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Abstract 

The present research introduces the best architectural relevance vector 

machine (RVM) model for predicting the compaction parameters of 

soil. The two types of RVM models, i.e., single kernel function-based 

(SRVM) and dual kernels (parallel) function-based (DRVM), have 

been constructed in this study. However, the RVM is a kernel function-

based approach. Therefore, linear, gaussian, laplacian, and 

polynomial kernel functions have been implemented in these models. 

Each model has been optimized by each Genetic algorithm (GA) and 

particle swarm optimization (PSO) algorithm. For this purpose, 59 soil 

samples have been collected from the literature. The root mean square 

error (RMSE), mean absolute error (MAE), and correlation coefficient 

(R) statistical tools have been used to measure the performance and 

accuracy of models. From the overall analysis, models MC10 and 

MD12 have predicted OMC (RMSE = 0.8194%, R = 0.9956, MAE = 

0.7920%) and MDD (RMSE = 0.1310g/cc, R = 0.9941, MAE 

=0.0008g/cc) better than other RVM models. It has also been observed 

that the DRVM model predicts the compaction parameters better than 

the SRVM models. The GA algorithm is robust in predicting OMC 

prediction, and the PSO algorithm is robust in MDD prediction. The 

score analysis also confirms the robustness of the dual kernel function 

based DRVM models for predicting OMC and MDD of soil. The 

sensitivity analysis demonstrates that compaction parameter prediction 

is strongly influenced by the specific gravity, liquid limit, and plasticity 

index of soil. 
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1. INTRODUCTION 

The available soil on the earth has been classified into 

cohesive and non-cohesive soil based on their behaviour. Each 

soil has different engineering or geotechnical properties, 

representing the behaviour of the soil. These properties can be 

determined by in-situ and laboratory procedures. However, both 

procedures are time-consuming and arduous. The consistency 

limits, compaction parameters, strength parameters, and 

permeability are the geotechnical properties of soil. The 

laboratory procedures for determining these properties are time-

consuming, requiring human resources and proper equipment 

maintenance, which is costly. 

Moreover, the compaction parameters, such as optimum 

moisture content (OMC) and maximum dry density (MDD), are 

the principal parameter for determining permeability and strength 

properties, showing the necessity of the compaction parameters. 

Various types of equipment are available for determining the 

compaction parameters of soil. Still, the standard and modified 

proctor tests are famous among geotechnical engineers/ designers. 

Both proctor tests require several attempts to draw an inverted 

“V” shaped curve to compute the OMC and MDD of soil. Due to 

lengthy, arduous, and time-consuming procedures, it has been 

decided to introduce different techniques to compute the OMC 

and MDD of soil. Numerous researchers have used the statistical 

approach, i.e., regression analysis, to compute compaction 

parameters and map the relationship between the soil parameters. 

It has been observed that regression analysis computes the 

compaction parameters with considerable prediction error. As we 

know, modern problems require advanced solutions. Thus, 

several researchers and scientists have employed different 

computational approaches associated with artificial intelligence. 

V Hohn et al. [1] have introduced empirical models to predict 

the OMC and MDD of soil using 169 soil samples. The authors 

have used LL, PL, G, S, FC, and γs as input parameters for 

computing the compaction parameters of soil. The authors have 

concluded that proposed empirical models have predicted OMC 

and MDD with a correlation of 0.872 and 0.873, which is 

comparatively higher than the published empirical models of 

Sridharan and Nagaraj (2005), Nagaraj et al. (2015), Noor et al. 

(2011), Gunaydin (2009), and Sivrikaya (2008). Pentoś et al. [2] 

have mapped a comparative study between MLR and machine 

learning approaches in predicting soil compaction and shear stress 

using electrical parameters. The authors have reported that 

developed regression models have attained a lower 50% (R=0.5) 

accuracy in the prediction. Still, the machine learning approach, 

namely artificial neural network, has attained over 75% (R=0.75) 

accuracy, comparatively higher than regression models. Yousif 

and Mohamed [3] have predicted compaction parameters using 

soil index properties of 311 soil samples of sandy and sandy-silty 

soils. As a result, it has been observed that nonlinear regression 

models predict OMC and MDD of soil better than linear 

regression models. Verma and Kumar [4] have employed 

MLP_NN models to predict the modified compaction parameters 

of coarse and fine-grained soil. The authors have trained and 

tested MLP_NN models in the reported study using 179 and 69 

databases, respectively. The authors have concluded that the 

developed NN models have computed MDD of coarse and fine-

grained soil with ±4% and ±2% variation. In contrast, the models 

have predicted OMC within ±8% variations. Othman [5] has used 

gradational parameters and consistency limits to estimate the 

compaction parameters of soil. For this purpose, 240 artificial 

neural network models have been developed, trained, tested, and 

analyzed to find the optimum ANN model for computing each 

OMC and MDD of soil. The authors have mapped the following 

conclusions: (i) the tanh activation function is better than sigmoid 

and Relu functions; (ii) the performance of the ANN model 

deteriorates with the increasing number of hidden layers and 

neurons; (iii) the optimum performance ANN models have 

predicted OMC and MDD of soil with COD of 0.903 and 0.928, 

respectively. Othman and Abdelwahab [6] have estimated 

compaction parameters using the ANN approach. The authors 

have concluded that 3HL interconnected two neurons-based ANN 

models have estimated MDD and OMC of soil with COD of 0.864 

and 0.924, respectively. Jalal et al. [7] have employed GEP and 
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MEP approaches for predicting compaction characteristics. For 

this purpose, the authors have used C, PL, PI, and SG parameters 

as input parameters. The authors have reported that the GEP 

approach gives the most promising results of compaction 

parameters of soil. Benbouras and Lefilef [8] have reported that 

the random forest approach predicts the compaction parameters 

with high performance and accuracy.  

