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Abstract 

Manual design of Complementary Metal Oxide Semiconductor 

(CMOS) based analog circuit design becomes more challenging and 

tedious task due to very complex physical models and variation in the 

fabrication process as technology scale down. In this continuously 

changing era, the demand of mixed signal System on Chip (SoC) 

increasing day by day which digital and analog circuits integrated on 

same silicon chip. For the digital circuit design, many mature computer 

based automated tools have been established and limited research 

efforts made towards automization of the analog circuit design. This 

gap opens the ample research space for the researcher in the field of 

analog circuit design. Automization of analog circuit design makes the 

mixed signal SoC is the best approach to cope up with this problem, 

cost considerations and the time to market. This motivates the analog 

circuit designer to explore more automated computer aided tools in the 

field of analog circuit design. In this review paper, performance 

evaluation of various evolutionary algorithms is compared. The 

comparison includes most used Differential Evolution (DE) algorithm, 

Cuckoo Search (CS) algorithm, Particle Swarm Optimization (PSO) 

algorithm, hybrid CSPSO algorithm. The performance evaluations of 

these algorithms are compared with the different standard benchmark 

functions and the convergence graphs of these standard benchmark 

functions are compared to test number of runs with respect to number 

of iterations. 
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1. INTRODUCTION 

The real world is analog in nature and modern digital systems 

are requires an integrated analog part built on the same chip to 

improve speed and reduce power dissipation. The integration of 

digital and analog systems is more common in the modern 

System-on-Chips (SoCs) and nearly 75 % of SoCs contain an 

analog part to communicate with the outside world [1]. 

Complementary Metal Oxide Semiconductor (CMOS) based 

design of analog circuit is a more challenging task to meet the 

desired specifications. Determination of the values of the design 

parameters of a circuit is known as circuit sizing (schematic-level 

design) which controls the overall performance of the circuit. In 

the schematic level design flow, numbers of design parameters are 

requiring to be adjusted by a circuit designer to obtain the desired 

specifications for a given circuit [2]. Conventional analog circuit 

is designed by converting device behaviour in the general analytic 

equations and these equations need to be simulated to check 

whether the circuit works as per estimation or not. This is an 

iterative, time-consuming, and tedious job and there is no 

assurance about optimum circuit design in terms of channel 

length, gain, bandwidth, slew rate, power consumption etc. One 

more aspect that designer needs to be considered is, given analog 

circuit requires to meet more than one design metrics and most of 

the design metrics are trade-off with each other which turns the 

analog circuit design task into multi-objective optimization 

problem. The Fig.1 shows an analog design octagon which 

illustrates the trade-off with typical design metrics. 

Nowadays much research is being spent to develop a novel 

methodology that automates the analog circuit design flow. 

Automization of analog circuit can save a vast portion of the 

overall design cycle time and reduces the cost of IC. Many 

research institutions and researchers across the world are working 

on this research problem and have been trying to develop a 

Computer Aided Design (CAD) tool which can handle all design 

problems in short period of time. 
 

 

Fig.1. Analog circuit design octagon [3] 

For the automated design of analog circuit at schematic level 

many techniques have presented in the literature. These 

techniques mainly classify in to two categories. (1) The 

Knowledge based approach and (2) The Optimization based 

approach. In the knowledge-based approach, the circuit designer 

generates synthesis rules based on the expertise and experience in 

the field of the analog circuit design and these rules are 

incorporated into an algorithm to find the solution of design 

problem [4]. This approach makes the analog circuit design 

tedious, time consuming and limited to few circuit topologies. The 

optimization-based approach uses a search algorithm that forces 

the value of design parameters towards a solution specific 

provided by the user [5]. The optimization-based approach is 

highly reliable and more accurate for the analog circuit design 

which is independent of topologies of the circuit. 
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1.1 OPTIMIZATION OF ANALOG CIRCUIT 

DESIGN 

Optimization is a process of finding the best possible solution 

for a given design problem based on the given parameters. It is 

the field of computational science which deals with the finding 

out the best possible solution for the given design problem 

through trial-and-error method [6]. This optimization method 

applied on the analog circuit design to meets the design 

specifications by optimizing the design parameters through 

optimization algorithm. The main design parameters of 

Complementary Metal Oxide Semiconductor (CMOS) based 

analog circuits may be the width (W), length (L), resistor (R), 

Capacitor (C) and biasing current (Ibias). Optimization is an 

iterative process where the values of design parameters are 

updated until the optimal result obtained [7]. Desired 

specifications for a particular circuit topology can be represented 

by Eq.(1), 

 Speci = f(X,Y), i=1,2,3,…N (1) 

 The Eq.(1) shows the desired specifications, represented by 

Speci, vector X indicates the design parameters values, vector Y 

indicates supply voltage, desired temperature, process 

information, etc., N represent the number of desired specifications 

of given problem. 

Let, consider a circuit which has p number of Metal Oxide 

Semiconductor (MOS) transistors, q number of resistors, r 

number of capacitors, and reference current source Iref. The 

parameters values are allowed within a specified search space 

such that it satisfy the constraints limit of the given vector Y. The 

Eq.(2) represents the analog circuit design problem [7]. Which 

find the values of Wi and Li of transistor, Rj, Ck, and Iref. 
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For the given vector Y, many optimization methods are 

explored for the atomization of circuit sizing in the past and recent 

time also. In the literature many optimization methods have been 

proposed and mainly classified as: gradient-based optimization 

(also known as classical optimization) techniques, evolutionary 

optimization (also known as meta-heuristic) optimization 

techniques, and convex optimization techniques [8]. These 

techniques require computation of the derivatives in each iteration 

and good preliminary estimate for the given design variable. 

These methods require good initial guess close to global optimum 

solution, otherwise stick to a local optimal solution for a Non 

deterministic Polynomial (NP) hard type problem, with non-linear 

objective functions and the large number of variables. Sequential 

quadratic programming [9], steepest descent method [10], 

Levenberg-Marquardt method [11], and phase I-II-III feasible 

directions method [12], are the examples of gradient-based 

optimization techniques.  

