and activation layers. Among variant DL modes, 5-layer CNN

outperforms with 78.2% accuracy, whereas VGG-16 show low

accuracy of 58.4% [4]. Saini et al. proposes deep learning CNN

model using 5000 leaf images of apple and grapes utilizing

convolution layer, maxpooling layer, flatten layer, dense layer.

The best training and testing accuracies are reported to be 99.96%

and 99.90%. They assert that manual feature extraction is no

longer necessary with deep learning, and the key challenge is the

requirement for a high-speed GPU for data processing [5].

Swathika et al. proposes a CNN model to detect leaf disease

in paddy. Image is acquired from Kaggle dataset and resized to

500*100 pixels. Dataset is divided into 90:10 ratios for training

and testing and sent to neural network. Disease identified images

are sent to contour detection model and affected leaf area is

estimated. Binary and Otsu’s thresholding is done in contour

module. The accuracy and value accuracy are observed to be

approximately 70% [6]. Islam et al. proposes deep CNN model to

predict and classify paddy disease categories namely: brown spot,

leaf blast, leaf blight, leaf smut and healthy leaf. Dataset is

collected from UCI machine learning repository and Kaggle.

Image is subjected to preprocessing like resizing, rotation, zoom

and shearing. VGG-19, ResNet-101, Xception and Inception-

ResNet-V2 architectures are used. Inception-ResNet-V2

outperforms with 92.86% accuracy. Transfer learning is adapted

which is shown to increase accuracy and reduce complexity of

model’s training time. Usage of Pre-trained weights in a new

model can perform well than general models. Transfer learning

helps to reuse previously learned model on a new model. Also, it

can train deep neural networks with small amount of data [7].

In a recent study, Bari et al. proposes real time disease

detection using Faster R-CNN algorithm where challenges faced

by existing work like difficulty in diseased are segmentation with

small variations, overfitting problem caused by discrepancies in

distribution of data features, large variety of disease feature,

complex backgrounds, and obscure boundaries of disease

symptoms are discussed. YOLO, SSD and Faster R-CNN

algorithms are considered. Among them Faster R-CNN proposes

RPN (Regional Proposal Network) structure to generate candid

regions and target is precisely positioned. R-CNN efficiently

detects spot of disease reliably. Data augmentation is done to

avoid overfitting issue. The faster R-CNN network effectively

classifies rice diseases with high accuracy in real time. Three

diseases including rice blast, brown spot, hispa and are the

categories handled along with healthy one. Rice leaf diseases

dataset (RLDD) is created with online and own dataset collected

from rice fields. RLDD is annotated manually, and data

augmentation done. Entire dataset is divided into training and

testing dataset. Testing dataset is used for performance

assessment. Model has batch size of 1 with 50,965 iterations and

0.0002 as learning rate. Rice blast, brown spot, hispa and healthy

leaf classes accuracy of 98.09%, 98.85%, 99.17% and 99.25%

respectively with faster R-CNN. The study reports that the

misclassification is due to similarity in geometric features and to

combat this problem, more training should be done with more

similar dataset [8].

Shrivastava et al. proposed a decision support system for

identifying rice plant disease using SVM and ANN (Artificial

Neural Network) where ANN is reported to be accurate than SVM

[10]. Nayak et al. proposed a system using improved deep CNN

to recognize facial expression with adabound optimizer [11].

Janocha et al. investigates how the choice of loss functions

influencing deep models, learning dynamics and consequential

classifiers robustness to various effects [12]. Latif et al. proposed

deep CNN transfer learning method for diagnosing six categories

of rice leaf diseases and achieved 96.08% accuracy and tacked

overfitting issue [13]. Thakur et al. presents a lightweight CNN

model for crop disease identification, called VGG-ICNN, based

on the VGG architecture. It reduces the size of the model while

maintaining 99.16% accuracy and outperforms other lightweight

CNN models for crop disease identification [14]. Prottasha et al.

proposes a system to identify 12 types of rice leaf diseases using

depth wise separable CNN, which deals not only with spatial

dimension but also with depth dimension. Model reports 96.5%

validation and 95.3% testing accuracy [15]. Hassan et al.

proposed a method for identifying plant-leaf diseases by fine-

tuning a pre-trained Convolutional Neural Network (CNN) on a

dataset of plant leaves with annotated disease labels. The pre-

trained CNN serves as the base model, with its features used to

extract information from the images, while the fine-tuning process

focuses on training the last layers of the network to perform the

specific task of plant-leaf disease classification. Experiments on a

dataset of plant leaves showed that this approach outperforms

traditional machine learning methods and achieves high accuracy

in plant-leaf disease classification. The paper concludes that

transfer learning is a promising approach for this type of

classification and has potential to be applied to other similar

B SOWMIYA et al.: CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

2924

problems in computer vision. Highest accuracy of 99.56% is

achieved using EfficientNetB0 [16].