Wang and Yin [9] have constructed models based on the MEP 

approach using G, S, FC, LL, PL, and CE parameters to predict 

the OMC and MDD of soil. The authors have found that the 

proposed models have predicted the compaction parameters of 

soil with COD of more than 0.85. Özbeyaz, A., and Söylemez [10] 

have compared the efficiencies of MLS_SVR, KB_SVR, and DT 

regression approach in computing compaction parameters of soil. 

Also, the authors have computed OMC and MDD individually 

and combined. The performance analysis demonstrates that 

polynomial and gaussian kernel function-based SVR models 

(developed for combined property prediction) have attained 

higher performance than models developed for single property 

prediction. Kurnaz and Kaya [11] have conducted a study on the 

prediction of the compaction parameters of soil. In the published 

research, authors have developed ELM, BRNN, GMDH, and 

SVM models, and performance has been compared. The authors 

have reported that the ELM models have predicted OMC and 

MDD of soil with the performance of 0.9385 and 0.9521, 

respectively, comparatively higher than BRNN, GMDH, and 

SVM models. Ratnam and Prasad [12] have mapped the 

relationship between gradational parameters, consistency limits, 

and compaction parameters of soil. Hasnat et al. [13] have 

predicted OMC and MDD with R of 0.86 and 0.91, respectively, 

using the support vector regression approach. Bunyamin et al. 

[14] have computed compaction parameters of cement kiln dust 

stabilized cohesive soil using the ANN approach. The authors 

have observed that ANN models of OMC (10-5-1) and MDD (10-

7-1) have predicted OMC and MDD of soil with R of 0.983 and 

0.9884, respectively. Khalid and Rehman [15] have constructed 

empirical models for predicting compaction parameters of soil for 

standard and modified proctor tests. The authors have reported 

that MDD of standard and modified proctor tests have a 

correlation of only ±0.4% and OMC of standard and modified 

proctor tests have ±2.7% correlation. Karimpour-Fard et al. [16] 

have used the results of 728 soil samples to compute the 

compaction parameters of soil using ANN, and MLR approaches. 

The authors have found that ANN models have predicted 

compaction parameters of soil better than the MLR approach 

using gradational parameters and consistency limits. Ardakani 

and Kordnaeij [17] have employed GMDH neural network 

models and genetic algorithms to compute the compaction 

parameters of soil. For this purpose, the authors have used the LL, 

PL, FC, and SC of 212 soil samples to train and test the developed 

models. The authors have compared the performance (R=0.90 for 

MDD, R=0.92 for OMC) of GMDH neural network models with 

the published research. Finally, the authors have concluded that 

GMDH models are superior to published ones. Vinod and 

Sreelekshmy [18] have derived empirical equations for predicting 

compaction parameters of fine-grained soils. From the overall 

analysis, the authors have mapped the following conclusion (i) 

OMC decreases with an increase in compaction energy, (ii) 

maximum dry density has a good correlation with dry unit weight, 

and (iii) SG is the less influencing parameter for maximum dry 

density. Sreelekshmy and Vinod [19] have re-examined the 

compaction parameters of soil using computational methods.  

Özgan et al. [20] have used SPSS software to develop 

compaction parameters models using particle size and 

compaction parameters. Furthermore, Jyothirmayi et al. [21] have 

mapped the relationship between compaction parameters and the 

plastic limit of soil. Gurtug and Sridharan [22] have estimated the 

compaction parameters of soil using compaction energies of soil 

tested by standard, reduced-modified, and modified proctor tests. 

The authors have reported that plastic limit strongly correlates 

with the standard proctor energy level OMC. Also, the OMC has 

an excellent correlation with the MDD of soil. Farooq et al. [23] 

have predicted compaction parameters of fine-grained soil using 

consistency limits. The published research has been carried out 

using empirical models. Finally, the authors have reported that the 

proposed empirical models have predicted MDD and OMC with 

confidence intervals of ±2.5% and ±9.5%, respectively. Ören [24] 

has estimated the compaction parameters using a sediment 

volume test. For this purpose, the author has derived linear 

equations and has concluded that the plastic limit is the best 

parameter for predicting the compaction parameters of clay soil.  

Khuntia et al. [25] have employed models based on the MARS 

approach to predict the compaction parameters of coarse-grained 

soil. In addition, the authors have employed ANN, and LSSVM 

approaches. The performance comparison shows that the MARS 

models have predicted OMC and MDD with a variation of ±13% 

and ±4%, respectively. Moreover, Sivrikaya et al. [26] have 

predicted compaction parameters of coarse-grained soil using 

MLR and GEP. Al-saffar and Khattab [27] have constructed an 

artificial neural network to compute the OMC and MDD of soil. 

Based on the statistical analysis, it has been found that the ANN 

models have the capability to predict the OMC and MDD of soil. 

Mujtaba et al. [28] have mapped the statistical relationship 

between gradational and compaction parameters of sandy soils. 

As a result, the authors have reported that the proposed 

relationships have computed OMC and MDD of sandy soil with 

the confidence interval of ±3% and ±5%, respectively. Similarly, 

several researchers and investigators have developed and 

employed various approaches for computing the compaction 

parameters of coarse and fine-grained soils [29]-[33]. 

1.1 GAPS IN THE LITERATURE SURVEY 

The literature survey demonstrates that numerous researchers 

have developed models based on statistical and artificial 

intelligence approaches. In the reported study, the relevance 

vector machine approach has not been employed for predicting 

the compaction parameters of soil. Also, no hybrid soft computing 

approach has been developed and employed in predicting the 

OMC and MDD of soil. Again, the impact of the optimization 

technique has not been studied yet in compaction parameters and 

for the relevance vector machine approach.  

1.2 OBJECTIVES OF THE PRESENT RESEARCH 

Considering the outlines given in the gaps in the literature, the 

present study constructs the models based on the relevance vector 

machine (RVM) approach. However, the relevance vector 

machine is an advanced approach to the support vector machine. 