The convex optimization techniques give the globally optimal 

solution but require good knowledge of MOSFET device physics 

in which behaviour of device represented by very complex 

quadratic mathematical equations. This would be very tough 

reviewing the current state-of-the-art complex modern MOSFET 

device models [13]. Geometric programming [14], interior-point 

algorithm [15] are the examples of convex optimization 

techniques.  

The evolutionary optimization-based techniques used to solve 

multimodal, multi objective optimization design problem and 

explore the solution space very robustly [16]. It also not requires 

the familiarity of analog circuit design and complex physical 

models, as it requires in the convex and gradient-based 

optimization. Also not require computing complex mathematical 

calculations and it give the global optimum solution. Many   

evolutionary algorithms proposed and implemented in the 

literature, Artificial Bee Colony (ABC), Ant Colony Optimization 

(ACO), Genetic Algorithm (GA), Differential Evolution (DE), 

Harmony Search (HS), Particle Swarm Optimization (PSO), Tabu 

Search (TS), Simulated Annealing (SA), Cuckoo Search (CS) are 

the popular evolutionary algorithm in the field of engineering 

application and other field. As stated in the No Free LUNCH 

(NFL) theorem, one single algorithm cannot give best suitable 

result for the optimization problem, for all the design 

specifications [17]. 

Genetic Algorithm (GA), the popular optimization algorithm 

has been tested for analog circuit design by many researchers [18]. 

The ACO algorithm is more constituent than the GA with higher 

convergence speed makes it suitable for transistor sizing problem, 

so it can replace the GA [19]. The GA, TS, and SA algorithm 

require more computational time as complexity increases. The 

ABC algorithm performs well at exploration but poor at 

exploitation results in less convergence speed for the unimodal 

problem and trap in local minima for solving the complex 

multimodal optimization problem as concluded by the authors in 

[20]. The Cuckoo Search algorithm (CS) is a population-based 

optimization algorithm developed by Yang and Deb and fewer 

parameters need to be adjusted. It gives more efficient 

randomization result compared to PSO and DE algorithms. The 

performance of PSO, DE, ABC and CS are analysed and 

compared in [26], and the authors has concluded that the CS 

algorithm gives more precise and robust results than the ABC and 

PSO algorithms. 

Modern CMOS based analog circuit design uses evolutionary 

algorithm based optimization approach to solve analog circuit 

design problem and much research work has been devoted in the 

field of automated analog circuit design [14]. Three stage CMOS 

based Miller op-amp and an ultra-low power CMOS based Miller 

OTA are optimized using PSO, Hierarchical PSO (HPSO) and 

GA algorithm [33]. Authors have concluded that the Hierarchical 

PSO (HPSO) algorithm converges better compared to all other 

evolutionary algorithm. The DE, PSO and ABC algorithms have 
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been explored to optimize the CMOS based Miller OTA by the 

authors in [2] and concluded that DE algorithm performed better 

compared to the PSO, and the ABC algorithm does not meet the 

require goals. The PSO, DE, ABC and HS algorithms were 

applied to optimize nth order filters and authors have concluded 

that the HS performs faster among all but having the maximum 

fault. The other algorithms converged superiorly [22]. The 

Modified PSO (MPSO), ABC and standard PSO algorithm has 

been compared and tested to optimize the two-stage CMOS op-

amp and bulk driven OTA. The authors concluded that the 

Modified PSO (MPSO) performs better compared to other 

algorithms [23].  

2. EVOLUTIONARY ALGORITHMS  

The Evolutionary Algorithms are nature inspired and are more 

efficient, flexible, goal oriented and independent to problem 

model. Researcher’s community working on these optimization 

techniques and many improved and modified versions are 

frequently invented in the field of scientific research. This section 

describes the DE, PSO, CS and modified CSPSO evolutionary 

algorithms in brief.  

2.1 DE ALGORITHM 

The Differential Evolution (DE) is an evolutionary algorithm 

developed by Storn and Price [27]. In this algorithm the formation 

of a new candidate solution is carried out by calculating a 

weighted difference between two randomly selected population 

numbers added to a third randomly selected population number. 

It uses the crossover, selection, and mutation strategies of used in 

the GA. For the DE algorithm there are ten mutation techniques 

are given as per the literature [27]. 

DE\best\1\exp     

DE\rand\1\exp  

DE\rand-to-best\1\exp   

DE\best2\exp 

DE\rand2\exp      

DE\best\1\bin    

DE\rand\1\bin     

DE\rand-to-best\1\bin 

DE\best\2\bin    

DE\rand\2\bin 

For the optimization problem, DE/rand/1/bin is widely used to 

find the optimum global solution [28].  

The DE algorithm consists of two arrays with population size 

N and dimension D. The N array holds the vector population for 

the next generation and D array holds the current vector 

population. N competitions are to be carried out for each 

generation to obtain the resultant composition of the consecutive 

generation. The differential vector (Xr0 – Xr1) is a pair of randomly 

chosen vectors Xr0 and Xr1 and weighted difference (Xr0 - Xr1) is 

multiplied with weighted factor F, which is further added to 

another randomly chosen vector Xr2. The mathematical 

representation of this process is represented by the Eq.(4) [28]. 

 V = Xr2+F*(Xr0-Xr1) (4) 

The Eq.(4) represent mutant vector V, target vector X, r0, r1and 

r2 are the random numbers consist range of (1,2,…, N). The 

weighting factor or mutation scaling factor F is a constant and 

specified by the user in the range of (0.5, 1.0) which controls the 

amplification of the vector (Xr0- Xr1) [28].  

 

Fig.2. DE algorithm Flowchart [28] 

The Fig.2 illustrates the flow diagram of the DE algorithm 

where XGbest is generation best vector, u is trial vector, t is a 

generation number, and k = 1,2,3,…,N. The termination criterion 

decided by either minimum value of the fitness function or a 

Population size (N), Weighting factor (F), 

Problem size D, Crossover rate (CR), 

Desired Fitness value, Number of 

generations 

Random Population Initialization and 

fitness value calculation. 
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maximum number of the generations. The Crossover Rate (CR), 

weighted factor F, and number N are the main control parameters 

of DE algorithm are [28].  