Geethamani et al. proposed nine-layer Deep CNN model for

identifying plant leaf diseases. Extensive augmentations

performed. Model evaluated with varying epoch, batch size and

dropouts and achieved 96.46% classification accuracy. They have

tested the proposed model with machine learning algorithms as

well. The future work is to extend the research to other parts of

plant like stem, flowers and fruits [17].

In this research, a study on the detection of leaf diseases using

a hybrid convolutional neural network (HCNN) is presented. By

using feature reduction approaches, the authors hope to enhance

the model's performance. A dataset of images of plant leaves is

used to train and test the HCNN model, and the results are

assessed using a variety of performance criteria. The study's

methodology and findings are reported in the paper, along with

how feature reduction affects the HCNN model's ability to

identify leaf diseases accurately and effectively. Four diseases in

grape plants namely: Leaf blight, Black rot, stable, and Black

measles are investigated and accuracy of 98.7% is achieved using

transfer learning and efficientNetB7 [18]. This research proposes

a different probabilistic interpretation of the Huber loss, an often-

used loss function in regression problems. They provide a

probabilistic interpretation of the Huber loss function in terms of

Gaussian mixture models. The paper discusses the objectives,

methods, and results of the study and compares the Huber loss

performance with other commonly used loss functions in

regression problems [19].

3. PROPOSED WORKFLOW

The proposed system intends to create an effective plant

disease detection mechanism for paddy plants using combination

of Convolutional Neural Networks and image processing

techniques. This section provides a thorough explanation of the

proposed system. The Fig.1 shows complete workflow of

proposed system. The images are acquired from P.K. Sethy [20]

repository. The image dataset is preprocessed by reducing to

256*256 dimensions. All pixel values will result in 0-255 range,

which is then normalized by dividing each image pixel with 255.

The images are acquired from P.K. Sethy [20] repository and

Kaggle dataset [21].

3.1 IMAGE ACQUISITION

The first and foremost step is image acquisition. Images are

acquired from dataset of P.K. Sethy [20] having 5932 images in

their repository of which 640 images (160 image samples from

each of the four classes of paddy leaf diseases: bacterial blight,

blast, brown spot, and tungro) are acquired. 160 healthy images

are taken from Kaggle dataset [21]. The Fig.2 depicts sample

images of diseased and healthy leaf.

Fig.1. Proposed system workflow

(a) bacterial blight (b) blast

(c) brown spot

Image acquisition

Resize and Normalize

Convolution Layer 1

Maxpooling Layer 1

Convolution Layer 2

Maxpooling Layer 2

Flatten Layer

Dense Layer 1

Dense Layer 2

Model Training

Disease Prediction

CNN with Extended Huber

Loss Function

Diseased leaf?

Yes Bacterial blight

No

Healthy

Bacterial blast

Brown spot

Tungro

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2925

Fig.2. Sample paddy leaf diseases and healthy leaf

(d) tungro (e) healthy leaf

3.2 PREPROCESSING

Preprocessing improves the quality of image. We have resized

all the images into 256*256 pixels. Python’s CV2 package is used

to resize the images and images are converted into numpy array.

Dataset is scaled to a range of 0 to 1 before it is fed into the neural

network model. It is done by divide the values by 255. Both the

training set and the validation set should be preprocessed in the

same method. Table.1. depicts the dataset information used in this

research.

Table.1. Total dataset of classes

Class

Name

Total

Images

Total Training

Images

Total Testing

Images

Brown Spot 160 128 32

Leaf Blast 160 128 32

Leaf blight 160 128 32

Leaf smut 160 128 32

Healthy 160 128 32

Total images 800 640 160

3.3 CNN ARCHITECTURE

CNN architecture is utilized for image classification, object

recognition, segmentation and many other tasks. CNN takes

image as input and interprets image in the form of matrices. CNN

Architecture has three main layers namely convolutional layer,

pooling layer and fully connected layer. CNN Layers are

discussed below.