Both approaches are based on kernel functions. Therefore, linear, 

gaussian, laplacian, and polynomial kernel functions have been 
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implemented in the RVM models. Single (SRVM) and dual 

(DRVM) kernel-based relevance vector machine models have 

been developed using the kernel functions. In addition, to study 

the effect of the optimization technique, the developed SRVM and 

DRVM models have been optimized by genetic algorithm (GA) 

and particle swarm optimization (PSO) algorithm. 

Research Significance – It is well-known that determining soil 

compaction parameters using laboratory procedures is time-

consuming and arduous. For this purpose, the present research 

introduces a robust computational tool for predicting the 

compaction parameters of soil. Also, this research helps 

geotechnical engineers/ designers decide the best optimization 

technique and kernel function of the relevance vector machine 

models for OMC and MDD prediction.  

2. RESEARCH METHODOLOGY  

The present research has been conducted to predict the 

compaction parameters of soil and introduce the robust relevance 

vector machine model. The relevance vector machine is a kernel 

function-based approach. Using the linear, gaussian, laplacian, 

and polynomial kernel functions, four SRVM (single kernel-

based RVM) models have been employed to predict each OMC 

and MDD of soil. Each developed SRVM model has been 

optimized by GA and PSO optimization techniques for predicting 

each OMC and MDD of soil. For this purpose, fifty-nine soil 

samples have been collected from the literature study. Forty-one 

and eighteen soil samples have been randomly picked up to create 

the training and testing databases to train and test the developed 

models. To measure the performance of the models, root mean 

square error (RMSE), mean absolute error (MAE), correlation 

coefficient (R), and coefficient of determination (R2) have been 

used.  

Based on the performance comparison, one better performing 

SRVM model and kernel function have been identified. Thus, one 

GA-optimized SRVM model for OMC, one PSO-optimized 

SRVM model for OMC, one GA-optimized SRVM model for 

MDD, and one PSO-optimized SRVM model for MDD have been 

identified as better-performing models. The kernel function of the 

respective better-performing models has been used to develop 

various combinations with the rest of the kernel functions and to 

develop the DRVM (dual kernel function-based RVM) models. 

For example, the laplacian kernel has been recognized as a better-

performing kernel function for the SRVM model. The kernel 

combinations are laplacian + linear, laplacian + gaussian, and 

laplacian + polynomial.  

As a result, three DRVM models have been optimized by GA 

and PSO optimization techniques for predicting each OMC and 

MDD of soil. Based on the performance comparison, one GA-

optimized DRVM model for OMC, one PSO-optimized DRVM 

model for OMC, one GA-optimized DRVM model for MDD, and 

one PSO-optimized DRVM model for MDD have been 

recognized as better-performing models.  

Finally, four RVM models (GA-optimized SRVM, PSO-

optimized SRVM, GA-optimized DRVM and PSO-optimized 

DRVM) for predicting each OMC and MDD have been identified 

as the better-performing models. Furthermore, the performance of 

the better-performing SRVM and DRVM models has been 

compared to identify the best architecture models for predicting 

each OMC and MDD of soil. 

In addition, the score analysis has been performed to recognize 

the best architecture model. On the other hand, sensitivity analysis 

has been performed to determine the most influencing input 

parameter in predicting the compaction parameters of soil.  

3. DATA ANALYSIS 

In the present research, fifty-nine soil samples have been 

collected from the literature [34]-[37]. The database contains 

gravel content (G in %), sand content (S in %), silt content (M in 

%), clay (C in %), specific gravity (SG), liquid limit (LL in %), 

plasticity index (PI in %), optimum moisture content (OMC in %), 

and maximum dry density (MDD in g/cc) of fifty-nine soils 

samples. The descriptive statistics of the database are given in 

Table.1, demonstrating that the database consists of 0.0-74.0% 

gravel content, 0.0-100.0% sand content, 0.0-82.0% silt content, 

0.0-87.0% clay content, 2.52-2.80 specific gravity, 25.57-54.18% 

liquid limit, 9.02-30.9% plasticity index, 7.61-24.72% optimum 

moisture content, and 1.53-2.01g/cc maximum dry density. In 

addition, the Pearson product-moment correlation coefficient 

method has mapped the relationship, as shown in Fig.1.  

 

Fig.1. Relationship between input and output parameters 

The Pearson product-moment correlation coefficient values 

±0.81 to ±1.0, ±0.61 to ±0.80, ±0.41 to ±0.60, ±0.21 to ±0.40, and 

±0.0 to ±0.20 show very strong, strong, moderate, weak and no 

relationship between the two variables [38]. Fig.1 illustrates that 

sand content (-0.966) and liquid limit (0.966) very strongly 

correlate with OMC. The clay content (0.685) and plasticity index 

(0.721) strongly correlate with OMC. The gravel content (0.138) 

has no relationship with the OMC of the soil. On the other hand, 

MDD is very strongly with sand content (0.932) and liquid limit 

(0.932). The clay content and plasticity index very strongly and 

moderately correlate with maximum dry density.  
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Table.1. Descriptive Statistics of fifty-nine soil samples 

Variables Symbols Units Category Min Max Mean Median StDev CL Kurtosis Skewness 

Gravel Content G % Input 0.00 74.00 12.07 1.74 17.81 4.64 2.00 1.62 

Sand Content S % Input 0.00 100.00 54.50 60.88 31.09 8.10 -1.30 -0.23 

Silt Content M % Input 0.00 82.00 10.66 7.00 15.52 4.04 13.19 3.56 

Clay Content C % Input 0.00 87.00 17.79 8.40 21.38 5.57 1.24 1.42 

Specific Gravity SG % Input 2.52 2.80 2.67 2.69 0.05 0.01 1.57 -0.70 

Liquid Limit LL % Input 25.57 54.18 33.10 28.88 8.65 2.26 0.47 1.25 

Plasticity Index PI % Input 9.02 30.90 15.06 13.91 5.01 1.30 0.87 1.00 

Optimum Moisture Content OMC % Output 7.61 24.72 13.86 12.09 5.20 1.35 -0.43 0.81 

Maximum Dry Density MDD g/cc Output 1.53 2.01 1.83 1.88 0.14 0.04 -0.49 -0.80 

4. METHOD AND METHODOLOGY 

This section discusses the relevance vector machine approach, 

genetic algorithm, and particle swarm optimization technique. 