2.2 PSO ALGORITHM 

The Particle Swarm Optimization (PSO) algorithm is swarm 

intelligence based evolutionary algorithm and developed by 

Kennedy and Eberhart [29]. This algorithm gets the best optimum 

result using a set of birds that fly with different velocities and 

different positions. According to their past performance and their 

neighbor in the exploration search space the velocities of all these 

birds are adjusted. Each solution bird in group is identified as 

particle. PSO algorithm works in an iterative way and finds the 

best solution. Suppose N number of particles in swam with D 

dimension. The velocity and position of kth particle are described 

by Vk = [Vk
1, Vk

2,...,Vk
D] and  Xk = [Xk

1, Xk
2,...,Xk

D].  

The velocity of the kth particle updated after every iteration 

according to the Eq.(5) [30]. 

 
( )

( )

1
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kd kd kd kd
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d kd
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In the Eq.(5), range of vector k is {1,2,3...,N}, range of vector 

d is {1,2,3…,D}, range of vector  i is {1,2,3.... maximum iteration 

number}, 
i

kdX  and 
i

kdV  are the position and velocity of kth particle 

in dth dimension for the ith iteration respectively, 
i

kdpbest is the 

personal best position of kth particle in dth dimension for the ith 

iteration, 
i

dgbest is the dth dimension of the global best particle in 

the swarm for the ith iteration, rand1 and rand2 are uniformly 

distributed random numbers between 0 and 1, C1 and C2 are 

constants known as acceleration coefficients, ω is known as 

inertia weight. The value of ω is chosen less than one initially and 

then with each iteration it reduced linearly. ω controls the 

influence of the previous direction of displacement. The position 

of the  kth particle in N×D dimension of the search space can be 

updated using a Markov chain property as per the Eq.(6), [31].  

 
1 1i i i

kd kd kdX X V+ += +  (6) 

 The flow diagram of PSO algorithm is illustrated with steps in 

Fig.3. 

2.3 CS ALGORITHM PSO 

 The Cuckoo Search (CS) algorithm is a bio-inspired meta-

heuristic algorithm developed by Yang and Deb [21]. The CS 

algorithm is robust and generic compared to PSO, GA, DE, and 

other meta-heuristic algorithms for global optimization problem 

due to less number of control parameters and have a fine balance 

of exploration and exploitation [34].  

CS algorithm motivated by the incomparable lifestyle of 

cuckoo species. Cuckoo breeding behavior and Lévy flight 

behavior combined to find all optima solution in a search space. 

CS algorithm starts with a random initial population like other 

meta-heuristic algorithms, at the same time it explores some kind 

of selection and/or elitisam as that of HS algorithm [35].  

The flow diagram of CS algorithm illustrated in Fig.4 [36]. CS 

algorithm, each pattern relates to a nest and each individual 

element of pattern relates to a cuckoo egg. The CS algorithm 

represented by the Eq. (7) [21].  

 Xt+1;i = Xt;i + α⊗Lévy(λ)    (7) 

Here, Xt;i is the current solution of the ith cuckoo, Xt+1;i is the 

next solution generated for the ith cuckoo with Lévy flight, t 

represents a number of the present generation and  the product ⊗ 

indicates the entry-wise multiplication, and α>0 is a scaling factor 

of the step size that depends on scales of the given problem of 

interest. For small dimension problem, α=O(L/10) is suitable and 

for large dimension problem, α=O(L/100) is more appropriate 

[38]. Big O notation is used to represent the time complexity of 

the algorithm. The characteristics of the scale L depend on the 

problem to be solved. In addition, Lévy(λ) is a random movement 

using Lévy flight that is comparatively more effective in the long 

run than a random walk used in other algorithms such as the DE, 

ABC, PSO etc. This is a global walk intended for exploration or 

diversification of the search space. 

 

Fig.3. Flowchart of PSO algorithm [29] 

Lévy(λ) is derived from a Lévy distribution which has an 

infinite variance with an infinite mean using the Eq.(8) [21]. 

 Lévy~u = t-λ; 1<λ≤3 (8) 

In the Eq.8, ‘~’ means random numbers drawn from the Lévy 

distribution wherein the step size follows a random walk process 

with a power-law distribution with heavy-tailed as shown in 
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( pbest ) 
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No 
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   C1, C2, Vmax, Inertia weight (𝜔),  

Number of generations, ,  Desired fitness value 
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Fig.2.4 and λ is the power coefficient [39]. In Fig.5, P(x) is a 

probability density function of a random variable x. 

 

Fig.5. Lévy distribution [35] 

Input number of nest (N), Problem size (D),

Fraction of worst nest (pa), Number of iterations, 

Desired fitness value

Generate initial population of N nest and find 

current best solution

Choose the nest with the best fitness value from all 

as gbest

Termination criteria 

Desired optimized solution

Yes

Generate cuckoo by random Lévy walk 

Evaluate fitness of each cuckoo

Replace better quality cuckoo to nest

Abandon a fraction of worse nests (pa), and build 

new one at new location via random walk

No

 

Fig.4. Flowchart of the CS algorithm [21] 

Lévy flight has a large coverage range in a search space of the 

variables and new numerous solutions can be generated by Lévy 

walk near the best solution and improve the speed of local 

exploration [40]. To ensure that the CS algorithm will not be 

trapped in a local optimum solution, a substantial part of the new 

solutions must be generated through far-field randomization, so 

that location would be sufficiently far from the current obtained 

best solution. Thus, steps generated by Lévy walk can have both 

small and large components, which enable the cuckoo search to 

do both large-scale explorations and local exploitation [41]. There 

are a few methods to generate Lévy distribution, but one of the 

most efficient and yet a straightforward method is the Mantegna 

algorithm proposed by Mantegna in [42]. This method generates 

random numbers according to symmetric Lévy stable distribution. 

