
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

DOI: 10.21917/ijsc.2023.0411

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2909

BLOCKCHAIN ENABLED, COLLABORATIVE PLATFORM FOR AI AS A SERVICE

Venkata Raghava Kurada and Pallav Kumar Baruah
Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, India

Abstract

With the advent of technology, modern human activities produce a

huge amount of data. This vast amount of data facilitates a better model

training, thus creating accurate predictions. But most of the business

entities lack the facilities and resources to develop an AI system. There

is a need for a platform, to which the business can outsource the

process of data collection, model development, and its deployment.

These models should be tailored for each use case. The work presented

here attempts to address these issues using blockchain and incremental

learning. The transactions and user identification in the platform are

implemented using blockchain, thus maintaining the ownership of the

model and dataset in a transparent, immutable and decentralized

manner. Incremental learning algorithms are employed to facilitate the

real-time updation of the model. All the models and the datasets

collected in the platform are considered resources. The platform opens

up an avenue for developing a marketplace for data and trained

models.

Keywords:

Blockchain, Incremental Learning, AI as a Service, Data Market Place

1. INTRODUCTION

Recent years have witnessed the explosion of Machine

Learning algorithms; the models are meant to accomplish

complex tasks without compromising the performance. These

machine learning models are increasingly used in the decision

automation process. The development of a machine learning

model generally depends on two factors, availability of the data

and model training. The process of developing and fine-tuning

these models is highly centralized in nature and beyond the reach

of the common user. There is also the problem of collecting large

data sets, where often times these datasets are proprietary and the

process of data collection is often plagued with data brokers. This

led to the development of the new field called AI as a Service

(AIaaS) [1]. Typically, AIaaS refers to outsourcing the process of

model development and maintenance to an external entity. One

of the key objectives of AIaaS is to make AI accessible to business

entities, irrespective of size of the organization or technical skills

required. To foster AI diffusion, many cloud service providers

such as Amazon [2], Google [3], and Azure [4] have started to

offer AIaaS, but these are highly centralized in nature and there is

the issue of identification and authentication of users, with respect

to the cloud service providers, for example, IAM [32] by Amazon.

There is a need for the cloud-based platform, where a user is

empowered to create, train and deploy a model with a click of a

button. This platform should also enable the community of users

to share data, receive incentives, use the platform to build various

data repositories from multiple sources in a highly secure manner

while maintaining the integrity of the data. Such a platform should

also enable the user to obtain and use a purpose specific AI model

which trained on the data available in the platform and target to

achieve a specific task for the user. The service provided by the

platform is to enable users to trade the resources like datasets and

trained models that are generated by the platform. The platform

also needs to update the model and datasets on the fly with the

trending streaming data. The key challenges to realize such a

platform are the establishing of trust in its user base and maintain

the ownership of the authentic resources transparently. As the

cloud is a centralized entity, the platform should guarantee that

the user privacy is preserved.

Incremental learning [5] is a subset of Machine Learning

where the model trained is continuously on the input data. The

main objective of incremental learning is to improve the current

model knowledge extensively and adapt to the data that is used,

without forgetting its existing knowledge. Incremental learning is

also known as Online Learning or Continuous Learning.

Blockchain [6] is a distributed ledger that is decentralized in

nature. The transactions that take place in the ledger are

immutable in nature, which offers accountability. Blockchain can

be used as a trust-establishing platform between the trust less

parties [17]. Each and every user has a set of keys namely private

and public, with the help of cryptography these keys can be used

to provide authentication and identity management. Because of

the traceability, the blockchain can be used for record-keeping

where the ownership of the datasets or trained models is

maintained.

This work is of significance because it addresses the need for

a platform that leverages on a decentralized ledger to facilitate

collaborative data collection and transparent data marketplace

while protecting user privacy. The use of the blockchain in the

platform ensures a greater degree of trust. With its property of

immutability and decentralized nature, the ownership of the

resources can be maintained transparently by using Blockchain.

However, there is a computational challenge to create a composite

application using blockchain [35]. In order to circumvent this

challenge, one needs to perform most of the computation off

chain, thereby avoiding the actual performance bottleneck of

computation. In our work, we achieve this by offloading the

computation to the resources on the cloud. This enables the

platform to create, train a wide array of models efficiently without

any performance bottleneck.

The main contributions of the work are:

• The design and implementation of a platform that facilitates

development and creation of data repositories from multiple

sources.

• This implementation of the platform also demonstrates

creating and training of models using the data repositories

available in the platform.

• Design and implementation of decentralized data

marketplace.

• Retraining and updating the models in real time with

streaming data.

• The issues of trust, authentication, ownership is taken care

of by using blockchain.