Also, the model designations of the developed SRVM and DRVM 

models are given in this section.  

4.1 RELEVANCE VECTOR MACHINE 

The relevance vector machine (RVM) was introduced by 

Tipping. The RVM is a probabilistic extended linear model [39]. 

The RVM has an identical function to the SVM but provides 

primary classification. The RVM is equivalent to a Gaussian 

process approach model with a covariance function. 

 ( ) ( ) ( )
1

1
, , ,

N

j j

j j

K x x x x x x 
=

 =  (1) 

where φ is the kernel function (default Gaussian), αj are the 

variance, x1, x2,..,xN are the input vector of the training datasets 

[40]. The flowchart of the relevance vector machine is shown in 

Fig.2. 

 

Fig.2. Flowchart of relevance vector machine 

The relevance vector machine is based on kernel function, and 

kernel functions are mathematical algorithms. The mathematical 

formulation of Gaussian, Linear, Laplacian, and Polynomial, etc. 

kernels are: 

Polynomial Kernel 

 K(xi,xj) = (xi.xj+1)d (2) 

Gaussian Kernel 

 K(x,y) = exp(-‖x-y‖2/(2σ2)) (3) 

Gaussian Radial Basis Function (RBF) 

 K(xi,xj) = exp(-γ‖xi,xj‖2) (4) 

Laplace RBF Kernel 

 K(x,y)=exp(-‖x-y‖/σ) (5) 

Hyperbolic Tangent Kernel 

 K(xi,xj)=tanh(kxi.xj+c) (6) 

Sigmoid Kernel 

 K(x,y)=tanh(αxTy+c) (7) 

Numerous researchers have solved engineering issues using 

the relevance vector machine approach [41-47]. Based on the 

outcomes, Gaussian, Linear, Laplacian, and Polynomial kernel 

functions have been used to develop the SRVM and DRVM 

models to predict the compaction parameters of the soil in this 

study. The hyperparameters of the SRVM and DRVM are given 

in Table.2. 

Table.2. Hyperparameters of the SRVM and DRVM models 

Hyperparameters SRVM DRVM 

Free Basis Enable 

Kernel Functions Gaussian, Linear, Laplacian, Polynomial 

Max. Iterations 1000 

Kernels Single Two 

Methods GA & PSO 

Target Single Kernel Two Kernels 

Ib 2-6 2-5, 10-2, 10-3, 10-3 

uB 2-6 2-5, 100, 103, 103 

Num. Variable 1 4 

Max. Iterations 100 

Kfolds 5 
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4.2 OPTIMIZATION TECHNIQUES 

The genetic algorithm (GA) and particle swarm optimization 

(PSO) algorithm have been implemented with SRVM and DRVM 

models to predict each OMC and soil MDD. The GA and PSO 

optimization techniques are discussed as follows: 

4.2.1 Genetic Algorithm (GA): 

The genetic algorithm is a metaheuristic that is inspired by the 

process of natural selection. It is a family member of a larger class 

of evolutionary algorithms. The genetic algorithm is used to 

evaluate the high-quality solution to optimization by relying on 

biologically inspired mutation, crossover, and selection operators 

[48]. The genetic algorithm enhances the performance of models 

based on the AI approaches [49]-[53]. 

4.2.2 Particle Swarm Optimization (PSO) Algorithm: 

Particle swarm optimization is a computational method to 

optimize problems and give high-quality solutions. The particles 

move around in the search space in particle swarm optimization 

based on the simple mathematical formula. Every particle moves 

due to its local best-known position, which is also guided by the 

most prominent positions in the search space. One of the bio-

inspired algorithms, particle swarm optimization (PSO), is 

straightforward in its search for the best solution in the problem 

area. PSO algorithm enhances the performance and accuracy of 

AI models in solving geotechnical issues [54]-[60]. 

4.2.3 Model Designations: 

In this work, fourteen RVM models have been developed 

using MATLAB R2020a to predict each OMC and MDD of soil. 

The developed SRVM and DRVM models have been configured 

with hyperparameters, as mentioned in Table.2. The designation 

of the developed RVM models is given in Table.3. 

Table.3. Hyperparameters of the SRVM and DRVM models 

RVM Type 
Kernel  

Functions 

OMC  

Models 

MDD  

Models 

GA – SRVM 

Gaussian MC1 MD1 

Linear MC2 MD2 

Laplacian MC3 MD3 

Polynomial MC4 MD4 

PSO – SRVM 

Gaussian MC5 MD5 

Linear MC6 MD6 

Laplacian MC7 MD7 

Polynomial MC8 MD8 

GA – DRVM 

K1+K2 MC9 MD9 

K1+K3 MC10 MD10 

K1+K4 MC11 MD11 

GA – DRVM 

K1+K2 MC12 MD12 

K1+K3 MC13 MD13 

K1+K4 MC14 MD14 

*K1+Kn are presenting combined kernel functions for DRVM 

4.3 PERFORMANCE EVALUATION 

The performance of the developed RVM models has been 

measured by using statistical tools, such as root mean square error 

(RMSE), mean absolute error (MAE), correlation coefficient (R), 

and coefficient of determination (R2). The ideal values of the 

RMSE, MAE, R, and R2 are 0, 0, 1, and 1, respectively. The best 

architectural model always has a performance of more than 0.8, 

demonstrating high prediction accuracy. In this study, the best 

architecture RVM model has been selected if the model attains 

over 95% (R=0.95) accuracy in predicting each OMC and MDD 

of soil. The mathematical formula of RMSE, MAE, R, and R2 is: 
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where α and ω are the actual and predicted ith value, n presents the 

total number of data, β is the mean of the actual values,   is the 

mean of the predicted value. 