The simple way to generate a new solution using the Lévy walk 

is mathematically expressed by the Eq.(9) [26]. 

 Xt+1 = Xt + step size ⊗ N(0,1) (9) 

The Eq.(9) represents the Lévy random walk calculated by 

Mantegna’s algorithm. 

 Step size = 0.01*(u/|v|β) ⨂ (Xt-Xbest) (10) 

The Eq.(10) represents calculation of the step size. Where, 

0.01 is a factor that control step size of cuckoo walks. Xbest is the 

best global solution, Xt is the current solution, step size is the 

length of walk step, ⊗ is entry-wise product, u and v are normally 

distributed stochastic variables generated from u ~ N(0, σ2) and v 

~ N(0, 1), and σ2 is the variance given by the Eq.(11) [25], 

In the Eq.(11) Γ is gamma function which is an extension of 

the factorial function of positive number, and β is the variable 

which controls distribution by 0 ≤ β ≤ 2. 

The value of β equal to 1.5 is suggested in [21]. The Eq.(11) 

represents the calculation of the variance 𝜎2 as,  
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 (11) 

The local random walk intended for exploitation or 

intensification of the search space is based on the Eq.(12), 

 Xt+1 = Xt+r⊗H(pa-r)⊗(Xj-Xk) (12) 

In the Eq.(12), Xj and Xk are two different randomly selected 

solutions, H(u) is a Heaviside function (H(u) = 1 if u> 0 and H(u) 

= 0 if u< 0)), pa is the discovery probability of a cuckoo egg, by a 

host bird which is  ∈ [0,1] , r is a random number obtained from 

uniform distribution in [0,1].   

The CS algorithm finds the desired solutions very efficiently 

for many global optimization problems as presented in the 

literature and requires smaller number of control parameters. The 

CS algorithm has a fine balance of exploitation and exploration 

compared to other algorithms like TS, PSO, SA, GA, ACO, ABC 

and DE. 

3. PERFORMANCE ESTIMATION OF 

EVOLUTIONARY ALGORITHMS 

3.1 INTRODUCTION 

It is very difficult to optimize all optimization problems with 

single algorithm. And to resolve this problem, two or more 

algorithms can be merged  to get the global optimum solution for 

a broad range of optimization problems [39].This section covers 

the concept of a hybrid algorithm. Then, benchmark functions 

which are generally used to test the performance of the 

optimization algorithms and the parameter settings of each 

algorithm are reviewed. At the end of this section, the 

performance of different Evolutionary Algorithms such as the CS, 

PSO, hybrid CSPSO and DE algorithms are compared by 

comparing the set of commonly used benchmark functions.  
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3.2 HYBRID CSPSO ALGORITHM 

A hybrid algorithm is a merger of two or more algorithms that 

run together and complement each other to produce a profitable 

synergy from their integration [45]. Generally, the result of 

hybridization makes improvements in form of either accuracy or 

computational speed [46]. The hybridization aims to combine the 

advantages of each algorithm, while at the same time trying to 

minimize any considerable drawbacks [39]. 

The PSO algorithm is one amongst the most competent 

optimization algorithms. But the problem is it converges very fast, 

therefore it has generally an early convergence in complex 

problems [26].The CS algorithm is applied  to solve a number of 

complex problems and it outperforms other optimization 

algorithms [38].The CS algorithm may converge slightly slower 

but it has enhanced explorative skill. Consequently, there is some 

trade-off between convergence and accuracy. These trade-off 

leads to the solution diversity that an algorithm can produce in the 

searching process as illustrated in Fig.6 [47]. 

 

Fig.6. Trade-off between accuracy and convergence [47] 

The objective of hybridization is to inform each cuckoo about 

their position and helps each cuckoo to move to a better position. 

Fig.7. illustrates the Pseudo code for the CSPSO. In this 

algorithm, each cuckoo updates its position and velocity 

according to the PSO algorithm. The hybrid CSPSO algorithm’s 

main step are demonstrated by the flow diagram shown in Fig.8. 

The Hybrid CSPSO Algorithm 

Input: Nest size (N), Problem dimension (D), Fraction of worst 

nest (pa), No. of generations, Desired fitness function value, C1, 

C2, Vmax, ω; 

Output:  Optimized solution; 

Begin 

Objective function f(x),x=(x1, x2, x3…xD); 

Generate initial a population of N host nests xi(i=1,2,3, ….,N); 

While (t<Max.generation) or (stop criteria); 

        Get a cuckoo (say i) randomly by Lévy flights; 

        Evaluate its quality/fitness Fi; 

        Choose a nest among N (say j) randomly; 

If(Fi > Fj) then 

               Replace j by the new solution; 

End If 

        For each cuckoo update velocity and position according 

to the PSO algorithm;   

        Abandon a fraction (pa) of worse nests and build new 

ones at new locations; 

        Keep the best solutions; 

        Rank the solutions and find the current best; 

End while 

End 

 

Fig.8. Flowchart of the hybrid CSPSO algorithm [48] 

3.3 BENCHMARK FUNCTION 

Once the optimization algorithm is implemented, it is assessed 

through different benchmark functions, which is one of the best 

primary ways to evaluate and compare the performance of 

implemented algorithm [49]. If an implemented algorithm 

produces a satisfactory solution with the benchmark functions, 

then it is proven to solve the global optimization problems in 

majority of the cases. There are several different types of such test 

functions available in the various literatures. The commonly used 

functions have been selected to estimate the performance of the 

CS and hybrid CSPSO algorithms. The benchmark functions used 

for review work are listed with their equation, type, algorithms 

also have been compared with the PSO and DE algorithms. The 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02 

2833 

search space of x, the global optimum solution of the function 

(x*), and the global minimum value of the function f(x*) in 

Table.1 [50].  

