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Abstract 

Paddy is a major food crop serving more than half the population of 

people in the world. It is inevitable to improve the quantity and quality 

of food crop with the growing population. Different factors including 

soil fertility, water availability, erratic climate variations, diseases, and 

pests, have an impact on paddy crop yield. It is crucial to identify the 

root cause for the reduction in yield of paddy. Early disease diagnosis 

prevents the plants from getting worst through its consecutive stage. 

The concern with manually diagnosing plant leaf diseases with the 

naked eye is that the results can be less accurate and even unreliable. 

Automatic disease diagnosis eliminates the need for experts and 

provides accurate results. This paper will assist the farmers to identify 

the leaf diseases automatically with the aid of Convolutional Neural 

Networks. This research includes paddy leaf disease categories: 

bacterial blight, blast, tungro, brown spot and healthy leaves. The 

dataset contains 800 images, 160 images from each of the five 

categories. Images are resized to 256 * 256 pixels and normalized. The 

network architecture created with convolutional, maxpooling, flatten 

and dense layers. The Dataset is divided into training and validation set 

in 70:30 ratios and model is trained with 20 epochs of batch size 16. 

The novelty of the study is the implementation of extended Huber loss 

function for minimizing the loss. Furthermore, it is cross compared 

with existing loss functions. The Proposed model has achieved 96.63% 

training accuracy and 86.61% validation accuracy with 5 classes. 

Performance of model is evaluated with confusion matrix with 

precision, recall, F1-score and support as parameters. 
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1. INTRODUCTION 

In India, 54.6% of people are dependent mostly on agriculture 

for their living. The economy of a country depends on the 

agriculture. As per the report of Ministry of Agriculture and 

Farmers’ Welfare, APEDA, Ministry of Commerce, rice crop 

turns around 6.89 billion US dollar for the FY 2022 (from April 

2021 until December 2021). As per Union budget 2022-23, 

Rs.8,514 crore allocated to Department of Agricultural Research 

and Education to increase production of crops and soil 

enhancement [1]. Paddy is one among the more demanding food 

crop in South Asia. But the plant diseases decrease productivity 

of crop [2]. Agricultural productivity impacts the economy of our 

country. 18% of India’s GDP is obtained from the agricultural 

sector. With the growing population, it is essential to increase 

productivity by preventing plant from diseases [3]. The health of 

food crop is essential for attaining crop security and sustainability 

in agriculture. But, due to variety of factors, plants are affected by 

diseases, which in turn will affect the quality and quantity of crop. 

Proper pesticides should be applied on the early stage of disease 

to avoid soil pollution. Plants are affected by pathogens, fungi, 

bacteria, viruses and other microbes. Early detection of diseases 

in plants will result in increase in quantity and quality of crop 

yield. By usual way, plants are detected for illnesses through 

manual identification through naked eyes. It needs expert 

consultation which is time consuming and expensive [4]. Diseases 

can be identified in all the parts of plant. Yet the symptoms are 

clearly visible in leaves because the leaves have plane nature and 

easy to interpret without any difficulties compared to other parts 

of plant [5]. Numerous improvements are made following the 

introduction of the green revolution in India. Pesticides and 

fertilizers are its consequences, have both positive and negative 

sides. Though plants are protected, soil gets polluted. So, it’s vital 

to use pesticides without damaging crops [6]. 

As manual leaf disease has several drawbacks like time 

consumption, need of expert consultation, poor accuracy, etc., the 

technology assists in finding proper solutions. Through the 

tremendous advancements in the field of image processing with 

machine learning, deep learning and artificial intelligence, there 

have been solutions to most of the problems in agricultural sector. 

With the aid of these technologies, the farmer can detect plant 

diseases without the guidance of expert. So, automated process of 

leaf disease diagnosis is introduced to produce better results [7]. 

Early disease diagnosis is essential not only to improve crop yield 

and quality of crop but also to prevent the plants from diseases 

[8]. Now days CNN has gained more attention than traditional 

machine learning due to its automatic feature extraction which is 

time consuming, and CNN provides end-to-end learning. 

Convolutional Neural Networks is also found to perform better 

than Neural Networks [9]. 

The objective of study is to develop an efficient automated 

system with convolutional neural networks that can diagnose 

diseases like bacterial blight, blast, brown spot, tungro and 

healthy leaf, with fast and accurate result at least expense. 