4.4 SENSITIVITY ANALYSIS 

To understand the behaviour of the input soil variable on the 

predicted compaction parameters, the sensitivity analysis on the 

comprehensive databases has been conducted. For a particular 

input variable x, the sensitivity SS can be calculated as 

[9],[17],[61]-[64]: 

 1

2 2

1 1

N

i i

i

N N

i i

i i

x y

SS

x y

=

= =

=


 

 (12) 

where yi is the predicted output variable, and N is the number of 

data points (in this study, N=59). The results of the analysis are 

graphically presented in Fig.3(a) and Fig.3(b). 

 

(a) 
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(b) 

Fig.3. Illustration of sensitivity analysis for (a) OMC and (b) 

MDD 

The sensitivity SS varies from 0 to 1, showing the related 

strength between each input and predicted output variables. The 

value of SS close to 1 demonstrates the specific input variable is 

the most influencing variable in the prediction. Fig.3 (a) and (b) 

demonstrate that the prediction of compaction parameters is 

highly influenced by the specific gravity, liquid limit, and 

plasticity index of soil. Also, the maximum dry density is highly 

influenced by sand content. The other input parameters 

moderately influence the compaction parameter prediction.  

5. RESULTS AND DISCUSSION 

5.1 SIMULATION OF RVM MODELS 

The present uses a relevance vector machine hybrid approach 

to predict the compaction parameters of the soil. For this purpose, 

fifty-nine soil samples have been collected from the literature. 

Forty-one and eighteen soil samples have been randomly picked 

up from 59 databases to create the training and testing databases. 

The SRVM and DRVM models have been trained and tested by 

the 41 and 18 soil samples. The details of the performance of the 

developed models have been discussed as follows: 

5.1.1 GA-SRVM Models: 

The gaussian, linear, laplacian and polynomial kernel 

functions have been implemented in the developed SRVM models 

to predict each OMC and MDD of soil. Each SRVM model has 

been optimized by the GA technique. The performance of GA-

optimized SRVM models in predicting OMC has been calculated, 

as shown in Table.4. 

Table.4. Performance of GA-SRVM models in predicting OMC 

Model ID Kernel Phase RMSE R MAE 

MC1 Gaussian 
Train 0.1802 0.9987 0.1359 

Test 1.4680 0.9883 0.8550 

MC2 Linear 
Train 0.4646 0.9912 0.3845 

Test 1.9858 0.9686 0.9538 

MC3 Laplacian 
Train 0.0209 1.0000 0.0142 

Test 2.1742 0.9828 0.8643 

MC4 Polynomial 
Train 0.4402 0.9921 0.3685 

Test 1.5566 0.9749 0.9068 

*Bold values correspond to the better-performing model 

The Table.4 illustrates that model MC1 (Gaussian kernel-

based) has attained over 98% accuracy (training = 0.9987, testing 

= 0.9883) in predicting the OMC of soil. The performance 

comparison shows that model MC1 has predicted the OMC of soil 

with the least prediction error, i.e., test RMSE = 1.4680% and test 

MAE = 0.8550%, comparatively less than other GA-SRVM 

models. Also, Table.4 presents that model MC2 (linear kernel-

based) has gained the least accuracy in the testing phase than other 

GA-SRVM models. The Fig.4 shows the relationship between 

actual and predicted OMC using model MC1. 

Furthermore, four models using gaussian, linear, laplacian, 

and polynomial kernel functions have been developed and 

optimized by the GA algorithm for predicting the MDD of soil. 

The performance achieved by the GA-SRVM models in 

predicting the MDD of soil is given in Table.5. 

Table.5. Performance of GA-SRVM models in predicting MDD 

Model ID Kernel Phase MAE R RMSE 

MD1 Gaussian 
Train 0.0137 0.9902 0.0108 

Test 0.1738 0.9084 0.0045 

MD2 Linear 
Train 0.0233 0.9715 0.0185 

Test 0.1549 0.9470 0.0024 

MD3 Laplacian 
Train 0.0000 1.0000 0.0000 

Test 0.2133 0.9410 0.0049 

MD4 Polynomial 
Train 0.0266 0.9626 0.0204 

Test 0.1984 0.8245 0.0082 

*Bold values correspond to the better-performing model 

 

Fig.4. Actual vs predicted plot for OMC using model MC1 

The Table.5 shows that model MD2 has achieved higher 

performance in the testing phase than other GA-SRVM models. 

Model MD2 has predicted MDD of eighteen soils with the RMSE 

of 0.1549g/cc, MAE of 0.0024g/cc, and R of 0.9470. Fig.5 

presents the regression relationship between actual and predicted 

MDD of soil using model MD2. 

The fitness curve of the models MC1 and MD2 has been 

calculated in the training phase and graphically presented in Figs. 

A and B, respectively (refer appendix). 
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Fig.5. Actual vs predicted plot for MDD using model MD2 

5.1.2 PSO-SRVM Models: 

The gaussian, linear, laplacian and polynomial kernel 

functions have developed SRVM models and optimized by PSO 

technique for predicting the OMC and MDD of soil. The 

performance of the PSO-SRVM model in predicting the OMC of 

soil has been calculated, as given in Table.6. 