3.4 EXPERIMENTAL SETTINGS AND RESULTS 

The CS, CSPSO, PSO, and DE algorithms are implemented in 

the C programming language which is comparatively faster and 

use the least memory. These algorithms are repeatedly executed 

on the GNU Compiler Collection (GCC) to solve the required 

value for each benchmark function.  

The performance of all these Evolutionary Algorithms is 

evaluated using multimodal as well as unimodal benchmark 

functions with different problem dimensions (D). Author has 

performed these experiments on a system having specification of: 

Intel® core™ i5, 2.40 GHz processor, Internal RAM of 8 GB and 

Operating System (OS) as an Ubuntu [51]. 

Every algorithm has its own parameters that affect its 

performance in terms of processing time and result quality. 

Depending on the nature of the optimization problem and search, 

different algorithms have different values for their parameters. In 

the DE algorithm, parameters CR, F and N are relatively tough to 

set and some benchmark functions are very sensitive to 

appropriate settings of these parameters [28].  

For the PSO algorithm, more parameters need to be set where 

in the CS algorithm have fewer parameters need to be set. For the 

comparative study author has taken, the size of population (N) for 

the DE algorithm, the number of particles (N) for the PSO 

algorithm, the number of nests (N) for the CS algorithm, and the 

number of nests (N) for the CSPSO algorithm have been 

considered equal, the values of the remaining parameters for each 

algorithm are also considered the same for all benchmark 

functions [51]. However, depending on the nature of the 

optimization problem or the objective function, solution quality 

can be improved by changing the values of the algorithm’s 

parameters.  

The parameters for the different Evolutionary Algorithms are 

set as follows: For the DE algorithm, F∈ [0,2] and the CR∈[0,1] 

as suggested in [27]. If F<0.4 or F>1.0, then the DE algorithm is 

rarely effective as mentioned in [27]. 

If the population converges prematurely, then F and/or N 

should be increased. The larger value of CR increases the speed 

of convergence. Ali and Tӧrn have obtained an optimal value for 

CR = 0.5 empirically, halfway between the two parents [52]. This 

approach ensures that each parent’s component has a 50% chance 

of being selected to produce a new point. In this literature survey, 

F = 0.8 and CR = 0.5 are selected for the DE algorithm as 

suggested in [52].  

The PSO algorithm comparatively has more tuning parameters 

which greatly influence its performance. As mentioned in [29], a 

recommended value for C1 and C2 is 2. Clerc has reported that C1 

and C2 are important factors to ensure convergence of the PSO 

algorithm in [54]. Trelea has tested the different set of parameters 

for different standard benchmark functions for the PSO algorithm 

[55]. From his empirical study, he suggested optimum value of 

C1=C2= 1.49 gives a higher success rate for the PSO algorithm. 

Shi and Eberhart have analysed the impact of ω and Vmax on the 

performance of the PSO algorithm in [56]. The choice of Vmax = 

xmax and linear variation of ω from 0.9 to 0.4 with iterations 

provide good performance on the tested benchmark functions as 

mentioned in [57]. 

Yang and Deb have tested CS algorithm for different 

benchmark functions with different values of population size (N) 

and pa. From their empirical study, suggested that N=15 to 40 and 

pa= 0.25 are sufficient for most of the optimization problems. This 

literature survey carried out for, N= 30 and pa= 0.25 as suggested 

in [21]. 

For the hybrid CSPSO algorithm, Number of nests N = 30, pa 

= 0.25, C1 = 1.49, C2 = 1.49, Vmax = 0.1*xmax, Vmin = 0.1*xmin, and 

ω varies linearly from 0.9 to 0.4 with iterations are chosen. 

The solution obtained by any Evolutionary Algorithm to solve 

an objective function f(x) with the solution search space of a 

variable [xj,min, xj,max]j=1,2,…,D is represented by a x=(x1, x2,…,xD). 

Here, x_(j,min)is a minimum value of a variable xj and xj,max is a 

maximum value of a variable xj. In the initialization phase, each 

algorithm randomly generates a solution vector which is sampled 

from the search space [xj,min, xj,max]. The initial values of the jth 

attributes of the ith pattern have been generated as suggested in the 

Eq.(13) [59]. 

 xi,j = xi,j,min+r *(xi,j,max-xi,j,min)  i = 1,2,…,N (13) 

In the Eq.(13), r represents uniformly distributed random 

variable with the range (0,1). This randomly generated solution 

vector r is given to a test function. Based on the results obtains 

from the test function, the algorithm will update the value of the 

solution vector. This iterative process continues until termination 

criteria are not fulfilled. The termination criteria are either a 

maximum number of iterations or a minimum value of the 

function. These criteria are selected based on the complexity 

problem and requirement of quality of solutions. The value of 

tolerance for the variation of function is considered ≤ 1e-6. The 

maximum number of iterations for the given benchmark function 

testing are considered 30000.  

Being a stochastic search process, a statistical study is required 

to compare the consistency of the different Evolutionary 

Algorithms and their quality of solutions. Each benchmark 

function is solved by the CS, PSO, CSPSO and DE algorithms for 

100 independent runs with different random seeds. The 

performance of each algorithm is evaluated based on different 

performance criteria such as a standard deviation of a function 

value, success rate, simulation time, an average number of 

function evaluations and an average number of iterations in the 

experimental setup [51]. 

Standard deviation of a function value: The best value of a 

function f(x) that each algorithm can find is recorded during each 

run. The maximum, minimum, mean, and standard deviation of 

the best function values are calculated. The minimum, maximum, 

mean, and standard deviation of the best function values are 

denoted as ‘Maxf’, ‘Minf’, ‘Meanf’, and ‘SDf’ respectively. 

Average number of iterations: The number of iterations is 

also recorded in different runs when each algorithm finds the 

targeted value of the function within the maximum number of 

iterations. Then, the average number of iterations is calculated 

based on the number of runs. It is denoted as ‘Iteravg’.   

Average number of function evaluations: The number of 

function evaluations is also recorded in different runs when each 

algorithm finds the targeted value of the function within the 

termination criteria. Then, the average number of function 
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evaluations is calculated based on the number of runs. It is 

denoted as ‘FEavg’. 