3.3.1 Proposed CNN model:

We propose a CNN model with two convolutional layers, a

dropout layer, two pooling layers, a flatten layer and two dense

layers. The process is explained below and depicted in Fig.3.

Convolutional layer is added where convolution operation is

applied on input image with 32 filters and 4*4 filter size. This step

extracts useful features and ReLU activation function is internally

applied.

Step 1: To reduce the dimensionality of images, a max-pooling

layer with pool-size 4*4 is added.

Step 2: A second-convolutional layer with 16 filters and 4*4

filter size is applied with ReLU as activation function.

Step 3: A second max-pooling layer of 4*4 pool-sizes is added.

Step 4: A dropout layer with 0.2 dropout rate is added to drop

off some neurons [11].

Step 5: Then a flattening layer is applied to convert two

dimensional arrays obtained from pooled feature maps

into one dimensional linear vector.

Step 6: Finally, two dense layers are applied, first layer employs

ReLU and second layer employs softmax activation

function.

Conv2d_input input: [(None, 256, 256, 3)]

InputLayer output: [(None, 256, 256, 3)]

Conv2d input: (None, 256, 256, 3)

Conv2D output: (None, 256, 256, 32)

Max_pooling2d input: (None, 256, 256, 32)

MaxPooling2D output: (None, 64, 64, 32)

Conv2d_1 input: (None, 64, 64, 32)

Conv2D output: (None, 64, 64, 16)

Max_pooling2d_1 input: (None, 64, 64, 16)

MaxPooling2D output: (None, 32, 32, 16)

dropout input: (None, 32, 32, 16)

Dropout output: (None, 32, 32, 16)

flatten input: (None, 32, 32, 16)

Flatten output: (None, 16384)

dense input: (None, 16384)

Dense output: (None, 10)

dense_1 input: (None, 10)

Dense output: (None, 5)

Fig.3. Proposed CNN model with input and output of layers

Fig.4. Layered view of CNN model

The image passes through all the layers and classification is

finally done in dense layer based on inputs from previous layers

B SOWMIYA et al.: CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

2926

and model will be able to predict the disease class to which the

image belongs to. The Fig.4 shows the layered view of proposed

CNN model where different CNN layers are involved.

3.3.2 Convolution layer:

This is the first layer of CNN which involves more

computations. It requires input data that has height, width, and

depth as dimensions. Each filter will result in feature map because

of convolution operation with input image. Filter is applied to

input image and returns “feature map”, because of convolution

operation with input image, which is then normalized (with an

activation function) and/or resized. This process can be repeated

several times. Resulting feature map is W×H×D, where W is its

width in pixels, H is its height in pixels and D the number of

channels (It is 1 for a black and white image and 3 for a color

image). Finally, the values of the last feature maps are

concatenated into a vector. This vector defines the output of the

first block and the input of the second. The depth of output is

affected by the number of filters, or they define the dimensionality

of the output space. The coding for adding convolutional layer is

as follows.

model.add (Conv2D (32,(4,4), padding = "same", input_shape =

(256,256,3), activation = "relu"))

ReLU (Rectified Linear Unit) is a popular activation function

and it is simple to compute as it uses only max() function. It is

defined as follows.

 f(x) = max(0,x) (1)

where, x is the input neuron.

3.3.3 Maxpooling layer:

Pooling layers reduce the number of parameters in the input

known as dimensionality reduction which decreases the

computational power to process the data and dominant features

are extracted as well. The operation of pooling layer is similar to

convolution layer, where the filter is applied to entire image, but

the filters carry no weight.

By factoring in the maximum value over an input window for

each channel of input, this layer reduces the input's spatial

dimensions: height and width. This layer will result in pooled

feature map. The code to add pooling layer is as follows.

model.add(MaxPooling2D(pool_size=(4, 4)))

model.add(MaxPooling2D(pool_size=(2,2)))

3.3.4 Flatten:

The pooling layer produces feature map, which is passed

through flatten layer, where everything is flattened into a long

column that is transformed into one-dimensional vector. This

vector will be input to the neural network. Fig.5 represents pooled

feature map and results after flattening.

Fig.5. flattening of pooled feature map

The code to add flatten layer is as follows:

model.add(Flatten())

3.3.5 Dense Layer:

Dense layer is the layer having highest number of parameters.

