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Abstract 

A segmentation and categorization of ovarian cancer varieties from 

Computed Tomography (CT) scans is greatly necessary in current 

medicinal diagnosis system to lessen the mortality rate. To perform this 

task, a Deep Semi-Supervised Generative Learning with Enhanced U-

Net and fused Deep Convolutional Neural Network (DSSGL-EUNet-

DCNN) was developed to augment the training ovarian CT scans, 

partition the Region-Of-Interests (ROIs), and classify the varieties of 

ovarian cancer. But, its efficiency depends on the selection of 

hyperparameters for learning the deep learner. Hence in this article, a 

DSSGL-EUNet with Multi-Scale DCNN (DSSGL-EUNet-MSDCNN) 

model is proposed which contains different kernel sizes, learning rate 

and batch size for multiple DCNN to classify the types of ovarian 

cancers. First, the training CT scans are augmented by the DSSGL and 

the ROIs from each CT scan are segmented by the EUNet models. 

Then, the segmented ROIs are fed to the fused DCNN structure in 

which every DCNN captures the features from each segment at a scale-

level. Also, the hyperparameters of DCNNs are chosen by the lion 

optimization algorithm for feature extraction and classification. Based 

on this process, the training errors and time cost are reduced with high 

classification accuracy. At last, the experimental results exhibit that the 

DSSGL-EUNet-MSDCNN realizes a higher accuracy than the 

classical models for segmentation and classification of ovarian 

cancers. 
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1. INTRODUCTION 

The tumor is a pathogenic disease that causes unmonitored 

cell growth to disperse into more organisms. It reflects a wide 

scope of pathologies including a deadly illness. Cancer cells is not 

connected with a particular organ, rather, it begins as an 

unpredictable collection of the cell membrane and spreads 

throughout the body while cancer cells reproduce and move into 

the blood vessels. The better way is that a few tissues are less 

structured than immune tissues if they're not appropriately 

activated. The processing of a particular protein either an antibody 

or a functional product by using a DNA-coded gene is often 

known as genetic information [1]. 

The control of phenotypic recurrence contributes greatly to 

cell function preservation. The most familiar example of 

gynaecological disease among numerous diseases is ovarian 

tumor [2]. The incidence among gynaecological pathogens is 

significantly higher since most tumors are diagnosed especially 

early. Also, reliable treatment is applied to diagnose tissues and 

organs of the tumor in the removal of primary ovarian tumor 

tissues to promote better quality of life after treatment. In contrast, 

the initial diagnosis is very difficult and prone to training 

discrepancies. 

An unpredictable biopsy of the cells has been clearly defined 

from this perspective. Morphological and neurological testing is 

initially performed. All such testing will be carried out in varying 

circumstances in order to resolve discrepancies, but failures are 

still exist [3]. The most reliable method to lessen the incidence of 

tumor is to recognize it faster. A diverse variety of operative 

research findings and ovarian tumor diagnostic datasets are likely 

to be found. The use of different medical images and classification 

algorithms to develop a surgical test has been investigated in 

biomedical application for supporting early identification by 

many clinicians [4]. Combination of images produced using 

multiple imaging analytical tools and highly developed 

technologies in radiography to ensure the efficiency of the 

taxonomy of ovarian tumours.  

Deep Neural Networks (DNNs) using CT images are 

particularly essential in assisting treatments to be incredibly 

beneficial and lowering casualty and pharmacologic failures [5]. 

The important strength of wide knowledge is a lot of information 

that selects skilled facilities and opportunities. CT images include 

a numerous advantage such as pervasive use, improved quality, 

lower cost and quick imaging time. The quantification and 

prediction of ovarian tumours in standard treatments is therefore 

subject to CT scans. The differentiation and diagnosis of several 

illnesses is popularly reported by CNN through CT scans which 

include the brain, liver, skin cells, and so on [6]. Nonetheless, the 

ovarian tumor cannot be detected and treated by CT scans within 

a proper classifier. For this purpose, the CT scan dataset was 

processed in the form of a DCNN structure relying on AlexNet 

for the categorization of ovary tumors. This design incorporates 5 

convolutional, 3 max-pooling, and 2 reconnect units. In contrast, 

its precision was not very satisfactory. As a result, DCNN 

structure relying on the integration of AlexNet, VGG and 

GoogLeNet [7] has been designed. In this design, the integration 

was done at the last softmax layer and the scores of the softmax 

layers of every structure were aggregated by the weighted sum to 

get the ovarian tumor kinds. 