VENKATA RAGHAVA KURADA AND PALLAV KUMAR BARUAH: BLOCKCHAIN ENABLED, COLLABORATIVE PLATFORM FOR AI AS A SERVICE

2910

• The computational hurdles due to use of blockchain is

overcome by offloading the computation to the cloud.

1.1 LITERATURE REVIEW

In this section, we will mention some key work done in

conjunction with Machine Learning and Blockchain. Justin D

Harris [6] proposed an on-chain method to train various models

like perceptron and Naive Bayes, the results were discussed in [7].

The model is generated using a smart contract, that is executed on

the blockchain. Similar work is discussed by Chen, Xuhui et al.

[8], in which authors used on chain learning. Petrović, Nenad [9]

limited the role of the blockchain for billing the user based on the

extent of resource usage.

Marcelletti, et al [10] discuss the advantages of encompassing

a Blockchain in MLOps. The usage of blockchain in a specialized

privacy preserving machine learning, termed federated learning,

has been discussed in [11] [12] [13]. A new method of developing

the AIaaS on the blockchain called Secured AIaaS was proposed

by Nicholas Six et al in [30]. In this work, the blockchain is used

as a marketplace, where different entities like client, algorithm

provider, infrastructure provider and data provider come together

to generate a model. A specific model is generated using a given

data set for a given user using a particular compute resource as a

result of execution of smart contract.

1.2 PRELIMINARIES

1.2.1 Blockchain:

The idea of the Blockchain was initially proposed by the two

physicists Stuart Haber and W Scott Stornetta [14], intending to

deploy a system that prevents manipulation of past data by the

future generation and also to prevent network spam. The same

idea is extended using certain cryptographic methods coupled

with techniques from game theory for exchanging a digital

currency in, what is known as Bitcoin [15].

Blockchain is a decentralized and distributed ledger that is

maintained by all the nodes of the network. To maintain the

homogeneity of the records across the different nodes, various

Consensus algorithms [16] are used. Blockchain is the database

that holds the records of transactions in the form of blocks. The

immutability in the blockchain is achieved using chaining. Each

hash of the current block is stored in the next block. If the

malicious actor wants to modify the content of a transaction in a

certain block, the change is reflected in the hash of all the

succeeding blocks. This new hash does not match the hash that is

stored in the successive block, which leads to detection of any

malicious changes. Thus, the malicious actor should change the

content of all the blocks until the last block, which is

computationally infeasible. The critical attribute of the blockchain

lies in its ability to establish trust between the trust less parties.

Zavolokina, Liudmila et al. [17] has discussed how trust-

supporting design elements may be implemented to foster an end

user trust in a blockchain platform.

1.2.2 Ethereum:

Ethereum [18] is developed by Vitalik Buterin along with

Gavin Wood. Initially, Ethereum employed Proof of Work to

maintain the consensus between the nodes, however the network

adopted Proof of Stake [16] for consensus mechanism, in 2022. It

uses Ether [18] as the native cryptocurrency. The key factor which

separates the Ethereum blockchain from the others is the

introduction of the Ethereum Virtual Machine (EVM) [18]. An

EVM is the one single entity that is maintained by almost all the

nodes of the network. Another breakthrough is the introduction of

the Smart Contract [18], [20]. The main idea is to deploy the

protocol that should maintain and ensure the immutable,

continuous operations of the Smart Contract. Gas is the fuel of the

Ethereum, which is charged by the miners to make the

transactions. It has the capability to process 7–9 transactions per

second and is plagued by scalability [19]. However, after adapting

to Proof of Stake for consensus the performance improved by

18.6% as reported by Kapengut et al. [33].

1.2.3 Smart Contract:

Smart Contract [20] is the concept that is introduced in

Ethereum. A smart contract is a code that exists on the network

and is executed on the Ethereum Virtual Machine (EVM). This

pioneering work by V Buterin [18] on smart contract rendered the

Ethereum blockchain into a Turing machine and converted it to a

computing platform. Solidity is the language used to program a

smart contract on Ethereum [21]. Solidity is a high-level language

which is highly influenced by the languages like C++, Java and

JavaScript. The introduction of the EVM offered the capacity of

executing a piece of code that is written either in Solidity or

Assembly [18]. The smart contract can perform the transactions,

send and receive funds and validate the stakes. This concept

offered the flexibility to the developer to add if-else statements,

along with the ability to move data on the fly. These codes have

the ability to perform and take part in the transactions. Since these

types of code deal with a huge amount of money and high-value

assets, a bug or a loophole in the code can cause severe damage

in terms of the economy. In order to mitigate these bugs, open-

source libraries like Oppenzeplin can be used [31]. The other

strategy is to minimize the number of the smart contract, which is

adopted in our work.