The rest of the paper is organized as follows. Section 2 

explores the existing work done by various researchers with tools 

and techniques. Section 3 presents the implementation of 

proposed system with the detailed explanation of proposed CNN 

architecture utilized. Section 4 comprises discussion of results 

with enough visualization. Finally, section 5 concludes the paper 

with the futuristic work. 

2. LITERATURE REVIEW 

The research work of same problem that has already been done 

is elaborated in this part. Researchers have developed a range of 

methods for computer vision-based plant leaf disease diagnostics. 

The literature heavily relies on CNN. 

In a study by Sharma et al. [2], a CNN model is created to 

predict and classify diseases in paddy plant. As bacterial, viral and 

fungal are three disease families, the authors considered brown 

spot, leaf smut and bacterial leaf blight. Training samples pass 



ISSN: 2229-6956 (ONLINE)                                                                                                                            ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03 

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023) 

2923 

under convolution layer, max pooling layer, flatten layer, dense 

layer, fully connected layer. Data augmentation like horizontal 

flip, vertical flip, shearing, and brightening of images is carried 

out on dataset, which is self-collected. Test samples are loaded. 

Data is fit and model is trained on training samples. Accuracy of 

model is predicted with test dataset. An accuracy of 90.32% is 

achieved in test set and 93.58% is achieved the training set. 

Shrestha et al. proposed CNN based model for disease 

detection in a variety of crops, as CNN approaches regularization 

in a simpler fashion. Dataset is loaded and are converted to numpy 

array. Data is labeled and split into training and testing sets. 

Model is built and trained and tested on training and testing set. 

Disease is predicted. Filters acquire the ability to recognize 

abstract concepts like a person face boundary. Instead of being 

predetermined, they are self-learned. The results of the filter are 

feature maps. Input image is passed into convolution layer that 

extracts characteristics and maintains in a feature map. Feature 

map is passed to pooling layer, where 2D filter applied and this 

layer summarizes the feature present in a region of feature map. 

The most prominent features of previous layer will be the output 

for next layer, max pooling layer. Fully connected layer is a feed 

forward neural network, which contains the vital information 

from all the layers. With 3000 images with 15 classes, model 

shows training accuracy of 97.2% and test accuracy of 88.80% 

and not overfitted [3]. 

Tejaswini et al. have considered frequent rice diseases: brown 

spot, hispa, leaf blast along with healthy leaves. Different DL 

methods like VGG-16, VGG-19, ResNet, Xception, 5-layer CNN. 

VGG-16 is a 16-layer CNN. VGG-19 is a 19-layer CNN. ResNet 

solves the vanishing gradient decent problem. Xception has 71 

layers. Convolution, pooling and fully connected layers is the 

layers involved. 5-layer CNN has two additional layers: dropout 

and activation layers. Among variant DL modes, 5-layer CNN 

outperforms with 78.2% accuracy, whereas VGG-16 show low 

accuracy of 58.4% [4]. Saini et al. proposes deep learning CNN 

model using 5000 leaf images of apple and grapes utilizing 

convolution layer, maxpooling layer, flatten layer, dense layer. 

The best training and testing accuracies are reported to be 99.96% 

and 99.90%. They assert that manual feature extraction is no 

longer necessary with deep learning, and the key challenge is the 

requirement for a high-speed GPU for data processing [5]. 

Swathika et al. proposes a CNN model to detect leaf disease 

in paddy. Image is acquired from Kaggle dataset and resized to 

500*100 pixels. Dataset is divided into 90:10 ratios for training 

and testing and sent to neural network. Disease identified images 

are sent to contour detection model and affected leaf area is 

estimated. Binary and Otsu’s thresholding is done in contour 

module. The accuracy and value accuracy are observed to be 

approximately 70% [6]. Islam et al. proposes deep CNN model to 

predict and classify paddy disease categories namely: brown spot, 

leaf blast, leaf blight, leaf smut and healthy leaf. Dataset is 

collected from UCI machine learning repository and Kaggle. 