On the contrary, overfitting was occurred if the quantity of 

learning scans was not adequate. So, a DSSGL-DCNN model was 

developed depending on the Generative Adversarial Network 

(GAN) as an image augmentation scheme. But the training images 

were directly given to this model which tends to high training 

time. So, a segmentation scheme was employed in this model 

depending on U-Net structure [8] to split the ROIs from the CT 

images. It was a pixel-to-pixel, end-to-end fully convolutional 

engaging skip layers between analysis and synthesis links. 

Conversely, it includes only some layers and thus it was not 

adequately effective for partition. 

For that reason, a EUNet structure [9] has been designed with 

the DSSGL-DCNN model to improve the segmentation and 

categorization efficiency. This EUNet includes the analysis and 

synthesis links. Every link has inception-res unit, the dense-



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2023, VOLUME: 13, ISSUE: 02 

2873 

inception unit, the downsampling and the upsampling units for 

producing the feature-level partitioned maps of the CT images. 

The inception-res unit was utilized to extend the network width 

via fine-tuning the typical convolutional layers. The dense-

inception unit was utilized to extract the features in ROIs and 

construct the network more deep without additional training 

variables. The downsampling was utilized to lessen the size of 

feature maps and learning time. The upsampling unit was used to 

resize the partitioned feature maps. If the growth rate in the dense-

inception unit was increased, then it may use multiple variables 

which create a highly complicated training. To solve this problem, 

the feature-level possibility map was produced which was 

thresholded to binary and merged with the feature-level 

partitioned maps for generating the discriminative partitioned 

image. This final partitioned image was given to the DCNN 

relying on integrated structure for recognizing the ovarian tumor 

categories. On the other hand, its classification accuracy depends 

on the choice of hyperparameters for DCNN training which 

adjusts the hyperparameter ranges and minimizes the learning 

errors. The considered hyperparameters include the count of units, 

batch dimension, weights and dropout percentage. The 

assignment of DCNN hyperparameters is difficult process. The 

standard optimization algorithms cannot adjust the 

hyperparameter ranges within the model structure. 

Therefore, this paper introduces a MS-DSSGL-EUNet-DCNN 

model for segmenting and classifying the types of ovarian 

cancers. This model considers different kernel sizes, learning rate 

and batch size for multiple DCNNs. In this model, the ROIs from 

each CT scan are given to the fused DCNN model wherein each 

DCNN extracts the features from all segments at a scale-level. 

Also, the DCNN hyperparameters such as the number of layers, 

kernel sizes, learning rate, batch size, weights, and dropout rate 

are optimized by the lion optimization algorithm. This can reduce 

the training errors and training time effectively. So, the accuracy 

of segmenting and categorizing the ovarian tumor categories is 

increased. 

The remaining article is prepared as the following: Section 2 

studies various deep learner models for categorizing different 

diseases using different imaging modalities. Section 3 explains 

the functioning of proposed model and Section 4 demonstrates its 

efficiency. Section 5 gives the conclusion and future scope to this 

research. 

2. LITERATURE SURVEY 

A new completely automated method [10] has been developed 

which uses the CNN integrated with the graph-cuts optimization 

for differentiating the arteries and veins in lung CT scans. 

Initially, the pulmonary area from the lung CT scan and the 

vessels were partitioned by the scale-space particles method for 

representing the vessel candidates. After that, the CNN was 

learned by the extracted 3D patches. The CNN hyperparameters 

were optimized by the graph-cuts optimization to train the 

closeness of arteries to veins. But, it may be biased toward 

creating a small contour because of obtaining the minimum cut. 

A 3D Gray-Level Co-occurrence Matrix based CNN (3D-

GLCM-CNN) [11] has been developed to recognize polyp from 

CT scans. First, the raw CT range of the 3D polyp was 

transformed into the gray-scale depending on the CT range 

allocation of the entire corpus. Then, many 3D-GLCM scans were 

created from the gray-scale scans acquired from the primary 

phase. Further, a multi-channel CNN was applied for classifying 

the polyp utilizing the GLCM feature scans. But, it needs 

additional features and hyperparameter tuning for increasing the 

accuracy. 