1.2.4 Decentralized Application:

DApps is the short form for Decentralized Applications [18],

these are often referred to as Distributed Applications as well.

These types of applications use the smart contract as the backend.

The front end of the application is generally a web page or android

application. Each user on the blockchain network has a public key

(often referred to as address) which can be used to send funds to

an account.

Crypto Wallet is the specialized software that performs tasks

like key management and connecting the user to the specific

blockchain. These act as middleware between the web application

and the backend. It performs tasks such as invoking a smart

contract and conducting transactions on behalf of the user. The

smart contracts deployed on a blockchain along with the crypto

wallets are used in the development of the DApps. DApps have

the front end implemented in the various JavaScript frameworks

like Vue, React, and Svelte. Svelte is used in our work because of

its efficient performance.

1.2.5 Incremental Learning:

Incremental learning [22] is a subset of Machine Learning,

where the model is trained on a continuous input data stream. The

main objective of incremental learning is to improve a model

knowledge extensively and adapt to the data that it is trained on,

without forgetting its existing knowledge. Unlike the traditional

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2911

Machine Learning algorithms, Incremental Learning in its purest

essence encompasses a model which learns with one sample at a

time. This set of algorithms excels in situations where the rate of

data availability varies with time. Such systems are suitable for

applications such as IoT, Physical Cyber Systems where the

stream processing of the data plays a crucial role as proposed in

the papers [23], [24]. The python module, River [25] is used to

implement the Incremental Learning algorithms. River module

can be considered as a wrap-up for both creame and multi-flow

by sklearn.

Incremental learning can be classified into two types:

• Reactive Learning: The situations in which one does not

have control over the data arrival. For example, the number

of requests per minute on a server.

• Proactive Learning: The situations in which one has control

over the data arrival. For example, data received in the IoT

network.

1.2.6 AI as a Service:

AI as a Service [1] can be defined as AIaaS as cloud-based

systems providing on-demand services to organizations and

individuals to deploy, develop, train, and manage AI models.

Reflecting on this broad definition reveals that AIaaS not only

relates to AI software and applications available on-demand, such

as chatbots using natural language processing, but also covers

tools and resources needed to develop, operate and maintain AI

models.

AIaaS [1] aims to make AI accessible and inexpensive to all

organizations, regardless of size, technological sophistication, or

AI funding. Without the need to master difficult algorithms or

technologies, AIaaS leads users through the process of designing,

implementing, or using data analytics models. Users can therefore

concentrate on their core competencies, such as training and

configuring their AI models, rather than worrying about

installation, maintenance, and related administrative issues.

2. SYSTEM DESIGN AND ARCHITECTURE

2.1 SYSTEM DESIGN

System design constitutes the skeleton of a framework and

aids the development of the system from its theory. As described

earlier, the purpose of this proposed framework is to create a

transparent, privacy centric, blockchain enabled platform that

serves as a Data marketplace.

As visible in Fig.1, the proposed framework or the system has

three layers. These layers are explained further below. The users

of the proposed framework consist of data collectors, data

contributors, and resource users.

2.1.1 Front End Layer:

The front end is the layer where the various users interact with

the system to perform tasks like creating a data schema,

contributing to the data schema, trading the resources and training

a model. The user interacts with the system and its functionalities

through a browser, which is referred to as the DApp browser in

this context. The DApp browser contains functions that facilitate

interactions with both the blockchain layer and the computation

layer. For the computation layer, the front-end module acts as a

gateway for authentication.

Fig.1. The Building Blocks of the Platform

2.1.2 Blockchain Layer:

Smart contract mainly constitutes this layer. A smart contract

that is deployed on the blockchain network is used to maintain the

record of ownership of a resource. The functions in smart contract

are invoked by both the computation layer and front-end layer.

The front end uses the data from the blockchain to validate the

owner of the resources while trading a particular resource.

Whereas, the computation layer is used to add, update these

records. In order to reduce the gas, the proposed platform uses

only one smart contract. The implementation of the smart contract

is explained in the following sections.

2.1.3 Computation Layer:

A database and server constitute this layer. This layer resides

off-chain, in order to leverage on the greater computation power.

The database is used to store the user details like the signature,

which is used for authentication purposes. In order to preserve the

user privacy; it is designed based on zero-knowledge proof [33].

On the other hand, the server is where all the computation tasks

like training the model, updating the models and basic application

related jobs takes place. This layer uses the blockchain layer as a

verification tool to authenticate and identify the user.

As we observe that the three layers are independent by design,

due to this feature the hardware can be scaled up and down.