Table.6. Performance of PSO-SRVM models in predicting OMC 

Model ID Kernel Phase RMSE R MAE 

MC5 Gaussian 
Train 0.4136 0.9930 0.2886 

Test 1.9353 0.9685 0.8982 

MC6 Linear 
Train 0.4646 0.9912 0.3845 

Test 1.9858 0.9686 0.9538 

MC7 Laplacian 
Train 0.0057 1.0000 0.0035 

Test 1.2461 0.9847 0.8060 

MC8 Polynomial 
Train 0.4431 0.9920 0.3603 

Test 1.8334 0.9707 0.9340 

*Bold values correspond to the better-performing model 

The Table.6 shows that model MC7 has achieved over 98% 

(R=0.9847) accuracy in the testing phase, comparatively higher 

than models MC5, MC6, and MC8. Model MC7 has computed 

the OMC of soil with the RMSE of 1.2461% and MAE of 

0.8060%, comparatively better than other PSO-SRVM models. A 

relationship has been drawn between actual and predicted OMC 

using model MC7, as depicted in Fig.6.  

 

Fig.6. Actual vs predicted plot for OMC using model MC7 

The Table.7 represents that the laplacian kernel-based PSO-

optimized SRVM model has achieved 100% (R=1) and 95.45% 

(R=0.9545) accuracies in the training and testing phase, 

respectively. Model MD7 has computed maximum dry density 

with the RMSE of 0.1327g/cc and MAE of 0.0019g/cc, 

comparatively less than other PSO-optimized SRVM models. The 

Table.7 demonstrates that the polynomial kernel function-based 

model MD8 has attained the least performance in predicting the 

MDD of eighteen soil samples. 

In addition, a statistical relationship has been plotted between 

actual and predicted MDD of soil using model MD7, as 

graphically presented in Fig.7. Also, the fitness curve has been 

plotted for model MD7 in the training phase, as shown in the 

appendix.  

Table.7. Performance of PSO-SRVM models in predicting MDD 

Model ID Kernel Phase RMSE R MAE 

MD5 Gaussian 
Train 0.0123 0.9921 0.0096 

Test 0.1703 0.9254 0.0034 

MD6 Linear 
Train 0.0233 0.9715 0.0185 

Test 0.1549 0.9470 0.0024 

MD7 Laplacian 
Train 0.0009 1.0000 0.0007 

Test 0.1327 0.9545 0.0019 

MD8 Polynomial 
Train 0.1139 0.2791 0.0912 

Test 0.3403 0.4215 0.0176 

*Bold values correspond to the better-performing model 

 

Fig.7. Actual vs predicted plot for MDD using model MD 

 GA-HRVM Models 

In predicting the compaction parameters of soil, models MC1 

(OMC model) and MD2 (MDD model) have been recognized as 

better-performing models because models have attained higher 

performance than other models SRVM models. Models MC1 and 

MD2 have been developed by gaussian and linear kernel 

functions. Therefore, models MC9, MC10, and MC11 have been 

constructed with dual kernel functions. The performance of 

models MC9, MC10, and MC11 is given in Table.8. 

Table.8. Performance of GA-DRVM models in predicting OMC 

Model ID Kernel Phase RMSE R MAE 

MC9 Gaussian + Linear 
Train 0.4231 0.9927 0.3625 

Test 1.7753 0.9715 0.9361 
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MC10 Gaussian + Laplacian 
Train 0.0008 1.0000 0.0004 

Test 0.8194 0.9956 0.7920 

MC11 Gaussian + Polynomial 
Train 0.6151 0.9845 0.5051 

Test 1.6234 0.9747 0.9514 

*Bold values correspond to the better-performing model 

Table.8 illustrates that model MC10 has predicted the OMC 

of eighteen soil samples with the RMSE of 0.8194%, MAE of 

0.7920, and R of 0.9956, comparatively less than models MC9 

and MC11. It can be stated that the combination of gaussian and 

laplacian kernel functions predicts OMC better than other 

combinations for dual or parallel relevance vector machines. The 

regression plot between actual and predicted OMC using model 

MC10 has been drawn, as shown in Fig.8. 

 

Fig.8. Actual vs predicted plot for OMC using model MC10 

Similarly, the linear kernel function has been selected as the 

primary kernel function, and models MD9, MD10, and MD11 

have been developed using different combinations of kernel 

functions. The performance of models MD9, MD10, and MD11 

are shown in Table.9. 

Table.9. Performance of GA-DRVM models in predicting MDD 

Model ID Kernel Phase RMSE R MAE 

MD9 Linear + Gaussian 
Train 0.0233 0.9715 0.0185 

Test 0.1437 0.9675 0.0014 

MD10 Linear + Laplacian 
Train 0.0233 0.9715 0.0185 

Test 0.1549 0.9470 0.0024 

MD11 Linear + Polynomial 
Train 0.0247 0.9680 0.0206 

Test 0.1604 0.9551 0.0019 

*Bold values correspond to the better-performing model 

The Table.9 shows that model MD9 has predicted the 

maximum dry density of eighteen soil with higher performance in 

the testing phase. Model MD9 has attained over 96% (R=0.9675) 

accuracy in the testing phase, comparatively higher than other 

GA-optimized DRVM models. It can be observed that model 

MD9 has predicted MDD of soil with the least prediction error, 

i.e., RMSE = 0.1437g/cc and MAE = 0.0014g/cc. The Fig.9 

depicts the relationship between actual and predicted MDD of soil 

using model MD9. It can be stated that the combination of linear 

and gaussian kernel functions predicts the MDD better than other 

combinations. The fitness curve of models MC11 and MD9 is 

plotted, as shown in the appendix.  

 

Fig.9. Actual vs predicted plot for MDD using model MD9 

5.1.3 PSO-SRVM Models: 

In the prediction of compaction parameters of soil, laplacian 

kernel function-based models MC7 and MD7 have been identified 

as the better-performing models. Therefore, the laplacian kernel 

function has been used as the primary kernel function for 

developing dual kernel function-based DRVM models. Three 

models, MC12, MC13, and MC14, have been developed to 

predict the OMC of soil. The performance of the models is 

mentioned in Table.10. 