Grid Search-based Hyper-Parameter Tuning (GSHPT) [12] 

has been suggested for random forest variables to categorize the 

microarray tumor information. In this approach, the optimal 

variables were found which offer the highest number of features 

for partitioning the node, amount of decision trees in a forest, 

depth of the trees and condition to partition a node into the child 

node. Also, the out-of-bag loss was used to verify the optimized 

variables which tend to the better efficiency. But, there was no 

promise that this approach can provide the better solution. 

A technique [13] has been developed for a single-scan super-

resolution 3D CT images depending on the DCNNs with 10 

convolutional units and an transitional upscaling unit. The 

primary and secondary CNNs were used for enhancing the 

resolution on 2D and 3D axes, respectively. Also, the loss 

concerning the ground-truth super-resolution scan followed by 

the upscaling unit was determined with the loss after the final 

convolutional layer. As well, a Gaussian smoothing with different 

standard variances was applied for preventing overfitting. But, it 

needs to optimize the hyperparameters for increasing the 

efficiency. 

Multi-task Multi-scale deep learner System called M3Lung-

Sys [14] has been designed by considering slice- and patient-level 

CNNs for multi-class pulmonary pneumonia prediction from CT 

scans. First, the pulmonary CT scans were collected and pre-

processing was done to remove the noise or unwanted features 

from the scans. Then, a hand-crafted method was used to partition 

the images into pulmonary and other. Also, the least bounding 

rectangle within a given edge was used to crop the pulmonary 

region. Further, the slices were given to the DCNNs for predicting 

different disorders: COVID-19, H1N1, pneumonia, and healthy 

people. However, it may still miscategorize few healthy people 

and also it was not end-to-end learnable which may cause the 

visualization of unique lesion’s distributions for every disorder 

automatically. 

An Evolutionary multi-objective optimization Based Tool 

(EBST) [15] has been designed to find microRNAs with 

promising biomarkers in ovarian tumor. At first, the serum 

microRNA profiles were collected and the Fisher Discriminant 

Ratio (FDR) filtering was done as pre-processing. Then, modified 

multi-objective imperialist competitive algorithm was used to 

choose the relevant feature subsets by optimizing multiple 

objective functions. Further, the l_1-Support Vector Machine 

(SVM) classifier has been applied to categorize the chosen 

features. On the other hand, it needs to select the appropriate 

kernel functions of SVM to achieve better efficiency. 

An integrated method [16] has been developed to choose the 

features and categorize the ovarian tumor. First, the features were 

chosen by the different chromosome choice schemes: relationship 

coefficient, T-statistics and Kruskal-Wallis trial. Then, the chosen 

characteristics were adopted using the central force adaptation, 

lighting addition process adaptation, genetic bee colony 

optimization and artificial algae optimization. Further, the 

optimized features were categorized with the different classifiers: 
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Linear Discriminant Analysis (LDA), K-Nearest Neighbor 

(KNN), Logistic Regression (LR), SVM with RBF kernel, and 

Multi-Layer Perceptron (MLP). But, these classifiers have less 

accuracy and high training time for large-scale datasets. 

3. PROPOSED METHODOLOGY 

In this section, the DSSGL-EUNet-MSDCNN model is 

explained briefly. The Fig.1 depicts the schematic overview of 

this model for ovarian cancer categorization. 

The main processes in this model are the following: 

• Initially, the training CT scans are collected and augmented 

by the DSSGL model. 

• After, those augmented scans are fed to the EUNet for 

partitioning the ROIs from ovarian tumor CT scans. 

• Then, these segmented ROIs are given to the MS-DCNN 

fused structure in which the lion optimization algorithm is 

performed to choose the optimal hyperparameters of each 

network structure for extracting and classifying the ovarian 

tumor types. 