2.2 TASKS

2.2.1 Creating a Data Schema:

Data Schema is an abstract concept concerning the proposed

framework, it is the collection of the features that a data

contributors desired, along with features data type. Data schema

offers flexibility and customizability to the data collector. In the

proposed framework the data type is restricted to 4 types, integer,

boolean, float and string. The data collector is expected to provide

at least 15 data records that satisfy the schema, these are used to

train a filter model that is used in the data cleaning process. The

data contributor is also expected to provide the target, the number

of data records he intends to collect via the platform and bounty,

and the incentives that were offered to every contributor for each

data record. After the successful creation of the data schema in the

computation layer, the ID of the model along with the address of

the owner is entered into the blockchain through the blockchain

layer.

Front End Computation Layer

Blockchain

Various users interact with

the system

Computation platform

and User validation

Smart Contract, Financial

Transactions and Record Keeping

VENKATA RAGHAVA KURADA AND PALLAV KUMAR BARUAH: BLOCKCHAIN ENABLED, COLLABORATIVE PLATFORM FOR AI AS A SERVICE

2912

2.2.2 Contributing to Data Schema:

After the creation of the data schema, all the data contributors

can view it from the front-end module of the proposed platform

along with other details like incentives and the feedback for the

model. The proposed platform implements the idea proposed in

[6] to filter the data records. In work by Justin et al. [6] proposes

to use a model that is trained to accuracy <70% as a filter to

determine the authenticity of the particular record. When a data

contributor provides a data record with the target variable,

compared to the prediction of the filter model, if the error is less

than a threshold, then the particular record is deemed as a good

data record and gets accepted. On acceptance, the data contributor

will receive the incentive. As incremental learning is used, which

facilitates updating the filter model frequently, thus leading to

effective data filtering.

2.2.3 Training a Model:

Training the model is fully supported by the computation

layer. The resource user selects the type of algorithm that suits his

requirements. The proposed platform provides a set of choices

based on the user responses, the system suggests the best-suited

learning type, i.e. Incremental, Conventional ML. The key

difference between these two approaches is the update frequency

of the filter. The incremental learning-based filter is updated for

every data record collected, whereas the conventional machine

learning-based models are updated until a threshold number of

records are collected. The same is the case with the actual

predicting models as well.

2.2.4 Trading the Resources:

Resources in this context refer to either fully trained models

or collected datasets. As mentioned earlier, the computation layer

keeps a record of the ownership of a particular resource in the

blockchain. Through the frontend layer of the system, resources

users can view all the available resources. The process starts with

the seller quoting a price to the resource, to which the buyer

agrees. The computation layer will validate the ownership of the

buyer, by comparing the resource id and the buyer address from

the blockchain layer. After successfully validating the ownership,

the buyer wires the funds to the seller via blockchain. The record

of the ownership is updated after the fund transfer.

2.3 SMART CONTRACT

Smart Contract is used for maintaining the record of the data

collectors and their resources. The proposed platform uses a

contract named Details Holder. This contract is used to maintain

the record of ownership of a resource. The contract contains the

getter and setter methods for user details and the resource id. It

makes use of the events to interact with the front-end layer and

computation layer. Computation layer validates the ownership of

the resources.

Algorithm1 Smart Contract of DetailsHolder

New Resource Creation:

function newUser(id,

resourceid,userid,sign,proof)

if (proof==sign) then

add the details of user and resource

 return (success)

else

 return (failure)

end if

end function

Retrieve Data:

function getData(id, index)

retrieve data of the specified user

return (user record)

return (failure)

end function

Update the New User:

function updateUser(id,id1,index)

if (msg.sender==computationlayer)

 Delete the resource id from the old user map list

 Add the resource id to the new user map list

Return (success)

else

 Return (failure)

end if

end function

The Algorithm1 explains the functioning of the smart contract

for DetailsHolder. This algorithm has five functions that are used

for new resource creation, retrieving the user details and updating

the owner of the resource. The first function of Algorithm 1

newuser, is to be performed by the user, and it includes five

variables, id, resourceid, userid, sign and proof; these are used for

adding the new user and the resource details in a mapping which

the other function to access the user details. This map contains an

id and an array of name resources which contains all the resource

id that is owned or created by the user. The second function is

getData and it is invoked by the server in the computation layer,

it takes two parameters id and index. Id variable is used as the

index for the mapping, whereas the index is used for retrieving

the particular resource. In order to verify the server is invoking

this function, msg.sender is used and if the value of it is the same

as the server from the computation layer, the details of the user

are retrieved and returned else the failure message is emitted as

an event. The ‘msg.sender’ is the term used by Solidity which

contains the address of the caller. The last function named

updateUser takes the id, id1 and index as arguments. The

arguments id and id1 correspond to the index of the map list of

the new and old owners respectively. The index is used to delete

the respective resource id from the user structure.