This layer performs some linear operations like matrix-vector

multiplication with neurons of its preceding layer and providing

one output to next layer, hence this layer is a fully connected layer.

ReLU and softmax activation functions are used for the dense

layer. ReLU activation function helps the model to learn complex

patterns in data by introducing non-linearity into model. Softmax

function is used for multiclass classification problem. The code to

add dense layers is as follows.

model.add(Dense(8, activation="relu"))

model.add(Dense(4, activation="softmax"))

Eq.(2) and Eq.(3) displays the formula for ReLU and Softmax

activation function.

 ReLU(x) = max(0, x) (2)

where, x is the input to the activation function and f(x) is the

output.

 ()

1

i

j

z

i k
z

j

e
z

e

=

=

 (3)

where z is the input vector, eZi is standard exponential function, k

is number of classes in multiclass classifier.

• Forward Propagation

Each layer's output in forward propagation is determined by

its input and weight. The following are the steps for calculating

each layer's output:

Step 1: The input of the current layer and the weights for that

layer is dot product.

Step 2: The bias term is added to result of dot product.

Step 3: The result is passed to get output of current layer through

activation function.

Eq.(4a) and Eq.(4b) denotes intermediate steps and output of

current layer.

 z = input * weights + bias (4a)

 output=f(z) (4b)

• Backward Propagation

The gradient of loss function is calculated with respect to each

weight. The steps for backpropagation are as follows:

Step 1: The input is forward propagated through the network to

calculate the output.

Step 2: The difference between the desired output and the actual

output is computed.

Step 3: The gradient of the error with respect to the output of the

last layer is calculated.

Step 4: Backpropagate the error through the network, calculating

the gradient of the error with respect to the weights in

each layer.

Step 5: This process is repeated for each layer and each weight

in the network.

The Eq.(5) shows formula for gradient of the error.

1 2

3 4

1

2

3

4

Flattening

Pooled Feature Map

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2927

 error_grad = (output - desired_output) * output_grad (5)

where, error_grad is the gradient of the error with respect to the

output of the last layer, output is the actual output of the network,

desired_output is the desired output and output_grad is the

derivative of the output with respect to the input. It is also known

as the activation function gradient.

The gradient of the error with respect to the weights in each

layer is then calculated using the chain rule as in Eq.(6) as follows:

 weight_grad = input * error_grad (6)

where weight_grad is the gradient of the error with respect to the

weights in the current layer, input is the input to the current layer,

and error_grad is the gradient of the error with respect to the

output of the current layer. The weight_grad is used to update the

weights using the gradient descent algorithm and is shown in

Eq.(7).

 weights = weights - learning_rate * weight_grad (7)

3.4 CLASSIFICATION

Classification involves classifying data into different classes.

This research involves multiclass CNN classification, where CNN

is trained on a dataset and then used to predict the class. Dataset

is divided into train and test in 70:30 ratios. Training a network is

trying to minimize its loss. The loss function defines the

difference between the predicted class and true class. It guides the

optimization process by assigning a cost to model’s prediction

error. The proper choice of loss function for a classification

problem has a great impact on the model's performance,

convergence speed, and overall accuracy.

Steps for classification:

Step 1: Build the model.

Step 2: Set up the required layers.

Step 3: Compile the model with Extended Huber loss function,

optimizer and metrics.

Step 4: Train the model.

Step 5: Feed the model.

Step 6: Evaluate accuracy.

Step 7: Make predictions and verify predictions.

Step 8: Use the trained model to make predictions.

3.4.1 Proposed Model with Extended Huber Loss Function:

Huber loss is a loss function used in robust regression [19]. It

is less sensitive to outliers in the data than the mean squared error

used in least squares. They produce more stable and reliable

results. The function is a combination of the mean squared error

for small errors and mean absolute error for large errors. Huber

loss function is defined in Eq.(8a) and Eq.(8b).

 L(x) = 0.5 * (error2), if |error| ≤ δ (8a)

 L(x) = δ *|error| - 0.5 * (δ), if |error| > δ (8b)

where error is the difference between the predicted value and the

true value, and δ (delta) is a parameter that controls the transition

between the two regimes, “linear” and “quadratic” regions of the

loss function.

• Extended Huber loss function

In order to improve the results further, an improved version of

the Huber loss function is created, which is less sensitive to the

choice of the delta parameter, and more robust to outliers and has

better optimization properties. Improved Huber loss has a smooth

transition between the quadratic and linear parts of the loss

function, whereas the standard Huber loss has a sharp transition.