3.1 IMAGE COLLECTION AND SEGMENTATION 

First, the ovarian tumor CT scans are acquired from The 

Cancer Genome Atlas-Ovarian (TCGA-OV) corpus, which 

covers the 43 ovarian tumor CT scans in DICOM form. Such CT 

scans are augmented by the DSSGL model to extend the number 

of training images [7]. Thus, it creates an overall of 497 scans for 

7 classes of ovarian tumors: ovarian epithelial tumor, germ cell 

tumors, sex cord-stromal tumors, serous carcinoma, mucinous 

carcinoma, endometrioid carcinoma and clear cell carcinoma. 

Afterward, the learning images are provided to the EUNet model 

to split the desired ROIs [9]. By training the EUNet model, the 

feature-level segmented maps and probability maps are produced. 

Also, these 2 different maps are merged to obtain the resultant 

discriminative segmented feature maps. 

3.2 OPTIMAL HYPERPARAMETER SELECTION 

USING LION OPTIMIZATION ALGORITHM 

FOR FUSED MULTI-SCALE DCNN-BASED 

CATEGORIZATION 

After segmentation, the MSDCNN is employed for 

classification task based on fused structures: AlexNet, VGG16, 

and GoogLeNet. In this MSDCNN, the hyperparameters include 

the number of layers (L), learning rate (α), dropout rate (τ), weight 

values (w), and kernel sizes (k) are optimized by the lion 

optimization algorithm for reducing the training errors. The major 

processes in lion optimization algorithm are described below. 

Initialization 

Originally, the population is generated in a random manner 

over the search space. All outcomes are called lion (each network 

structure in the MSDCNN model). In a d-dimensional 

optimization dilemma i.e., d set of hyperparameters: L,α,τ,w, and 

k, a lion (network structures in the MSDCNN) is represented by 

Eq.(1) 

 Lion (MSDCNN) = [l1,…,ld]                 (1) 

The fitness (classification accuracy) of MSDCNN structure 

(lion) is computed as Eq.(2). 

 f(MSDCNN)=maxaccuracy = f(l1,…,ld) (2) 

In the starting step, dpop outcomes are produced arbitrarily in 

hunt space, %d of produced outcomes is arbitrarily decided as 

MSDCNN structures: AlexNet, VGG16, and GoogLeNet. The 

residual inhabitants are separated arbitrarily into φ prides. All 

outcomes have a particular sex and keep fixed. At the searching 

procedure, all lions monitor their best entered locality to generate 

an area. So, for all prides, monitored localities (optimal entered 

localities) using their associates create that pride’s area. 

 

Fig.1. Schematic Overview of DSSGL-EUNet-MSDCNN Model 

for Ovarian Tumor Segmentation and Categorization 

Hunting 

In each pride, a number of female concentrates on a victim 

(optimal set of L,α,τ,w, and k) in a crowd to give a food for their 

pride. Such seekers comprise certain mechanisms to surround the 

victim and preserve it. Typically, MSDCNN pursued about equal 

structures in hunting. All lions fine-tune its locality relying on 

their specific locality and the localities of group associates. 

Because of this idea that in searching several such seekers 

surrounds victim and assaults from conflicting locality, opponent-

related training is applied. 

So, the seekers are separated into 3 subgroups arbitrarily. 

Crowd with the peak fitness of associates is called a centroid and 

the remaining 2 groups are called 2 wings. A false victim (prey) 

is engaged in the centroid of seekers (prey=∑hunters(l1,…,ld) 

/number of hunters). At hunting, seekers are decided in sequence, 

and all decided seekers assault on false victim in accordance with 

the crowd that decided lion is belonging to that. If a seeker 

improved its fitness, prey will get away from seeker and fresh 

locality of prey (prey') is discovered as: 

 prey' = prey+rand(0,1)×PI×(prey-hunter) (3) 

In Eq.(3), prey is the present locality of victim, hunter is the 

present locality seeker who hit to victim and PI indicates the rate 

of increase in objective of seeker. To imitate encircling victim by 

the decided seeker crowds, the fresh localities of seekers (hunter') 

belonging to the left and right wings are generated by: 
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In addition to this, the fresh localities of centroid seekers are 

produced as: 
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In Eq.(4) and Eq.(5) rand(a,b) produces an arbitrary value 

from a to b which are upper and lower limits, respectively. 