Table.10. Performance of PSO-DRVM models in predicting 

OMC 

Model 

ID 
Kernel Phase RMSE R MAE 

MC12 
Laplacian + 

Gaussian 

Train 0.0042 1.0000 0.0025 

Test 2.0602 0.9877 0.8815 

MC13 
Laplacian + 

Linear 

Train 0.4616 0.9913 0.3801 

Test 2.0112 0.9680 0.9616 

MC14 
Laplacian + 

Polynomial 

Train 0.5389 0.9881 0.4322 

Test 1.5046 0.9759 0.9145 

*Bold values correspond to the better-performing model 

 

Fig.10. Actual vs predicted plot for OMC using model MC12 
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The Table.10 demonstrates that model MC12 has attained 

over 98% (R=0.9877) accuracy in the testing phase, 

comparatively better than models MC13 and MC14. Model MC12 

has predicted the OMC of eighteen soil samples with the RMSE 

of 2.0602% and MAE of 0.8815% and has been recognized as a 

better-performing model in predicting the OMC of soil. The 

relationship between actual and predicted OMC using model 

MC12 has been plotted, as shown in Fig.10.  

Similarly, the laplacian kernel function has been used as a 

primary kernel function for developing DRVM models for 

predicting MDD of soil. Three models, MD12, MD13, and 

MD14, have been constructed to predict soil MD. The 

performance of models MD12, MD13, and MD14 is given in 

Table.11. 

Table.11. Performance of PSO-DRVM models in predicting 

MDD 

Model 

ID 
Kernel Phase RMSE R MAE 

MD12 
Laplacian + 

Gaussian 

Train 0.0007 1.0000 0.0005 

Test 0.1310 0.9941 0.0008 

MD13 
Laplacian + 

Linear 

Train 0.0058 0.9982 0.0042 

Test 0.1387 0.9499 0.0022 

MD14 
Laplacian + 

Polynomial 

Train 0.0079 0.9968 0.0065 

Test 0.1377 0.9383 0.0029 

*Bold values correspond to the better-performing model 

 

Fig.11. Actual vs predicted plot for MDD using model MD12 

The Table.11 shows that model MD12 has predicted MDD of 

soil with RMSE of 0.1310g/cc, MAE of 0.0008g/cc, and R of 

0.9941. The performance comparison illustrates that model 

MD12 has attained higher performance in predicting the MDD of 

eighteen soils. The regression relationship between actual and 

predicted MDD using model MD12 has been mapped, as shown 

in Fig.11. 

Based on the performance, model MD12 has been identified 

as the better-performing model in predicting MDD of soil. The 

fitting curve of models MC12 and MD12 has been drawn, as 

graphically presented in the appendix.  

5.2 SCORE ANALYSIS 

The score analysis is a method for comparing the performance 

of soft computing models to identify the best architecture model. 

In this analysis, a score of ‘k’ (in this work, k =4), i.e., the better-

performing soft computing models) is assigned to the models 

which have achieved the higher value for each performance 

parameter. The higher value shows the best model and the lower 

value, i.e., shows the worse model. In the subsequent steps, the 

value of performance parameters is summed up for each training 

and testing phase. In the next step, the overall score is calculated 

by adding the score of each training and testing phase. Tables 12 

and 13 show the details of the score analysis for the better-

performing models of OMC and MDD, respectively. 

Table.12. Score analysis for better-performing models of OMC 

Model ID Phase RMSE R MAE Total Overall Total 

MC1 
Train 1 1 1 3 

10 
Test 2 3 2 7 

MC7 
Train 2 2 2 6 

13 
Test 3 1 3 7 

MC10 
Train 4 2 4 10 

22 
Test 4 4 4 12 

MC12 
Train 3 2 3 8 

12 
Test 1 2 1 4 

*Bold values correspond to the best architectural model 

 

Fig.12 Score analysis for better-performing models of OMC 

Table.12 shows that model MC10 has attained a higher score 

in predicting the OMC of soil. Model MC10 has 10 and 12 scores 

in the training and testing phase, respectively. Finally, model 

MC10 has attained the highest overall score, i.e., 22. Based on the 

score analysis, MC10 has been recognized as the best architecture 

model. The comparison of the overall score of the better-

performing models of OMC has been graphically presented in 

Fig.12. 

Similarly, the score analysis has been performed for the better-

performing models of MDD. The results of the score analysis is 

given in Table.13. 
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Table.13. Score analysis for better-performing models of MDD 

Model ID Phase RMSE R MAE Total G.Total 

MD2 
Train 1 1 1 3 

6 
Test 1 1 1 3 

MD7 
Train 3 3 3 9 

16 
Test 3 2 2 7 

MD9 
Train 1 1 1 3 

11 
Test 2 3 3 8 

MD12 
Train 4 3 4 11 

23 
Test 4 4 4 12 

*Bold values correspond to the best architectural model 

The Table.13 demonstrates that model MD12 has obtained 11 

and 12 scores in the training and testing phase, respectively. 

Model MD12 has achieved a 23 overall score in predicting the 

MDD of soil. Therefore, model MD12 has been recognized as the 

best architecture model for predicting the maximum dry density 

of soil. The overall score analysis of models MD2, MD7, MD9, 

and MD12 has been graphically presented in Fig.13.  

 

Fig.13. Score analysis for better-performing models of MDD 

5.3 DISCUSSION OF RESULTS 

This research introduces a robust relevance vector machine 

model to predict the compaction parameters of soil. For this 

purpose, 59 soil samples have been collected from the literature. 