The extended Huber loss function is defined as:

 L1(x) = 0.5 * (error1
2), if |error1| ≤ δ (9a)

 L1(x) = δ *|error1| - 0.5 * (δ2), if |error1| > δ (9b)

where, error1 is the difference between the predicted value and

the true value, and δ (delta) is a hyperparameter that controls the

transition from the quadratic to linear part of the loss function.

Extended Huber loss function produces better results in terms of

lower loss and higher accuracy than the standard Huber loss

function. It has better optimization properties and less prone to

oscillation. It has a smooth transition between the quadratic and

linear parts of the loss function, which makes it less sensitive to

outliers. It is less sensitive to the choice of the delta parameter,

which makes it more robust to outliers. Moreover, it is

differentiable, enabling the use of gradient-based optimization

techniques.

4. RESULTS AND DISCUSSION

The Table.2 depicts detailed architecture with the layers, no.

of neurons in each layer and no. of parameters.

Table.2. Detailed architecture of proposed CNN model

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 256, 256, 32) 1568

 max_pooling2d

(MaxPooling2D)
(None, 64, 64, 32) 0

 conv2d_1 (Conv2D) (None, 64, 64, 16) 8208

 max_pooling2d_1

(MaxPooling2D)
(None, 32, 32, 16) 0

dropout (Dropout) (None, 32, 32, 16) 0

flatten (Flatten) (None, 16384) 0

dense(Dense) (None,10) 163850

dense_1(Dense) (None,5) 55

Total params: 173,681

Trainable params: 173,681

Non-trainable params: 0

4.1 VISUALIZATION OF FEATURE MAP

The Fig.6 shows feature map visualization obtained through

convolutional layers.

With equal distribution of data in five classes, our proposed

model has a total of 800 images with 640 images for training and

160 images for testing. The python code was executed for several

rounds of epochs to track resulting accuracy and losses.

From epoch 1 to 6, gradual increase is noticed and slight

decline at epoch 7. From epoch 8 to 20, model is showing steady

increase rate. The best training accuracy of 96.63% is reached at

the 20th epoch. The study reports that there is gradual increase in

validation accuracy from epoch 1 to 5 and slight decline noticed

in epoch 6, 8, 14, 17 and 19. The highest validation accuracy of

B SOWMIYA et al.: CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

2928

86.61% is attained in epoch 12, 13 and 16. There is a gradual

decline in training loss in all epochs except epoch 18, which

shows a slight increment. There is a gradual decrease in validation

loss in epoch 3, 8, 10, 13, 17 and 19.

Fig.6. Feature map visualization

The Table.3 displays the results of the proposed model's loss,

accuracy, and validation loss and validation accuracy throughout

several epochs.

Table.3. Full model training details with extended Huber loss

function

Epoch
Training Validation

Loss Acc. loss Acc.

1 0.0590 0.4442 0.0572 0.4286

2 0.0512 0.5603 0.0461 0.5982

3 0.0434 0.6384 0.0469 0.5983

4 0.0389 0.7143 0.0381 0.7232

5 0.0340 0.7612 0.0336 0.8036

6 0.0302 0.8304 0.0307 0.7946

7 0.0301 0.8259 0.0302 0.8393

8 0.0247 0.8661 0.0341 0.7589

9 0.0223 0.8817 0.0258 0.8393

10 0.0205 0.8884 0.0269 0.8482

11 0.0181 0.8996 0.0267 0.8571

12 0.0168 0.9152 0.0230 0.8661

13 0.0139 0.9308 0.0237 0.8661

14 0.0133 0.9308 0.0250 0.8482

15 0.0114 0.9464 0.0245 0.8571

16 0.0110 0.9487 0.0208 0.8661

17 0.0085 0.9576 0.0276 0.8036

18 0.0086 0.9554 0.0188 0.8571

19 0.0074 0.9598 0.0268 0.8304

20 0.0068 0.9665 0.0203 0.8482

The Fig.7 shows the loss and accuracy curve of the proposed

CNN model for 20 epochs. Training and validation loss have

similar trends, though they differ in absolute values. Proposed

model is cross compared with standard Huber loss function and

categorical cross entropy loss functions and it is emphasized that

overfitting is under control with an extended Huber loss function.

Fig.7. Extended Huber loss function – loss and accuracy plot

Table.4 shows that extended Huber loss function outperforms

the standard Huber loss and standard loss function like categorical

cross entropy.