2.4 TECHNOLOGIES USED

2.4.1 Metamask:

Metamask is one of the leading crypto wallets that is offered

by Consensys [26]. It is the gateway to Web3 which lets the user

buy, store and send tokens globally. It is open-source software

that is maintained by 8–10 developers and has wide community

support. Metamask lets users manage their private keys and

various local client wallets. It even provides a secure interface to

review and take part in the transaction that is initialized by the

DApp. It is available as both a Browser extension and an Android

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2913

Application as well. The latest version of the Metamask was

developed to be more robust by removing the web3 dependencies.

2.4.2 Svelte JS:

Svelte JS [27] is an open-source JavaScript front end compiler

that was developed by Rich Harris and is currently maintained by

the Svelte Core Team members [27]. It is a JavaScript framework

that compiles the HTML template and manipulates the DOM

directly without Virtual DOM, unlike Vue.js or React JS [28]. It

is a component-based framework, which uses HTML, CSS and

JavaScript with no extra syntax, unlike ReactJS and Vue.js.

During the build and deployment phase, the Svelte Framework

compiles the written code into standalone JavaScript modules. As

the components are statically mounted, thus decreasing the

workload on the browser.

2.4.3 Flask:

Flask is an open-source micro web Framework that was

written by Armin Ronacher of Pocono [29]. It was developed by

a group of enthusiasts of the Python Group in 2004 [29]. It is

referred to as a micro framework because it does not necessitate

the use of any specific tools or libraries. Furthermore, it doesn't

have a database abstraction layer, form validation, or any other

components that rely on third-party libraries to perform common

tasks. Extensions, on the other hand, can be used to add

application features as if they were built into Flask itself. Object-

relational mappers, form validation, upload handling, various

open authentication technologies, and several framework-related

tools all have extensions.

2.4.4 MySQL:

MySQL is an open-source, community-driven database

management system. It is an implementation of the Relational

Database Management System. In RDBMS, the table data

structure is used to store and retrieve the data. The source code of

MySQL is primarily written in C and Prostar C. It was developed

by Michael Widenius. The MySQL stack work with the operating

system to create, retrieve and manipulate the tables that contain

the data. It also enforces the ACID properties, which are

maintained along with Identity and Access Control and backup

creation. Furthermore, it uses Structured Query Language to

create and extract data from the tables. It was currently owned by

the Oracle Corporation and Nominated as the DB of the Year,

2019. MySQL is often used as LAMP stack, which stands for

Linux, Apache, MySQL, Perl/PHP/Python

2.5 INTERACTIONS

The computation layer and the front-end layer are connected

by the Fetch API. Fetch API is the modern alternative to the

XMLHTTPRequest. The data is transferred in JSON format

between the front end and the computation layers. Users can

interact with the blockchain directly from the front end via the

Metamask browser extension. An API named windows.ethereum

exposed by Metamask is used for generating signatures and

verifying them.

The smart contract used in the proposed framework is invoked

by the address that is generated while deploying the smart

contract. The events that are emitted by the smart contracts are

listened to in the front-end layer, thus facilitating the interaction

between the Front End and the Blockchain Layer. All the

verification is offloaded to the DApp Browser, thus reducing the

computation in the blockchain layer.

Fig.2. Depicting the Interaction between Different Technologies

2.6 DISTINGUISHING FEATURES OF PLATFORM

2.6.1 Cryptography Based Authentication:

Unlike the conventional web applications where the

credentials are stored in the database and verified against each

other while the user is logged in, the platform uses a cryptographic

approach. The private key of the user is used to encrypt the user

credentials to generate a signature. This signature is stored in the

backend to authenticate the user for future logins.

2.6.2 High Availability of the Model:

With the usage of incremental learning, the model can be

updated on a real-time basis. The computational cost associated

with the operations like updating, predicting and learning is less

than conventional machine learning algorithms. Thus, reducing

the carbon footprint of the models.

2.6.3 Restricted Use of Blockchain:

As mentioned in previous sections. The blockchain is known

for its immutability and distributed nature. But it also suffers from

scalability issues. The proposed platform uses the blockchain as a

record-keeping platform, which is used to authenticate the user

and their ownership of the particular resource on the platform.

Because of the traceability aspect of the blockchain, all the

cryptographic transactions are conducted on the blockchain.

2.6.4 Filter Based Data Collection:

As proposed in [6], the proposed platform uses a semi-trained

model to differentiate between the good data contributor from all

data contributors. Since the filter can be updated in real-time, the

robustness of the data collection process increases with time, i.e.

more records are collected, and the more the filter model has

trained the higher accuracy.