Image is subjected to preprocessing like resizing, rotation, zoom 

and shearing. VGG-19, ResNet-101, Xception and Inception-

ResNet-V2 architectures are used. Inception-ResNet-V2 

outperforms with 92.86% accuracy. Transfer learning is adapted 

which is shown to increase accuracy and reduce complexity of 

model’s training time. Usage of Pre-trained weights in a new 

model can perform well than general models. Transfer learning 

helps to reuse previously learned model on a new model. Also, it 

can train deep neural networks with small amount of data [7]. 

In a recent study, Bari et al. proposes real time disease 

detection using Faster R-CNN algorithm where challenges faced 

by existing work like difficulty in diseased are segmentation with 

small variations, overfitting problem caused by discrepancies in 

distribution of data features, large variety of disease feature, 

complex backgrounds, and obscure boundaries of disease 

symptoms are discussed. YOLO, SSD and Faster R-CNN 

algorithms are considered. Among them Faster R-CNN proposes 

RPN (Regional Proposal Network) structure to generate candid 

regions and target is precisely positioned. R-CNN efficiently 

detects spot of disease reliably. Data augmentation is done to 

avoid overfitting issue. The faster R-CNN network effectively 

classifies rice diseases with high accuracy in real time. Three 

diseases including rice blast, brown spot, hispa and are the 

categories handled along with healthy one. Rice leaf diseases 

dataset (RLDD) is created with online and own dataset collected 

from rice fields. RLDD is annotated manually, and data 

augmentation done. Entire dataset is divided into training and 

testing dataset. Testing dataset is used for performance 

assessment. Model has batch size of 1 with 50,965 iterations and 

0.0002 as learning rate. Rice blast, brown spot, hispa and healthy 

leaf classes accuracy of 98.09%, 98.85%, 99.17% and 99.25% 

respectively with faster R-CNN. The study reports that the 

misclassification is due to similarity in geometric features and to 

combat this problem, more training should be done with more 

similar dataset [8].  

Shrivastava et al. proposed a decision support system for 

identifying rice plant disease using SVM and ANN (Artificial 

Neural Network) where ANN is reported to be accurate than SVM 

[10]. Nayak et al. proposed a system using improved deep CNN 

to recognize facial expression with adabound optimizer [11]. 

Janocha et al. investigates how the choice of loss functions 

influencing deep models, learning dynamics and consequential 

classifiers robustness to various effects [12]. Latif et al. proposed 

deep CNN transfer learning method for diagnosing six categories 

of rice leaf diseases and achieved 96.08% accuracy and tacked 

overfitting issue [13]. Thakur et al. presents a lightweight CNN 

model for crop disease identification, called VGG-ICNN, based 

on the VGG architecture. It reduces the size of the model while 

maintaining 99.16% accuracy and outperforms other lightweight 

CNN models for crop disease identification [14].  Prottasha et al. 

proposes a system to identify 12 types of rice leaf diseases using 

depth wise separable CNN, which deals not only with spatial 

dimension but also with depth dimension. Model reports 96.5% 

validation and 95.3% testing accuracy [15]. Hassan et al. 

proposed a method for identifying plant-leaf diseases by fine-

tuning a pre-trained Convolutional Neural Network (CNN) on a 

dataset of plant leaves with annotated disease labels. The pre-

trained CNN serves as the base model, with its features used to 

extract information from the images, while the fine-tuning process 

focuses on training the last layers of the network to perform the 

specific task of plant-leaf disease classification. Experiments on a 

dataset of plant leaves showed that this approach outperforms 

traditional machine learning methods and achieves high accuracy 

in plant-leaf disease classification. The paper concludes that 

transfer learning is a promising approach for this type of 

classification and has potential to be applied to other similar 
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problems in computer vision. Highest accuracy of 99.56% is 

achieved using EfficientNetB0 [16].  

Geethamani et al. proposed nine-layer Deep CNN model for 

identifying plant leaf diseases. Extensive augmentations 

performed. Model evaluated with varying epoch, batch size and 

dropouts and achieved 96.46% classification accuracy. They have 

tested the proposed model with machine learning algorithms as 

well. The future work is to extend the research to other parts of 

plant like stem, flowers and fruits [17]. 