Success rate: The number of successful runs is recorded when 

the function value reaches the targeted value within a maximum 

number of iterations. It is denoted as ‘Srate’. 

Simulation time: The total simulation time is recorded for all 

runs of the function taken by each algorithm in the respective 

experiment. It is denoted as ‘Tsim’. 

The performance criteria of each EA for different benchmark 

functions are tabulated in Table.2. In which, Beale f2(x), Drop-

Wave f3(x), Easom f4(x) and Schaffer f9(x) functions are 2-D 

optimization problems and Ackley f1(x), Griewank f5(x), Lévy 

f6(x), Rastrigin f7(x), Rosenbrock f8(x), and Sphere f10(x) functions 

are 10-D optimization problems. In this table, the optimum values 

of different criteria obtained by the EA are shown in bold letters. 

Ackley, Griewank, Lévy, Rastrigin, Rosenbrock, and Sphere 

functions are also solved using each EA independently with 20-D 

as well as 30-D optimization problems. The performance criteria 

of each EA for 20-D benchmark functions are tabulated in 

Table.3. 

For 20-D optimization problems, the size of population (N) for 

the DE algorithm, the number of particles (N) for the PSO 

algorithm, the number of nests (N) of the CS algorithm, and the 

number of nests (N) for the CSPSO algorithm are changed to 40 

in place of 30 which was set previously in the case of 10-D 

benchmark functions presented in Table.2. Other parameters of 

all algorithms are unaltered. 

The performance criteria of each EA for 30-D benchmark 

functions are tabulated in Table.4. For the 30-D optimization 

problems, the value of N for each algorithm is changed to 60 in 

place of 40 set previously in the case of 20-D benchmark 

functions. Other parameters of all algorithms are unchanged [51]. 

From Table.2-Table.4., it can be concluded that the average 

number of iterations (Iteravg) taken by the CS and CSPSO 

algorithms to reach the targeted function value for most of the 

benchmark functions are less compared to the PSO and DE 

algorithms.The CS and CSPSO algorithms also acquire a lower 

standard deviation of the function value (SDf) and achieve a 

higher success rate (Srate)  compared to the DE and PSO 

algorithms for most of the test functions [51]. 

Table.1. Standard benchmark functions 

Function Equation Type Search Space 
Global Optimum 

Solution (x*)  
f(x*) 

Ackley ( )
( )2

1 1

1 1
0.2 cos 2

1 20 20

D D

i i

i i

x x
D D

f x e e e


= =

−  
= − − + +  

Multi- 

Modal 
(-32, 32) (0, …., 0) 0 

Beale ( ) ( ) ( ) ( )
2 22 2 3

2 0 0 1 0 0 1 0 0 11.5 2.25 2.625f x x x x x x x x x x= − + + − + + − +  
Uni- 

Modal 
(-4.5, 4.5) (3, 0.5) 0 

Drop-Wave ( )
( )
( )

2 2

1 2

3 2 2

1 2

1 cos 12

0.5 2

x x
f x

x x

+ +
= −

+ +
 

Multi- 

Modal 
(-5.12, 5.12) (0, 0) -1 

Easom ( ) ( ) ( ) ( ) ( )( )2 2

4 0 1 0 1cos cos expf x x x x x = − − − − −  
Uni- 

Modal 
(-100, 100) (π, π) -1 

Griewank ( ) 2

5

1 1

1
cos 1

4000

DD
i

i

i i

x
f x x

i= =

 
= − + 

 
   

Multi- 

Modal 
(-600, 600) (0, …., 0) 0 

Lévy 

( ) ( ) ( ) ( )

( ) ( )

1
22 2

6 1

1

2 2

sin 1 1 10sin 1

1 1 sin 2

D

i i

i

D D

f x   

 

−

=

 = + − + + 

 + − + 


 

where 
1

1
4

i
i

x


−
= +  

Multi- 

Modal 
(-10, 10) (1, …., 1) 0 

Rastrigin ( ) ( )2

7

1

10 10cos 2
D

i i

i

f x D x x
=

 = + −   Multi- 

Modal 
(-5.12, 5.12) (0, …., 0) 0 

Rosenbrock ( ) ( ) ( )
2 22

8 1

1

100 1
D

i i i

i

f x x x x+

=

 = − − −
    Uni- 

Modal 
(-30, 30) (1, …., 1) 0 

Schaffer ( )
( )
( )

2 2

2

9 2
3 2 2

1 2

sin 0.5
0.5

1 10

ix x
f x

x x−

 − −
 

= +
 + + 
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Modal 
(-100, 100) (0, 0) 0 
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( ) 2
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1

D

i

i

f x x
=

=  Uni- 
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(-100, 100) (0, …., 0) 0 
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Table.2. Performance evaluation of different EAs with different benchmark functions 

Algorithm Function D Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s) 

           