Shifting towards Secure Site 

The fresh locality for a female lion is described by 
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In Eq.(6), female lion is the present location of female lion, 

Dist is the gap amid the female lion’s locality and the spot decided 

using the event choice amid the pride’s region, {R1} refers to the 

vector that its initial locality is the earlier locality of the female 

lion and its path is toward the decided locality, {R2} refers to the 

perpendicular to {R1}. The victory of a lion is expected when it 

increases his/her optimal locality at the final iteration. In crowd χ, 

the victory of lion i at iteration t is represented by: 
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In Eq.(7), 
,

t

ibest  indicates the optimal locality discovered by 

i at t. The greatest count of victories defines that the lions boast 

convergence to a locality which is distant from the best locality. 

Likely, the least count of victories defines that the lions are 

fluctuating in the region of the best outcome with no 

enhancement. Therefore, it is utilized as the significant 

components for event range. Based on this success ranges, Kj(sc) 

is computed by 

 Kj(sc) = ( )
1

, , , 1,2,...,
n

i

Success i t j 
=

=  (8) 

In Eq.(8), n indicates the count of lions in a pride and Kj(sc) 

refers to the count of lions in pride j that realizes a development 

in their objective during the final iteration. Thus, the event range 

in all prides is dynamic in all iterations. It defines if victory range 

minimizes, then event range is increased and thus the maximum 

diversity is achieved. Therefore, the event range is computed by 

Eq.(9): 
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Roaming 

All male lions in a pride roam in that pride’s area owing to the 

number of causes. To imitate this characteristic of inhabitant 

males, %R of pride area are decided arbitrarily and are entered via 

that lion. Additionally, when inhabitant male enters a fresh 

locality stronger than its present optimal locality, his optimal 

entered outcome is modified. This wandering is a robust 

neighbouring hunt and helps lion optimizer to explore nearer 

outcome to develop it. To randomly search optimal space and 

mitigate trapping in local optima, nomad lions and their dynamic 

roaming are considered. So, the fresh locality of nomad lions is 

created as: 
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In Eq.(10), lionij is the present locality of ith nomad lion and jth 

range, randj is a typical random number between 0 and 1, RAND 

is the arbitrary created vector in hunt space and Ρi indicates the 

chance determined for all nomad lions separately by: 
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In Eq.(11), nomadi and bestnomad are the fitness of present 

locality of ith lion in nomads and the optimal fitness of the nomad 

lions, correspondingly. 

Mating 

It is the essential procedure which ensures the lion’s survival 

and offers a chance for data transfer among members. In all 

prides, %Ma of female lions is mating with single or various 

inhabitant males. These males are decided randomly from 

identical pride as the female to create children. For nomad lions, 

it is varied that a nomad female merely mates with one of the 

males decided arbitrarily. 

The mating operation is a linear fusion of parents to create 2 

fresh children. Thus, the fresh cubs are created after deciding the 

female lion and males for mating as: 
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In Eq.(12) and Eq.(13) Successi is 1 when male i is decided for 

mating; or else, it is 0, NR indicates the count of inhabitant males 

in a pride, β refers to the arbitrarily produced integer with a 

regular distribution with an average 0.5 and standard variance 0.1. 

One of 2 fresh children is decided as male and another as female 

randomly. A metamorphosis is executed on all chromosomes of 

the created children having chance (%Mu). An arbitrary integer 

swaps the chromosome range. Through mating, lion optimizer 

distributes data between genders if fresh cubs come into 

behaviour from both sexual categories. 

Resistance 

Nomad male lions attack prides randomly to attack with 

another male in their pride. If the nomad lion is sufficiently 

powerful, the weakest male lion is rejected from the pride and 

called a nomad. 

Migration 

In all prides, the greatest number of females is computed using 

α% of pride populace. For relocation function, few females 

decided arbitrarily and turned into nomads. The number of 

migrated females in all prides is equivalent to the addition of 

excess females in all prides and %I of the greatest count of 

females in a pride. If decided females relocate from prides and 

turn into nomad, fresh nomad females and previous nomad 

females are ordered depending on their objective. After, the 

optimal females amid them are decided arbitrarily and circulated 
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to prides for satisfying the unfilled locality of relocated females. 

It preserves the range of the entire populace and distributes data 

amid prides. 