In this research, a study on the detection of leaf diseases using 

a hybrid convolutional neural network (HCNN) is presented. By 

using feature reduction approaches, the authors hope to enhance 

the model's performance. A dataset of images of plant leaves is 

used to train and test the HCNN model, and the results are 

assessed using a variety of performance criteria. The study's 

methodology and findings are reported in the paper, along with 

how feature reduction affects the HCNN model's ability to 

identify leaf diseases accurately and effectively. Four diseases in 

grape plants namely: Leaf blight, Black rot, stable, and Black 

measles are investigated and accuracy of 98.7% is achieved using 

transfer learning and efficientNetB7 [18]. This research proposes 

a different probabilistic interpretation of the Huber loss, an often-

used loss function in regression problems. They provide a 

probabilistic interpretation of the Huber loss function in terms of 

Gaussian mixture models. The paper discusses the objectives, 

methods, and results of the study and compares the Huber loss 

performance with other commonly used loss functions in 

regression problems [19]. 

3. PROPOSED WORKFLOW 

The proposed system intends to create an effective plant 

disease detection mechanism for paddy plants using combination 

of Convolutional Neural Networks and image processing 

techniques. This section provides a thorough explanation of the 

proposed system. The Fig.1 shows complete workflow of 

proposed system. The images are acquired from P.K. Sethy [20] 

repository. The image dataset is preprocessed by reducing to 

256*256 dimensions. All pixel values will result in 0-255 range, 

which is then normalized by dividing each image pixel with 255. 

The images are acquired from P.K. Sethy [20] repository and 

Kaggle dataset [21]. 

3.1 IMAGE ACQUISITION 

The first and foremost step is image acquisition. Images are 

acquired from dataset of P.K. Sethy [20] having 5932 images in 

their repository of which 640 images (160 image samples from 

each of the four classes of paddy leaf diseases: bacterial blight, 

blast, brown spot, and tungro) are acquired. 160 healthy images 

are taken from Kaggle dataset [21]. The Fig.2 depicts sample 

images of diseased and healthy leaf. 

 

Fig.1. Proposed system workflow 

(a) bacterial blight (b) blast 
 

(c) brown spot 

Image acquisition 

Resize and Normalize 

Convolution Layer 1 

Maxpooling Layer 1 

Convolution Layer 2 

Maxpooling Layer 2 

Flatten Layer 

Dense Layer 1 

Dense Layer 2 

Model Training 

Disease Prediction 

CNN with Extended Huber 

Loss Function 

Diseased leaf? 

Yes Bacterial blight 

No 
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Bacterial blast 
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Fig.2. Sample paddy leaf diseases and healthy leaf 

 
(d) tungro              (e) healthy leaf 

3.2 PREPROCESSING 

Preprocessing improves the quality of image. We have resized 

all the images into 256*256 pixels. Python’s CV2 package is used 

to resize the images and images are converted into numpy array. 

Dataset is scaled to a range of 0 to 1 before it is fed into the neural 

network model. It is done by divide the values by 255. Both the 

training set and the validation set should be preprocessed in the 

same method. Table.1. depicts the dataset information used in this 

research. 

Table.1. Total dataset of classes 

Class  

Name 

Total  

Images 

Total Training 

Images 

Total Testing  

Images 

Brown Spot 160 128 32 

Leaf Blast 160 128 32 

Leaf blight 160 128 32 

Leaf smut 160 128 32 

Healthy 160 128 32 

Total images 800 640 160 

3.3 CNN ARCHITECTURE 

CNN architecture is utilized for image classification, object 

recognition, segmentation and many other tasks. CNN takes 

image as input and interprets image in the form of matrices. CNN 

Architecture has three main layers namely convolutional layer, 

pooling layer and fully connected layer. CNN Layers are 

discussed below. 

3.3.1 Proposed CNN model: 

We propose a CNN model with two convolutional layers, a 

dropout layer, two pooling layers, a flatten layer and two dense 

layers. The process is explained below and depicted in Fig.3. 

Convolutional layer is added where convolution operation is 

applied on input image with 32 filters and 4*4 filter size. This step 

extracts useful features and ReLU activation function is internally 

applied. 

Step 1: To reduce the dimensionality of images, a max-pooling 

layer with pool-size 4*4 is added. 

Step 2: A second-convolutional layer with 16 filters and 4*4 

filter size is applied with ReLU as activation function. 

Step 3: A second max-pooling layer of 4*4 pool-sizes is added. 

Step 4: A dropout layer with 0.2 dropout rate is added to drop 

off some neurons [11]. 