DE 

f1(x) 10 

9.1e-7 1.7e-5 1.1e-6 2.0e-6 21419 642608 99 110.77 

PSO 6.5e-7 19.93 3.9e-1 2.79 4234 127025 98 24.27 

CS 6.9e-7 1.0e-6 9.1e-7 0.0 1318 79121 100 24.39 

CSPSO 5.7e-7 1.0e-6 9.1e-7 0.0 1090 98202 100 36.70 

DE 

f2(x) 2 

1.0e-6 2.0e-1 9.3e-3 2.4e-2 30000 900030 0 33.86 

PSO 2.3e-8 7.6e-1 7.6e-3 7.5e-2 580 17400 99 0.83 

CS 1.2e-8 9.9e-7 5.1e-7 0.0 152 9165 100 0.60 

CSPSO 1.2e-8 9.9e-7 5.5e-7 0.0 83 7524 100 0.37 

DE 

f3(x) 2 

1.7e-9 9.8e-7 3.1e-7 0.0 76 2319 100 0.08 

PSO 0.0 1.0e-6 3.3e-7 0.0 43 1286 100 0.04 

CS 3.1e-10 1.0e-6 3.0e-7 0.0 9 576 100 0.05 

CSPSO 2.3e-11 1.0e-6 3.0e-7 0.0 7 669 100 0.04 

DE 

f4(x) 2 

8.9e-6 1.3e-1 7.0e-3 1.5e-2 30000 900030 0 32.04 

PSO 5.6e-9 1.0e-6 5.5e-7 0.0 583 17491 100 0.92 

CS 2.0e-8 1.0e-6 5.2e-7 0.0 944 56701 100 5.74 

CSPSO 1.9e-8 1.0e-6 5.2e-7 0.0 764 68759 100 5.78 

DE 

f5(x) 10 

9.8e-7 5.2e-1 1.4e-1 1.3e-1 29892 896811 8 128 

PSO 6.8e-7 8.4e-2 3.4e-2 1.7e-2 29514 885544 2 111 

CS 6.5e-7 4.6e-2 1.9e-2 1.2e-2 27787 1667298 9 526 

CSPSO 7.3e-7 4.7e-2 1.7e-3 1.1e-2 27047 2434260 12 219 

DE 

f6(x) 10 

8.3e-5 3.1e-1 2.5e-2 4.3e-2 30000 900030 0 144.62 

PSO 4.4e-5 3.99 7.8e-2 5.6e-1 898 26948 98 4.91 

CS 3.9e-7 1.0e-6 8.0e-7 0.0 901 54145 100 18.73 

CSPSO 2.5e-7 9.9e-1 1.9e-2 1.4e-1 1106 99580 98 29.66 

DE 

f7(x) 10 

9.8e-7 7.65 4.9e-1 1.18 29968 899099 5 85.19 

PSO 6.4e-7 29.92 1.94 5.74 18209 546283 47 70.84 

CS 2.1e-7 4.97 6.5e-1 9.4e-1 18618 1117138 57 305 

CSPSO 4.2e-7 3.98 6.3e-1 8.5e-1 18617 1675621 55 366 

DE 

f8(x) 10 

7.51 933.81 321.59 188.21 30000 900030 0 62.14 

PSO 1.0e-6 90002 10813 29242 29892 896789 1 107 

CS 4.1e-7 1.0e-6 8.2e-7 0.0 1576 94638 100 23.01 

CSPSO 2.5e-7 1.0e-6 8.0e-7 0.0 1330 119761 100 31.19 

DE 

f9(x) 2 

8.7e-7 1.0e-6 9.6e-7 0.0 5236 157098 100 6.34 

PSO 0.0 1.0e-6 4.5e-7 0.0 786 23595 100 0.83 

CS 1.8e-9 1.0e-6 5.8e-7 0.0 1240 74484 100 5.72 

CSPSO 7.8e-9 1.0e-6 5.5e-7 0.0 476 42949 100 2.67 

DE 

f10(x) 10 

9.0e-7 1.0e-6 9.9e-7 0.0 4653 139635 100 8.78 

PSO 3.2e-7 1.0e-6 8.7e-7 0.0 3102 93065 100 10.47 

CS 2.8e-7 1.0e-6 8.2e-7 0.0 704 42248 100 10.30 

CSPSO 3.7e-7 1.0e-6 8.2e-7 0.0 480 43329 100 7.85 
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Table.3. Performance evaluation of different EAs with 20-D benchmark functions 

Algorithm Function Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s) 

DE 

f1(x) 

9.6e-5 4.01 1.1e-6 2.69 30000 1200040 0 308 

PSO 8.4e-7 19.95 7.1e-1 3.49 6062 242468 96 85 

CS 7.7e-7 1.16 2.3e-2 1.6e-1 3752 300242 98 191 

CSPSO 7.8e-7 1.16 2.3e-2 1.6e-1 3116 373976 98 173 

DE 

f6(x) 

9.6e-7 9.5-1 1.5e-1 2.9e-1 17152 686130 69 178 

PSO 7.6e-7 22.54 2.7e-1 2.24 28243 1129730 7 309 

CS 7.1e-7 1.2e-2 5.9e-4 2.2e-3 5362 429045 93 264 

CSPSO 6.3e-7 7.3e-3 2.9e-4 1.5e-3 4103 492490 96 251 

DE 

f7(x) 

6.6e-4 3.2e-1 6.6e-2 7.2e-2 30000 1200040 0 365 

PSO 5.8e-7 10.12 1.46 2.55 11629 465160 71 166 

CS 5.6e-7 1.98 2.9e-2 2.2e-1 2842 227442 98 158 

CSPSO 7.3e-7 1.98 3.8e-1 5.6e-1 11184 1342172 66 813 

DE 

f8(x) 

7.48 30.39 15.74 4.68 30000 1200040 0 218 

PSO 2.99 63.82 17.80 16.45 30000 1200000 0 313 

CS 8.2e-7 9.95 2.23 1.91 28772 2297857 14 1246 

CSPSO 7.9e-7 11.94 2.88 2.01 29117 3494106 7 1492 

DE 

f9(x) 

344.56 2982.78 1014 483 30000 1200040 0 190 

PSO 9.9e-7 90008 14861 32811 29592 1183698 3 250 

CS 5.7e-7 3.99 4.8e-1 1.30 7859 628766 88 293 

CSPSO 5.5e-7 3.99 4.4e-1 1.25 7260 871286 89 459 

DE 

f10(x) 

9.8e-7 1.0e-6 1.0e-6 0.0 9696 387884 100 42 

PSO 6.1e-7 1.0e-6 9.2e-7 0.0 4445 177802 100 34 

CS 7.3e-7 1.0e-6 9.3e-7 0.0 1676 134152 100 62 

CSPSO 5.7e-7 1.0e-6 9.2e-7 0.0 1434 172220 100 69 

Table.4. Performance evaluation of different EAs with 30-D benchmark functions 

Algorithm Function Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s) 

DE 

f1(x) 