Lion’s Generation Stability 

Because there is constant stability in lion’s populace, the 

number of lions must be controlled at the end of all iterations. 

Thus, the nomad lions with the minimum objective are discarded 

depending on the greatest allowed number of all genders in 

nomads. 

This procedure is continued until the terminating condition is 

reached i.e., optimal set of L,α,τ,w, and k is obtained for each 

structure of MSDCNN model. Further, the MSDCNN is executed 

to extract the features at different scales i.e., kernel sizes and 

classify the ovarian tumor varieties. 

Algorithm for DSSGL-EUNet-MSDCNN 

Input: Ovarian tumor CT images 

Output: Classified varieties of ovarian tumor  

Begin 

Collect the CT images from the TCGA-OV dataset; 

Partition the entire dataset into training and testing sets; 

for(training set) 

Apply the DSSGL for augmenting the training CT images; 

Learn EUNet to obtain the segmented feature map (ROI) for 

each CT image; 

for(every ROI segment) 

Learn the fused MSDCNN classifier by using the optimal 

hyperparameters; 

//Hyperparameters selection process 

Set initial L,α,τ,w, and k; 

Initialize the number of lions (MSDCNN structures) and the 

iterations t; 

Create a random solution for all lions; 

Allocate prides and nomad lions; 

while(t<tmax) // tmax: Maximum iteration 

for(each pride) 

A number of female lions are decided randomly for 

hunting; 

Remaining female lions move toward the best localities 

of the area; 

All male lions roam in %R of area; 

%Ma of female lions mate with only one inhabitant male 

lion; 

Weakest male lion neglect from the pride and turn into 

the nomad; 

for(each nomad lion) 

Male and female lions move arbitrarily in the hunt 

space;%Ma of female lions mate with only single male 

lion; 

Nomad male lions hit the prides; 

for(each pride) 

%I of female lions immigrate from the pride and 

turn into the nomad; 

All genders of the nomad lion is sorted depending 

on their objective; 

The optimal female lions are decided and spread to 

the prides for occupying the vacant localities; 

Nomad lions with the minimum objective are 

neglected depending on the greatest allowed 

number of all genders; 

end for 

end for 

end for 

end while 

Obtain the optimal set of optimal set of L,α,τ,w, and k for 

each network structure in the MSDCNN model; 

end for 

end for 

Use the trained DSSGL-EUNet-MSDCNN fused structure 

classifier to categorize the testing CT images into different 

varieties of ovarian tumors;  

End 

4. EXPERIMENTAL RESULTS 

In this section, the effectiveness of DSSGL-EUNet-MSDCNN 

model is evaluated by executing it in MATLAB 2017b using 

TCGA-OV dataset. From this dataset, 350 CT images (each 

ovarian tumor type contains 50 samples) are applied for training 

and 147 scans (each ovarian tumor type contains 21 samples) are 

applied for testing. The effectiveness comparison between 

proposed and existing models is conducted regarding different 

evaluation metrics. The existing models considered for analysis 

are DSSGL-EUNet-DCNN (Fusion) [9], DSSGL-DCNN 

(Fusion) [7], GSHPT [12], and Graph-cut-CNN [10]. 

4.1 ACCURACY 

It is the percentage between a proper categorization of ovarian 

tumor types and the overall amount of tests performed Eq.(14) 

 Accuracy=(TP+TN)/(TP+TN+FP+FN) (14) 

True Positive (TP) is a solution where classifier classifies the 

ovarian tumor types as themselves e.g., serous carcinoma is 

categorized as serous carcinoma. True Negative (TN) is a solution 

where classifier classifies the healthy CT scans as healthy. False 

Positive (FP) is a solution where classifier improperly classifies 

the ovarian tumors as healthy. False Negative (FN) is a solution 

where classifier improperly classifies the healthy CT scans as any 

type of ovarian tumor. 