Step 5: Then a flattening layer is applied to convert two 

dimensional arrays obtained from pooled feature maps 

into one dimensional linear vector. 

Step 6: Finally, two dense layers are applied, first layer employs 

ReLU and second layer employs softmax activation 

function. 

Conv2d_input input: [(None, 256, 256, 3)] 

InputLayer output:  [(None, 256, 256, 3)] 

 

Conv2d input: (None, 256, 256, 3) 

Conv2D output: (None, 256, 256, 32) 

 

Max_pooling2d input: (None, 256, 256, 32) 

MaxPooling2D output: (None, 64, 64, 32) 

 

Conv2d_1 input: (None, 64, 64, 32) 

Conv2D  output: (None, 64, 64, 16) 

 

Max_pooling2d_1 input: (None, 64, 64, 16) 

MaxPooling2D output: (None, 32, 32, 16) 

 

dropout input: (None, 32, 32, 16) 

Dropout output: (None, 32, 32, 16) 

 

flatten input: (None, 32, 32, 16) 

Flatten output: (None, 16384) 

 

dense input: (None, 16384) 

Dense output: (None, 10) 

 

dense_1 input: (None, 10) 

Dense output: (None, 5) 

Fig.3. Proposed CNN model with input and output of layers 

 

Fig.4. Layered view of CNN model 

The image passes through all the layers and classification is 

finally done in dense layer based on inputs from previous layers 
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and model will be able to predict the disease class to which the 

image belongs to. The Fig.4 shows the layered view of proposed 

CNN model where different CNN layers are involved. 

3.3.2 Convolution layer: 

This is the first layer of CNN which involves more 

computations. It requires input data that has height, width, and 

depth as dimensions. Each filter will result in feature map because 

of convolution operation with input image. Filter is applied to 

input image and returns “feature map”, because of convolution 

operation with input image, which is then normalized (with an 

activation function) and/or resized. This process can be repeated 

several times. Resulting feature map is W×H×D, where W is its 

width in pixels, H is its height in pixels and D the number of 

channels (It is 1 for a black and white image and 3 for a color 

image). Finally, the values of the last feature maps are 

concatenated into a vector. This vector defines the output of the 

first block and the input of the second. The depth of output is 

affected by the number of filters, or they define the dimensionality 

of the output space. The coding for adding convolutional layer is 

as follows. 

model.add (Conv2D (32,(4,4), padding = "same", input_shape  = 

(256,256,3), activation = "relu")) 

ReLU (Rectified Linear Unit) is a popular activation function 

and it is simple to compute as it uses only max() function. It is 

defined as follows. 

 f(x) = max(0,x)          (1) 

where, x is the input neuron. 

3.3.3 Maxpooling layer: 

Pooling layers reduce the number of parameters in the input 

known as dimensionality reduction which decreases the 

computational power to process the data and dominant features 

are extracted as well. The operation of pooling layer is similar to 

convolution layer, where the filter is applied to entire image, but 

the filters carry no weight.  

By factoring in the maximum value over an input window for 

each channel of input, this layer reduces the input's spatial 

dimensions: height and width. This layer will result in pooled 

feature map. The code to add pooling layer is as follows. 

model.add(MaxPooling2D(pool_size=(4, 4))) 

model.add(MaxPooling2D(pool_size=(2,2))) 

3.3.4 Flatten: 

The pooling layer produces feature map, which is passed 

through flatten layer, where everything is flattened into a long 

column that is transformed into one-dimensional vector. This 

vector will be input to the neural network. Fig.5 represents pooled 

feature map and results after flattening. 

 

Fig.5. flattening of pooled feature map 

The code to add flatten layer is as follows: 

model.add(Flatten()) 

3.3.5 Dense Layer: 

Dense layer is the layer having highest number of parameters. 

This layer performs some linear operations like matrix-vector 

multiplication with neurons of its preceding layer and providing 

one output to next layer, hence this layer is a fully connected layer.  

ReLU and softmax activation functions are used for the dense 

layer. ReLU activation function helps the model to learn complex 

patterns in data by introducing non-linearity into model. Softmax 

function is used for multiclass classification problem. The code to 

add dense layers is as follows. 

model.add(Dense(8, activation="relu")) 

model.add(Dense(4, activation="softmax")) 

Eq.(2) and Eq.(3) displays the formula for ReLU and Softmax 

activation function. 