Four SRVM models have been developed for predicting each 

OMC and MDD of soil, which each GA and PSO technique have 

optimized. Select the better-performing algorithm (from the 

model), the dual (parallel) kernel functions have been 

implemented, and the developed models have predicted the 

compaction parameters of soil. The RMSE, MAE, R, and R2 

statistical methods have measured the performance and accuracy 

of the developed models. 

The performance comparison demonstrates that the gaussian 

kernel-based GA-optimized SRVM model has predicted the 

OMC of soil with an accuracy of 0.9883 and is recognized as a 

better-performing model. On the other side, the laplacian kernel-

based PSO-optimized SRVM model has predicted OMC with an 

accuracy of 0.9847 and is identified as the better-performing 

model. The GA-optimized SRVM model attains higher accuracy 

than the PSO-optimized SRVM model in predicting the OMC of 

soil. In the case of dual kernel-based RVM models, the 

combination of the gaussian and laplacian kernels-based DRVM 

model has gained an accuracy of 0.9956 in predicting the OMC 

of soil, which has found more than the GA-optimized SRVM 

model. Similarly, in the dual kernel-based DRVM model, the 

laplacian and gaussian kernel-based DRVM model has gained 

0.9877 accuracy, which is comparatively higher than the PSO-

optimized SRVM model. 

In the case of MDD prediction, the GA-optimized gaussian 

kernel-based SRVM model has attained an accuracy of 0.9470. 

Still, the PSO-optimized laplacian kernel-based SRVM model has 

achieved an accuracy of 0.9545. The performance of both SRVM 

models (GA and PSO-optimized) has been increased by 

implementing the second kernel function in predicting the MDD 

of soil. The GA-optimized DRVM (developed by gaussian + 

laplacian kernel) and PSO-optimized DRVM (created by 

laplacian + gaussian kernel) models have gained 0.9675 and 

0.9941 accuracies, respectively.  

Finally, the GA-optimized DRVM model MC10 and PSO-

optimized DRVM model MD12 have been recognized as the best 

architecture model in predicting OMC and MDD of soil, 

respectively. 

6. VALIDATION WITH LITERATURE 

A comparison between the best architecture models (MC10 

and MD12) and available models in the literature survey has been 

mapped to validate the performance and accuracy of the best 

architecture models in the testing phase. The comparison of test 

performance is given in Table.14. 

Table.14. Comparison of the best architecture models and 

published models available in the literature  

Reference Approach 
R Test 

OMC MDD 

V Hohn et al. (2022) Empirical models 0.8724 0.8735 

Yousif et al. (2022) Empirical models 0.9281 0.9850 

Othman (2021) ANN 0.9503 0.9633 

Jalal et al. (2021) GEP 0.8580 0.7770 

Wang & Yin (2021) MEP 0.9607 0.9263 

Özbeyaz et al. (2020) KB_SVR 0.9300 0.9300 

Kurnaz et al. (2020) ANN 0.9191 0.9219 

Present Study RVM 0.9956 0.9941 

The Table.14 demonstrates that the developed models based 

on the RVM approach have outperformed the models available in 

the literature study while predicting the compaction parameters of 

soil. Hence, the RVM approach can be used to predict the 

compaction parameters of soil because it predicts the compaction 

parameters with high accuracy and the least prediction error. 

7. CONCLUSIONS AND FUTURE SCOPE 

In this research, twenty-eight RVM models have been 

developed, trained, tested, and analyzed in predicting the 

compaction parameters of soil. The following conclusions are 

mapped:  
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• GA-optimized models (SRVM and DRVM) predict the 

optimum moisture content of soil better than PSO-optimized 

models (SRVM and DRVM) 

• PSO-optimized models (SRVM and DRVM) predict the 

maximum dry density of soil better than the GA-optimized 

model (SRVM and DRVM). 

• The performance of the relevance vector machine can be 

enhanced by implementing two kernel functions together. 

Also, the dual kernel based RVM model gives the most 

optimistic prediction of the compaction parameters of soil.  

• The sensitivity analysis presents that the specific gravity, 

liquid limit, and plasticity index of soil are the most 

influencing parameters in predicting the compaction 

parameters of soil. Also, the sand content strongly influences 

the prediction of the maximum dry density of soil. 

The performance of RVM models demonstrates the prediction 

ability. It appears that the RVM approach can be used to solve 

other geotechnical problems. Also, the present work may be 

extended by implementing the various metaheuristic algorithms 

to enhance the performance of the RVM model and map a 

comparative study between them.  

APPENDIX  

 

Fig.14. Fitness curve of model MC1 

 

Fig.15. Fitness curve of model MD2 

 

Fig.16. Fitness curve of model MC7 

 

Fig.17. Fitness curve of model MD7 

 

Fig.18. Fitness curve of model MC10 

 

Fig.19. Fitness curve of model MD9 
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Fig.20. Fitness curve of model MC12 

 

Fig.21. Fitness curve of model MD12 

ABBREVIATION AND NOTATIONS 

γs – Specific unit weight 

BRNN – Bayesian regularization neural networks 

C – Clay content 

CE – Compaction energy 

CL – Confidence level 

COD – Coefficient of determination 

DT – Decision tree 

ELM – Extreme learning machine 

FC – Fine content 

G – Gravel content 

GEP – Gene expression programming 

GMDH – Group method for data handling 

HL – Hidden layers 

KB_SVR – Kernel-based support vector regression 

LL – Liquid limit 

LSSVM – Least square support vector machine 

MARS – Multivariate adaptive regression splines 

MEP – Multivariate expression programming 

MLP_NN – Multilayer perceptron neural network 

MLR – Multilinear regression  

MLS_SVR – Multivariate support vector regression 

PI – Plasticity index 

PL – Plastic limit 

S – Sand content 

SG – Specific gravity 

StDev – Standard deviation 

SVM – Support vector machines. 
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