The Fig.2 illustrates the accuracy attained by graph-cut-CNN, 

GSHBT, DSSGL-DCNN (fusion), DSSGL-EUNet-DCNN 

(fusion), and DSSGL-EUNet-MSDCNN (fusion) frameworks for 

categorizing the varieties of ovarian tumor. It indicates that the 

DSSGL-EUNet-MSDCNN (fused structure) model increases 

accuracy compared to all other models for e.g., the accuracy of 

DSSGL-EUNet-MSDCNN (fusion) is 8.49% greater than the 

graph-cut-CNN, 7.83% greater than the GSHBT, 6.91% better 

than the DSSGL-DCNN (fusion) and 2.39% better than the 

DSSGL-EUNet-DCNN (fusion) frameworks. 
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Fig.2. Analysis of Accuracy 

4.2 PRECISION 

It defines the percentage of properly categorized ovarian 

tumor varieties at TP and FP rates Eq.(15), 

Precision=(No. of properly categorized@ ovarian tumor 

types)/(No. of properly categorized ovarian tumortypes+@No.  

 of improperly categorized ovarian tumor types) (15) 

 

Fig.3. Analysis of Precision 

The Fig.3 shows the precision attained by graph-cut-CNN, 

GSHBT, DSSGL-DCNN (fusion), DSSGL-EUNet-DCNN 

(fusion), and DSSGL-EUNet-MSDCNN (fusion) models. It 

addresses that the DSSGL-EUNet-MSDCNN (fused structure) 

model improves the precision compared to all other models for 

e.g., the precision of DSSGL-EUNet-MSDCNN (fusion) is 7.44% 

greater than the graph-cut-CNN, 6.71% greater than the GSHBT, 

5.59% superior to the DSSGL-DCNN (fusion), and 1.27% 

superior to the DSSGL-EUNet-DCNN (fusion) frameworks. 

4.3 RECALL 

It is the percentage of properly categorized ovarian tumor 

varieties at TP and FN rates Eq.(16). 

Recall=(No.of properly categorized @ovarian tumor 

types)/(No.of properly categorized ovarian tumor types+@No.of 

 improperly categorized ovarian tumor types) (16) 

 

Fig.4. Analysis of Recall 

The Fig.4 depicts the recall attained by graph-cut-CNN, 

GSHBT, DSSGL-DCNN (fusion), DSSGL-EUNet-DCNN 

(fusion), and DSSGL-EUNet-MSDCNN (fusion) models. It 

notices that the DSSGL-EUNet-MSDCNN (fused structure) 

model enhances the recall compared to all other models for e.g., 

the recall of DSSGL-EUNet-MSDCNN (fusion) is 7.41% larger 

than the graph-cut-CNN, 6.69% larger than the GSHBT, 5.59% 

larger than the DSSGL-DCNN (fusion), and 1.29% larger than the 

DSSGL-EUNet-DCNN (fusion) models. 

4.4 F-MEASURE 

It defines the harmonic average of precision and recall. 

 F-measure=2×(Precision∙Recall)/(Precision+Recall) (17) 

Fig.5 exhibits the f-measure attained by various models such 

as graph-cut-CNN, GSHBT, DSSGL-DCNN (fusion), DSSGL-

EUNet-DCNN (fusion), and DSSGL-EUNet-MSDCNN (fusion) 

models. It refers to that the DSSGL-EUNet-MSDCNN (fused 

structure) model increases the f-measure compared to all other 

frameworks, i.e., the f-measure of DSSGL-EUNet-MSDCNN 

(fusion) is 7.42% superior to the graph-cut-CNN, 6.71% superior 

to the GSHBT, 5.59% superior to the DSSGL-DCNN (fusion) and 

1.28% superior to the DSSGL-EUNet-DCNN (fusion) models.  

 

Fig.5. Analysis of F-measure 

5. CONCLUSION 
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In this article, the DSSGL-EUNet-MSDCNN model was 

presented to optimize the learning variables and classify the 

ovarian tumor types. At first, the DSSGL was used to augment the 

training CT scans and the EUNet model was used to segment the 

ROIs from each CT scan. After, these ROIs were given to the 

MSDCNN fused structure. In this MSDCNN, the number of 

layers, dropout rate, learning rate, weights, and kernel sizes for 

each network structure were optimized by the lion optimization 

algorithm which lessens the training errors. So, the features from 

all ROIs were extracted and classified at a scale-level for 

recognizing the ovarian tumor types. Finally, the findings proved 

that the DSSGL-EUNet-MSDCNN model achieves 93.82% of 

accuracy compared to the other models for segmenting and 

classifying the ovarian tumor types. 
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