 ReLU(x) = max(0, x)              (2) 

where, x is the input to the activation function and f(x) is the 

output. 
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where z is the input vector, eZi is standard exponential function, k 

is number of classes in multiclass classifier. 

• Forward Propagation 

Each layer's output in forward propagation is determined by 

its input and weight. The following are the steps for calculating 

each layer's output: 

Step 1: The input of the current layer and the weights for that 

layer is dot product. 

Step 2: The bias term is added to result of dot product. 

Step 3: The result is passed to get output of current layer through 

activation function. 

Eq.(4a) and Eq.(4b) denotes intermediate steps and output of 

current layer. 

 z = input * weights + bias (4a) 

 output=f(z) (4b) 

• Backward Propagation 

The gradient of loss function is calculated with respect to each 

weight. The steps for backpropagation are as follows: 

Step 1: The input is forward propagated through the network to 

calculate the output. 

Step 2: The difference between the desired output and the actual 

output is computed. 

Step 3: The gradient of the error with respect to the output of the 

last layer is calculated. 

Step 4: Backpropagate the error through the network, calculating 

the gradient of the error with respect to the weights in 

each layer. 

Step 5: This process is repeated for each layer and each weight 

in the network. 

The Eq.(5) shows formula for gradient of the error. 
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 error_grad = (output - desired_output) * output_grad  (5) 

where, error_grad is the gradient of the error with respect to the 

output of the last layer, output is the actual output of the network, 

desired_output is the desired output and output_grad is the 

derivative of the output with respect to the input. It is also known 

as the activation function gradient. 

The gradient of the error with respect to the weights in each 

layer is then calculated using the chain rule as in Eq.(6) as follows: 

 weight_grad = input * error_grad (6) 

where weight_grad is the gradient of the error with respect to the 

weights in the current layer, input is the input to the current layer, 

and error_grad is the gradient of the error with respect to the 

output of the current layer. The weight_grad is used to update the 

weights using the gradient descent algorithm and is shown in 

Eq.(7). 

 weights = weights - learning_rate * weight_grad (7) 

3.4 CLASSIFICATION 

Classification involves classifying data into different classes. 

This research involves multiclass CNN classification, where CNN 

is trained on a dataset and then used to predict the class. Dataset 

is divided into train and test in 70:30 ratios. Training a network is 

trying to minimize its loss. The loss function defines the 

difference between the predicted class and true class. It guides the 

optimization process by assigning a cost to model’s prediction 

error. The proper choice of loss function for a classification 

problem has a great impact on the model's performance, 

convergence speed, and overall accuracy. 

Steps for classification: 

Step 1: Build the model. 

Step 2: Set up the required layers. 

Step 3: Compile the model with Extended Huber loss function, 

optimizer and metrics. 

Step 4: Train the model. 

Step 5: Feed the model. 

Step 6: Evaluate accuracy. 

Step 7: Make predictions and verify predictions. 

Step 8: Use the trained model to make predictions. 

3.4.1 Proposed Model with Extended Huber Loss Function: 

Huber loss is a loss function used in robust regression [19].  It 

is less sensitive to outliers in the data than the mean squared error 

used in least squares. They produce more stable and reliable 

results.  The function is a combination of the mean squared error 

for small errors and mean absolute error for large errors. Huber 

loss function is defined in Eq.(8a) and Eq.(8b). 

 L(x) = 0.5 * (error2), if |error| ≤ δ (8a) 

 L(x) = δ *|error| - 0.5 * (δ), if |error| > δ (8b) 

where error is the difference between the predicted value and the 

true value, and δ (delta) is a parameter that controls the transition 

between the two regimes, “linear” and “quadratic” regions of the 

loss function.  

• Extended Huber loss function 

In order to improve the results further, an improved version of 

the Huber loss function is created, which is less sensitive to the 

choice of the delta parameter, and more robust to outliers and has 

better optimization properties. Improved Huber loss has a smooth 

transition between the quadratic and linear parts of the loss 

function, whereas the standard Huber loss has a sharp transition. 