3.30 6.43 4.30 7.7e-1 30000 1800060 0 720 

PSO 7.6e-7 19.96 4.41 7.01 12887 773255 71 434 

CS 8.5e-7 1.16 4.9e-2 2.1e-1 6469 776356 95 644 

CSPSO 8.4e-7 1.0e-6 9.7e-7 0.0 2807 505453 100 355 

DE 

f5(x) 

9.7e-7 9.9-1 2.3e-1 3.8e-1 22611 1356756 74 547 

PSO 6.9e-7 23.48 1.84 6.18 24057 1443456 24 590 

CS 7.2e-7 1.0e-6 9.5e-7 0.0 3802 456373 100 420 

CSPSO 7.3e-7 1.0e-6 9.4e-7 0.0 3272 589036 100 450 

DE 

f6(x) 

1.3e-3 1.12 1.2e-1 2.3e-1 30000 1800060 0 811 

PSO 8.5e-7 38.35 7.48 7.29 25273 1516390 19 780 

CS 6.7e-7 1.0e-6 9.3e-7 0.0 3710 445273 100 441 

CSPSO 6.7e-7 1.98 3.9e-1 5.8e-1 11835 2130421 65 1703 

DE 

f7(x) 

10.62 30.71 19.23 4.47 30000 1800060 0 460 

PSO 9.95 154.57 70.44 31.76 30000 1800000 0 764 

CS 8.4e-7 9.95 3.57 2.12 29989 3598790 2 3166 

CSPSO 8.8e-7 12.94 3.63 2.67 29952 5391439 2 4150 
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DE 

f8(x) 

1281 7125 3466 1055 30000 1800060 0 371 

PSO 4.3e-6 90072 20247 37064 30000 1800000 0 554 

CS 6.5e-7 3.99 4.8e-1 1.30 11696 1403602 88 1011 

CSPSO 6.8e-7 3.99 1.6 e-1 7.8e-1 9443 1699873 96 1059 

DE 

f10(x) 

9.9e-7 1.0e-6 1.0e-6 0.0 15516 931017 100 134 

PSO 7.1e-7 20000 800 3059 6934 416015 93 99 

CS 7.9e-7 1.0e-6 9.4e-7 0.0 2584 310190 100 211 

CSPSO 6.8e-7 1.0e-6 9.3e-7 0.0 2221 399921 100 208 

Thus, The CS and CSPSO algorithms outperform for most of 

the tested functions compared to the PSO and DE algorithms. The 

PSO algorithm requires the least average number of iterations 

(Iteravg), average function evaluations (FEavg), and simulation 

time (Tsim) for Easom function compared to the CS and CSPSO 

algorithms as listed in Table.2. The PSO algorithm also 

outperforms the CS algorithm for Schaffer function as listed in 

Table.2.  

The convergence graphs of Beale, Drop-Wave, Easom, and 

Schaffer functions with 2-D and Ackley, Lévy, Griewank, 

Rastrigin, Rosenbrock, and Sphere functions with 30-D optimized 

by the CS, PSO, hybrid CSPSO, and DE algorithms are shown in 

Fig.9 to Fig.18. The convergence graph of the function shows the 

average function value performance of all runs with respect to 

iterations in the respective experiment. The vertical axis is the 

average of the best function value obtained by the algorithm in 

each iteration and the horizontal axis is the number of iterations. 

 

Fig.9. Convergence graph of 30-D Ackley function for the CS, 

PSO, CSPSO, and DE algorithms 

 

Fig.10. Convergence graph of 2-D Beale function for the CS, 

PSO, CSPSO, and DE algorithms 

 

Fig.11. Convergence graph of 2-D Drop-Wave function for the 

CS, PSO, CSPSO, and DE algorithms 
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Fig.12. Convergence graph of 2-D Easom function for the CS, 

PSO, CSPSO, and DE algorithms 

 

Fig.13. Convergence graph of 30-D Griewank function for the 

CS, PSO, CSPSO, and DE algorithms 

 

Fig.14. Convergence graph of 30-D Lévy function for the CS, 

PSO, CSPSO, and DE algorithms 

 

Fig.15. Convergence graph of 30-D Rastrigin function for the 

CS, PSO, CSPSO, and DE algorithms 

 

Fig.16. Convergence graph of 30-D Rosenbrock function for the 

CS, PSO, CSPSO, and DE algorithms 

 

Fig.17. Convergence graph of 2-D Schaffer function for the CS, 

PSO, CSPSO, and DE algorithms 
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Fig.18.Convergence graph of 30-D Sphere function for the CS, 

PSO, CSPSO, and DE algorithms 

3.5 SUMMARY 

After reviewing the previously published literature for the 

given optimized problem, special attention is paid to the 

implementation of widely used and promising Evolutionary 

Algorithms. In this review paper, the focus is set on the 

performance evaluation of different metaheuristic Evolutionary 

Algorithms using different unimodal and multimodal benchmark 

functions. In this chapter, a hybrid algorithm of the CS and PSO 

algorithms is also compared. The concept of the hybrid algorithm 

of two or more algorithms plays a very prominent role to improve 

the searching capabilities of an algorithm and convergence rate. 

The more function evaluations per iteration which increase the 

total convergence time limit performance of the hybrid algorithm.  

4. CONCLUSIONS 

In this paper, the DE, PSO, and CS algorithms are analyzed 

and implemented using the C programming language. The 

performance of each algorithm is evaluated using different ten 

standard unimodal and multimodal benchmark functions. To 

exploit the benefits of the CS and PSO algorithms, the hybrid 

CSPSO algorithm is implemented and evaluated. The application 

and impact of the CS and hybrid CSPSO algorithms are used to 

optimize the basic building blocks of an analog CMOS IC such as 

voltage divider, triple cascode current mirror, three-stage current 

starved VCO, common-source amplifier, cascode amplifier, DA 

with a current mirror load, two-stage op-amp, FOTA, and Miller 

OTA. The convergence graphs of the various functions are 

compared and performance estimation of all the evolutionary 

algorithms is compared. 
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