Table.4. Comparison of loss functions w.r.t loss and accuracy

Loss function
Training Validation

Loss Acc. Loss Acc.

Categorical cross entropy 32.32 91.74 55.48 84.82

Standard Huber loss 0.80 95.31 2.51 83.93

Extended Huber loss 0.68 96.63 2.03 86.61

The Fig.8 depicts loss and accuracy plot with standard Huber

loss function where overfitting is under control.

The Fig.9 depicts loss and accuracy plot with categorical cross

entropy. The model shows 91.74% training accuracy with higher

training and accuracy loss ranges than standard and extended

Huber loss functions. The Fig.10 and Fig.11 shows training and

testing loss for standard and extended Huber loss functions.

Fig.8. Standard Huber loss function – loss and accuracy plot

Fig.9. Categorical cross entropy - loss and accuracy plot

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2929

Fig.10. Training Loss - standard Vs extended Huber loss

Fig.11. Validation loss - standard Vs extended Huber loss

The Table.5 shows the comparison of accuracy of proposed

system with the existing systems.

Table.5. Comparison of Proposed system with existing systems

References Accuracy

Sharma et al. [1] 93.58%

Tejaswini et al. [3] 78.20%

Swathika et al. [5] 70%

Sibiya et al. [8] 92.85%

Proposed CNN extended Huber loss 96.65%

Confusion matrix evaluates the performance of classification

model by comparing actual target values with the predicted

values. In our paper, confusion matrix incorporates performance

evaluation metrics like precision, recall, support, and F1-score to

assess the efficiency of the classification system. Confusion

matrix estimates are explained in Table.6.

Table.6. Key terms in Confusion matrix

Outcome Explanation

TP True Positive, shows correctly predicted positive values

TN
True negative, shows correctly predicted negative

values

FP
False Positive, shows actual negatives that are

incorrectly predicted

FN
False Negative, shows incorrect prediction of negative

values

Formula for precision, recall and F1-score are given in

Eq.(10), Eq.(11), and Eq.(12).

 Recall = TP/(TP+FN) (10)

 Precision = TP/(TP+FP) (11)

 f1-score = 2*((precision*recall)/(precision + recall)) (12)

For the proposed system, an Intel(R) Core (TM) i3-5005U

CPU with 4GB of RAM and a 64-bit processor is employed.

Anaconda 1.9.0 and Python 3.9.7 are the software versions used.

The Fig.13 displays confusion matrix for the proposed method

where the diagonal element represents correctly classified count.

It is reported from Fig.13 that 156 images are correctly classified

as bacterial blight.

Fig.13. Confusion matrix for proposed system

The Table.7 shows classification report for the proposed

model with precision, recall, F1-score and support parameters.

Table.7. Classification report of proposed CNN

 Precision Recall F1-score Support

Bacterial blight 97.50 97.50 97.50 160

Blast 95.62 95.62 95.62 160

Brown spot 96.25 96.25 96.25 160

Tungro 96.25 96.25 96.25 160

Healthy 97.50 97.50 97.50 160

Accuracy 96.63 800

Macro avg 96.63 96.63 96.63 800

weighted avg 96.62 96.62 96.62 800

5. CONCLUSION

Plant disease diagnosis is a crucial area to work with.

Automatic plant disease diagnosis helps the farmers to increase

yield of product and to protect soil from improper use of

pesticides. This study attempts to diagnose and classify paddy leaf

diseases using deep learning-based CNN approach. The proposed

work achieves training accuracy of 96.63% and validation

accuracy of 86.61% having considered four classes of diseases:

bacterial blight, blast, tungro and brown spot and healthy leaf. The

B SOWMIYA et al.: CLASSIFICATION OF PADDY LEAF DISEASES WITH EXTENDED HUBER LOSS FUNCTION USING CONVOLUTIONAL NEURAL NETWORKS

2930

main advantage of deep learning methods over machine learning

methods is that they eliminate the need for feature extraction. The

futuristic work of this paper is to add on more classes of diseases

and to implement with the variants of deep learning architecture

for sustainable computing.

REFERENCES

[1] Agriculture and Allied Industries, Available at

https://www.ibef.org/download/1658816319_Agriculture-

and-Allied-Industries-June-2022.pdf, Accessed in 2023.-

[2] R. Sharma and M. Pandey, “A Model for Prediction of

Paddy Crop Disease using CNN”, Proceedings of

International Conference on Progress in Computing,

Analytics and Networking, pp. 533-543, 2020.