The extended Huber loss function is defined as: 

 L1(x) = 0.5 * (error1
2), if |error1| ≤ δ (9a) 

 L1(x) = δ *|error1| - 0.5 * (δ2), if |error1| > δ (9b) 

where, error1 is the difference between the predicted value and 

the true value, and δ (delta) is a hyperparameter that controls the 

transition from the quadratic to linear part of the loss function. 

Extended Huber loss function produces better results in terms of 

lower loss and higher accuracy than the standard Huber loss 

function. It has better optimization properties and less prone to 

oscillation. It has a smooth transition between the quadratic and 

linear parts of the loss function, which makes it less sensitive to 

outliers. It is less sensitive to the choice of the delta parameter, 

which makes it more robust to outliers. Moreover, it is 

differentiable, enabling the use of gradient-based optimization 

techniques. 

4. RESULTS AND DISCUSSION 

The Table.2 depicts detailed architecture with the layers, no. 

of neurons in each layer and no. of parameters. 

Table.2. Detailed architecture of proposed CNN model  

Layer (type) Output Shape Param #    

conv2d (Conv2D) (None, 256, 256, 32) 1568 

 max_pooling2d  

(MaxPooling2D) 
(None, 64, 64, 32) 0 

 conv2d_1 (Conv2D)            (None, 64, 64, 16) 8208 

 max_pooling2d_1 

(MaxPooling2D) 
(None, 32, 32, 16)        0 

dropout (Dropout) (None, 32, 32, 16) 0 

flatten (Flatten)     (None, 16384)              0 

dense(Dense) (None,10) 163850 

dense_1(Dense) (None,5) 55 

Total params: 173,681 

Trainable params: 173,681 

Non-trainable params: 0 

4.1 VISUALIZATION OF FEATURE MAP 

The Fig.6 shows feature map visualization obtained through 

convolutional layers. 

With equal distribution of data in five classes, our proposed 

model has a total of 800 images with 640 images for training and 

160 images for testing. The python code was executed for several 

rounds of epochs to track resulting accuracy and losses.  

From epoch 1 to 6, gradual increase is noticed and slight 

decline at epoch 7. From epoch 8 to 20, model is showing steady 

increase rate. The best training accuracy of 96.63% is reached at 

the 20th epoch. The study reports that there is gradual increase in 

validation accuracy from epoch 1 to 5 and slight decline noticed 

in epoch 6, 8, 14, 17 and 19. The highest validation accuracy of 
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86.61% is attained in epoch 12, 13 and 16. There is a gradual 

decline in training loss in all epochs except epoch 18, which 

shows a slight increment. There is a gradual decrease in validation 

loss in epoch 3, 8, 10, 13, 17 and 19. 

 

Fig.6. Feature map visualization 

The Table.3 displays the results of the proposed model's loss, 

accuracy, and validation loss and validation accuracy throughout 

several epochs. 

Table.3. Full model training details with extended Huber loss 

function 

Epoch 
Training Validation 

Loss Acc. loss Acc. 

1 0.0590 0.4442 0.0572 0.4286 

2 0.0512 0.5603 0.0461 0.5982 

3 0.0434 0.6384 0.0469 0.5983 

4 0.0389 0.7143 0.0381 0.7232 

5 0.0340 0.7612 0.0336 0.8036 

6 0.0302 0.8304 0.0307 0.7946 

7 0.0301 0.8259 0.0302 0.8393 

8 0.0247 0.8661 0.0341 0.7589 

9 0.0223 0.8817 0.0258 0.8393 

10 0.0205 0.8884 0.0269 0.8482 

11 0.0181 0.8996 0.0267 0.8571 

12 0.0168 0.9152 0.0230 0.8661 

13 0.0139 0.9308 0.0237 0.8661 

14 0.0133 0.9308 0.0250 0.8482 

15 0.0114 0.9464 0.0245 0.8571 

16 0.0110 0.9487 0.0208 0.8661 

17 0.0085 0.9576 0.0276 0.8036 

18 0.0086 0.9554 0.0188 0.8571 

19 0.0074 0.9598 0.0268 0.8304 

20 0.0068 0.9665 0.0203 0.8482 

The Fig.7 shows the loss and accuracy curve of the proposed 

CNN model for 20 epochs. Training and validation loss have 

similar trends, though they differ in absolute values. Proposed 

model is cross compared with standard Huber loss function and 

categorical cross entropy loss functions and it is emphasized that 

overfitting is under control with an extended Huber loss function. 