2.6.5 Off-Loaded Computation:

As mentioned in previous sections, the proposed platform uses

the Computation Layer, which is independent of the blockchain

layer. This facilitates the dynamic provision of the resource. It

should also be taken into consideration that there are considerable

technical restrictions in the Solidity [21], for instance, lack of

support for the floating-point operation, which is crucial for the

machine learning models. The higher computation leads to higher

gas prices. These problems can be mitigated by off chaining these

operations to the computation layer.

VENKATA RAGHAVA KURADA AND PALLAV KUMAR BARUAH: BLOCKCHAIN ENABLED, COLLABORATIVE PLATFORM FOR AI AS A SERVICE

2914

2.6.6 Hot Swamp of the Model:

In order to ensure the availability of the latest model that is

trained on more data and limit the downtime of the production

model, the proposed platform uses the model real-time model

updates. All the models are stored in the form of pickle format.

These pickle files are loaded into the server, after getting trained

on the latest data, the newly trained model is used as the

production model.

2.7 USAGE SCENARIO FOR PROPOSED

PLATFORM

The Fig.3 depicts the basic usage scenario of the proposed

framework. The system mainly has two entities, i.e., User and the

Computation Layer. Users can be further classified as Data

Contributors and Data Collectors. When the data collector intends

to collect data, he creates a data schema. The computation layer

verifies the authenticity of the data collector and creates a request

for the data collection in the data marketplace.

Fig.3. Flow of the Proposed Platform

This request is then reflected on the front end, where all the

data contributors can view it and make contributions. The

contributor data points are fed into a filter model, which makes an

initial prediction. If the error between the initial prediction and the

contributor target variable value falls under a threshold, the

particular data point is accepted, and the contributor will receive

the incentives in the form of cryptocurrency. If the error is greater

than the threshold, then the particular data record is rejected. Once

the production model is robust enough to make accurate

predictions, the data collector can be made available to other users

on the platform, either in the form of pay per query basis or by

selling it. Thus, creating a self-sustained economy.

3. RESULT

3.1 EXPERIMENTAL SETUP

For testing the performance of the proposed framework, we

have conducted experiments on a system with following

configurations:

• AMD Ryzen 5 4600H with Radeon Graphics @ 3.0GHz

• 16 GB of memory with Pop! OS 22.04 LTS

The model implemented in this experiment is Linear

Regression on mtcars [35]. The smart contract is developed and

tested in Solidity using the Truffle Suite. The default iterations are

limited to 5. The python code was timed with the help of jupyter

magic tools - timeit. In both cases, the mean of all the 50 runs was

taken. The results are presented in Fig.4.

3.2 EVALUATION METRICS

In section 1.1, we discuss two different approaches of model

generation using a blockchain in [7],[30]. For Secured AIaaS [30],

the key performance metric is the amount of gas consumed. It is

known the value of gas depends on various factors like the

economic value of the crypto token and the type of network that

is used. In a paper titled, Analysis of Models for Decentralized

and Collaborative AI on Blockchain [7] the authors use the gas

price and Accuracy as the evaluation metrics.

In both the above cases [7], [30], model is generated on chain

which leads to higher gas consumption; therefore it is necessary

to keep gas consumption as one of the key performance metric. In

[7] the work is about training a model on blockchain; therefore

accuracy is a performance metric along with gas consumption.

 In contrast to that, our work is to provide a platform for AI as

a Service. By design the computation is off chained, in order to

avoid huge gas consumption for training of the model. In our

design the training of the model occurs in the Computation Layer

which is deployed as a different service. The effective parameters

for these types of services are execution time and train data size.

Moreover, the platform is designed to be deployed as a cloud

service. Therefore, parameters like availability and execution time

for a service can be considered as a useful indicator of

performance. A service in this case is training of a model on a

given size of dataset. Therefore, execution time for a given size of

data set seem to be the best way to evaluate the performance of

the platform. Therefore, we considered relationship between

execution time and train data size to be the key performance

indicator for the proposed platform. We explain the two indicators

as follows:

• Execution Time: With respect to python, it can be defined as

the time duration to the execution of a code snippet. Whereas

in case of smart contract, it can be defined as the duration

between the transaction conformation and its execution in

the blockchain network.

• Train Data Size: Refers to the number of data records

present in the training data. To maintain the uniformity

between all the test cases, the test train classifier from

sklearn is used.

3.3 DISCUSSION

 The x-axis of the graph represents the size of the test dataset;

y-axis is the execution time in milliseconds. The greater the

execution time slower the model. Therefore, it is desirable to have

minimum execution time for better efficiency of the model.