[3] G. Shrestha and N. Dey, “Plant Disease Detection using

CNN”, Proceedings of International Conference on Applied

Signal Processing, pp. 109-113, 2020.

[4] P. Tejaswini, Y.K. Rathore and R.R. Janghel, “Rice Leaf

Disease Classification using CNN”, Proceedings of

International Conference on Earth and Environmental

Science, pp. 12017-12023, 2022.

[5] G. Saini and A.K. Luhach, “Classification of Plants using

Convolutional Neural Network”, Proceedings of

International Conference on Sustainable Technologies for

Computational Intelligence, pp. 547-558, 2020.

[6] R. Swathika and K. Sowmya, “Disease Identification in

Paddy Leaves using CNN based Deep Learning”,

Proceedings of International Conference on Intelligent

Communication Technologies and Virtual Mobile Networks,

pp. 1004-1008, 2021.

[7] M.A. Islam and T. Khatun, “An Automated Convolutional

Neural Network based Approach for Paddy Leaf Disease

Detection”, International Journal of Advanced Computer

Science and Applications, Vol. 12, No. 1, pp. 1-13, 2021.

[8] B.S. Bari, A.F. Ab Nasir and M. Majeed, “A Real-Time

Approach of Diagnosing Rice Leaf Disease using Deep

Learning-based Faster R-CNN Framework”, Peer Journal

on Computer Science, Vol. 7, pp. 432-443, 2021.

[9] M. Sibiya and M. Sumbwanyambe, “A Computational

Procedure for the Recognition and Classification of Maize

Leaf Diseases Out of Healthy Leaves using Convolutional

Neural Networks”, AgriEngineering, Vol. 1, No. 1, pp. 119-

131, 2019.

[10] G. Shrivastava and H. Patidar, “Rice Plant Disease

Identification Decision Support Model using Machine

Learning”, ICTACT Journal on Soft Computing, Vol. 12,

No. 3, pp. 2619-2627, 2022.

[11] H.D. Nayak and A.K. Sarvaiya, “Facial Expression

Recognition based on Feature Enhancement and Improved

Alexnet”, ICTACT Journal on Soft Computing, Vol. 12, No.

3, pp. 2589-2600, 2022.

[12] K. Janocha and W.M. Czarnecki, “On Loss Functions for

Deep Neural Networks in Classification”, Proceedings of

International Conference on Progress in Computing and

Analytics, pp. 1-7, 2022.

[13] G. Latif and Z.A. Kazimi, “Deep Learning Utilization in

Agriculture: Detection of Rice Plant Diseases using an

Improved CNN Model”, Plants, Vol. 11, No. 17, pp. 2230-

2243, 2022.

[14] P.S. Thakur and A. Ojha, “VGG-ICNN: A Lightweight

CNN Model for Crop Disease Identification”, Multimedia

Tools and Applications, Vol. 87, pp. 1-24, 2022.

[15] S.I. Prottasha and S.M.S. Reza, “A Classification Model

based on Depthwise Separable Convolutional Neural

Network to Identify Rice Plant Diseases”, International

Journal of Electrical and Computer Engineering, Vol. 12,

No. 4, pp. 1-12, 2022.

[16] S.M. Hassan and E. Jasinska, “Identification of Plant-Leaf

Diseases using CNN and Transfer-Learning Approach”,

Electronics, Vol. 10, No. 12, pp. 1388-1398, 2021.

[17] G. Geetharamani and A. Pandian, “Identification of Plant

Leaf Diseases using a Nine-Layer Deep Convolutional

Neural Network”, Computers and Electrical Engineering,

Vol. 76, pp. 323-338, 2019.

[18] P. Kaur and A.M. Alabdali, “Recognition of Leaf Disease

using Hybrid Convolutional Neural Network by Applying

Feature Reduction”, Sensors, Vol. 22, No. 2, pp. 575-584,

2022.

[19] G.P. Meyer, “An Alternative Probabilistic Interpretation of

the Huber Loss”, Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition,

pp. 5261-5269, 2021.

[20] Mendeley Data, “Rice Leaf Disease Image Samples”,

Available at

https://www.kaggle.com/datasets/minhhuy2810/rice-

diseases-image-dataset, Accessed in 2021.