 

Fig.7. Extended Huber loss function – loss and accuracy plot 

Table.4 shows that extended Huber loss function outperforms 

the standard Huber loss and standard loss function like categorical 

cross entropy. 

Table.4. Comparison of loss functions w.r.t loss and accuracy 

Loss function 
Training Validation 

Loss Acc. Loss Acc. 

Categorical cross entropy 32.32 91.74 55.48 84.82 

Standard Huber loss 0.80 95.31 2.51 83.93 

Extended Huber loss 0.68 96.63 2.03 86.61 

The Fig.8 depicts loss and accuracy plot with standard Huber 

loss function where overfitting is under control. 

The Fig.9 depicts loss and accuracy plot with categorical cross 

entropy. The model shows 91.74% training accuracy with higher 

training and accuracy loss ranges than standard and extended 

Huber loss functions. The Fig.10 and Fig.11 shows training and 

testing loss for standard and extended Huber loss functions.  

 

Fig.8. Standard Huber loss function – loss and accuracy plot 

 

Fig.9. Categorical cross entropy - loss and accuracy plot 
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Fig.10. Training Loss - standard Vs extended Huber loss 

 

Fig.11. Validation loss - standard Vs extended Huber loss 

The Table.5 shows the comparison of accuracy of proposed 

system with the existing systems. 

Table.5. Comparison of Proposed system with existing systems 

References Accuracy 

Sharma et al. [1] 93.58% 

Tejaswini et al. [3] 78.20% 

Swathika et al. [5] 70% 

Sibiya et al. [8] 92.85% 

Proposed CNN extended Huber loss 96.65% 

Confusion matrix evaluates the performance of classification 

model by comparing actual target values with the predicted 

values. In our paper, confusion matrix incorporates performance 

evaluation metrics like precision, recall, support, and F1-score to 

assess the efficiency of the classification system. Confusion 

matrix estimates are explained in Table.6. 

Table.6. Key terms in Confusion matrix 

Outcome Explanation 

TP True Positive, shows correctly predicted positive values 

TN 
True negative, shows correctly predicted negative 

values 

FP 
False Positive, shows actual negatives that are 

incorrectly predicted 

FN 
False Negative, shows incorrect prediction of negative 

values 

Formula for precision, recall and F1-score are given in 

Eq.(10), Eq.(11), and Eq.(12).  

 Recall = TP/(TP+FN) (10) 

 Precision = TP/(TP+FP) (11) 

 f1-score = 2*((precision*recall)/(precision + recall)) (12) 

For the proposed system, an Intel(R) Core (TM) i3-5005U 

CPU with 4GB of RAM and a 64-bit processor is employed. 

Anaconda 1.9.0 and Python 3.9.7 are the software versions used.  

The Fig.13 displays confusion matrix for the proposed method 

where the diagonal element represents correctly classified count. 

It is reported from Fig.13 that 156 images are correctly classified 

as bacterial blight. 

 

Fig.13. Confusion matrix for proposed system 

The Table.7 shows classification report for the proposed 

model with precision, recall, F1-score and support parameters.  

Table.7. Classification report of proposed CNN 

  Precision Recall F1-score Support 

Bacterial blight 97.50 97.50  97.50 160 

Blast 95.62 95.62 95.62 160 

Brown spot 96.25 96.25 96.25 160 

Tungro 96.25 96.25 96.25 160 

Healthy 97.50 97.50 97.50 160 

Accuracy  96.63 800 

Macro avg 96.63 96.63 96.63 800 

weighted avg 96.62 96.62 96.62 800 

5. CONCLUSION 

Plant disease diagnosis is a crucial area to work with. 

Automatic plant disease diagnosis helps the farmers to increase 

yield of product and to protect soil from improper use of 

pesticides. This study attempts to diagnose and classify paddy leaf 

diseases using deep learning-based CNN approach. The proposed 

work achieves training accuracy of 96.63% and validation 

accuracy of 86.61% having considered four classes of diseases: 

bacterial blight, blast, tungro and brown spot and healthy leaf. The 
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main advantage of deep learning methods over machine learning 

methods is that they eliminate the need for feature extraction. The 

futuristic work of this paper is to add on more classes of diseases 

and to implement with the variants of deep learning architecture 

for sustainable computing. 
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