From the Fig.4, it can be said that as the test data size

increases, the execution times increases linearly. The average

execution time of the River implementation is 2.50 milliseconds

(ms) with standard deviation of ±0.8ms, whereas the execution

time for Solidity it is 28,738.7ms with standard deviation of

±10,467ms. When compared to the Solidity implementation, the

River implementation is faster with magnitude of more than

10000x. From the above-mentioned factors, it can be said that the

River (off chained) implementation is better than Solidity (on

chain) for implementing the models on the proposed platform.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2023, VOLUME: 13, ISSUE: 03

SPECIAL ISSUE ON INNOVATIONS AND INTELLIGENCE FOR COMPUTING AND TECHNOLOGIES (IICT-2023)

2915

Fig.4. Comparison of Execution Time Between River and

Solidity

4. CONCLUSION

In this paper, we discussed how blockchain technology in

combination with the compute platform can be useful for

collaborative data collection platforms and AI as a service

Blockchain is used as an identity management and financial

transaction platform. Also, the framework proposes certain

measures to ensure the problem of the data storage as it is off

chained to the cloud. In order to offer an efficient platform,

various measures like the hot swap of the model, and

cryptographic authentication were suggested.

Future work can be done in the following lines, the reduction

of centralization by using decentralized storage solutions like

Orbit DB or IPFS instead of MySQL. In order to establish the

resilience of the design complex machine learning algorithms like

Neural Networks, CNNs and LSTM can be implemented. In order

to enhance the efficiency of the blockchain layer various different

networks like Avalanche, Polkadot, Polygon can be used with the

help of different suites like Truffle, Foundry, Hard Hat.

REFERENCES

[1] Parsaeefard, Saeedeh and Tabrizian, Iman and Leon-Garcia,

“Artificial Intelligence as a Services (AI-aaS) on Software-

Defined Infrastructure”, Cotton Ginners' Handbook, 2019.

[2] Overview of Amazon Web Services, Available at

https://docs.aws.amazon.com/whitepapers/latest/aws-

overview/introduction.html, Accessed in 2022.

[3] Practitioners Guide to MLOps: A Framework for

Continuous Delivery and Automation of Machine Learning,

Available at

https://services.google.com/fh/files/misc/practitioners_guid

e_to_mlops_whitepaper.pdf, Accessed in 2021.

[4] Azure Arc-enabled Machine Learning, Available at

https://azure.microsoft.com/en-gb/resources/azure-arc-

enabled-machine-learning-white-paper/, Accessed in 2022.

[5] A. Gepperth and Barbara Hammer, “Incremental Learning

Algorithms and Applications”, Proceedings of European

Symposium on Artificial Neural Networks, pp. 1-13, 2016.

[6] D. Justin and B.W. Harris, “Decentralized and Collaborative

Ai on Blockchain”, Proceedings of IEEE International

Conference on Blockchain, pp. 1-7, 2019.

[7] J.D. Harris, “Analysis of Models for Decentralized and

Collaborative AI on Blockchain”, Proceedings of IEEE

International Conference on Blockchain, pp. 1-7, 2020.

[8] Xuhui Chen, “When Machine Learning Meets Blockchain:

A Decentralized, Privacy-Preserving and Secure Design”,

Proceedings of IEEE International Conference on Big Data,

pp. 1-13, 2018.

[9] Nenad Petrovic, “Model-Driven Approach to Blockchain-

Enabled MLOps”, Proceedings of 9th IEEE International

Conference on IcETRAN, pp. 1-6, 2022.

[10] A. Marcelletti and Andrea Morichetta, “Exploring the

Benefits of Blockchain Technology for MLOps Pipeline”,

Proceedings of IEEE International Conference on

Foundations of Consensus and Distributed Ledgers, pp. 13-

17, 2022.

[11] D.C. Nguyen, “Federated Learning meets Blockchain in

Edge Computing: Opportunities and Challenges”, IEEE

Internet of Things Journal, Vol. 8, No. 16, pp. 12806-12825,

2021.

[12] Shiva Raj and Jinho Choi, “Federated Learning with

Blockchain for Autonomous Vehicles: Analysis and Design

Challenges”, IEEE Transactions on Communications, Vol.

68, No. 8, pp. 4734-4746, 2020.

[13] H. Kim, “Blockchained on-Device Federated Learning”,

IEEE Communications Letters, Vol. 24, No. 6, pp. 1279-

1283, 2019.

[14] System Haber and W. Scott Stornetta, “How to Time Stamp

A Digital Document”, Proceedings of International

Conference on the Theory and Application of Cryptography,

pp. 1-6, 1990.

[15] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash”, Available at

https://www.ussc.gov/sites/default/files/pdf/training/annual

-national-training-

seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf,

Accessed in 2009.

[16] C. Zhang, Cangshuai Wu and Xinyi Wang, “Overview of

Blockchain Consensus Mechanism”, Proceedings of

International Conference on Big Data Engineering, pp. 1-

13, 2020.

[17] Liudmila Zavolokina, Noah Zani and Gerhard Schwabe,

“Why should I Trust a Blockchain Platform? Designing for

Trust in the Digital Car Dossier”, Proceedings of

International Conference on Design Science Research in

Information Systems and Technology, pp. 1-13, 2019.

[18] Vitalik Buterin, “A Next-Generation Smart Contract and

Decentralized Application Platform”, Available at

https://blockchainlab.com/pdf/Ethereum_white_paper-

a_next_generation_smart_contract_and_decentralized_appl

ication_platform-vitalik-buterin.pdf, Accessed in 2014.

[19] Markus Schaffer and Gernot Salzer. “Performance and

Scalability of Private Ethereum Blockchains”, Proceedings

of International Conference on Business Process

Management, pp. 1-7, 2019.

[20] Jasvant Mandloi and Pratosh Bansal, “An Empirical Review

on Blockchain Smart Contracts: Application and Challenges

in Implementation”, International Journal of Computer

Networks and Applications, Vol. 7, No. 2, pp. 43-61, 2020.

[21] M. Wohrer and Uwe Zdun, “Smart Contracts: Security

Patterns in the Ethereum Ecosystem and Solidity”,

Proceedings of International Workshop on Blockchain

Oriented Software Engineering, pp. 43-56, 2018.

[22] Alexander Gepperth and Barbara Hammer, “Incremental

Learning Algorithms and Applications”, Proceedings of

European Symposium on Artificial Neural Networks, pp. 1-

5, 2016.

VENKATA RAGHAVA KURADA AND PALLAV KUMAR BARUAH: BLOCKCHAIN ENABLED, COLLABORATIVE PLATFORM FOR AI AS A SERVICE

2916

[23] Y. Liu and H. Song, “Class-Incremental Learning for

Wireless Device Identification in IoT”, IEEE Internet of

Things, Vol. 8, No, 23, pp. 17227-17235, 2021.

[24] T. Li, S. Fong, R.C. Millham, J. Fiaidhi and S. Mohammed,

“Fast Incremental Learning with Swarm Decision Table and

Stochastic Feature Selection in an IoT Extreme Automation

Environment”, IT Professional, Vol. 21, No. 2, pp. 14-26,

2019.

[25] Jacob Montiel, Talel Abdessalem and Albert Bifet, “River:

Machine Learning for Streaming Data in Python”,

Proceedings of International Conference on Machine

Learning, pp.1-8, 2020.

[26] Nakhoon Choi and Heeyoul Kim, “A Blockchain-Based

User Authentication Model using MetaMask”, Journal of

Internet Computing and Services, Vol. 20, No. 6, pp. 119-

127, 2019.

[27] Svelte-Cybernetically Enhanced Web Apps, Available at

https://svelte.dev/, Accessed in 2022.

[28] Mattias Levlin, “DOM Benchmark Comparison of the

Front-End JavaScript Frameworks React”, Angular, Vue,

and Svelte”, Available at

https://www.doria.fi/handle/10024/177433, Accessed in

2020.

[29] Mufid Mohammad Robihul, “Design an MVC Model using

Python for Flask Framework Development”, Proceedings of

IEEE International Symposium on Electronics, pp. 1-5,

2019.

[30] Andrea Perrichon-Chretien and Nicolas Herbaut. “Saiaas: A

Blockchain-based Solution for Secure Artificial Intelligence

as-a-Service”, Proceedings of International Conference on

Deep Learning, Big Data and Blockchain, pp. 1-7, 2022.

[31] Open Zepplin, Available at

https://github.com/OpenZeppelin, Accessed in 2022.

[32] S. Moreschini, “MLOps for Evolvable AI Intensive

Software Systems”, Proceedings IEEE International

Conference on Software Analysis, Evolution and

Reengineering, pp. 1-13, 2022.

[33] AWS IAM UserGuide, Available at

https://docs.aws.amazon.com/IAM/latest/UserGuide/iam-

ug.pdf, Accessed in 2021.

[34] Elie Kapengut and Bruce Mizrach, “An Event Study of the

Ethereum Transition to Proof-of-Stake”, Proceedings of

European Symposium on Artificial Neural Networks, pp. 1-

8, 2022.

[35] M. Harikrishnan and K.V. Lakshmy, “Secure Digital

Service Payments using Zero Knowledge Proof in

Distributed Network”, Proceedings of International

Conference on Advanced Computing and Communication

Systems, pp. 1-8, 2019.

[36] Salem Alqahtani and Murat Demirbas, “Bottlenecks in

Blockchain Consensus Protocols”, Proceedings of IEEE

International Conference on Omni-Layer Intelligent

Systems, pp. 1-8, 2021.

