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Abstract 

A tool that quickly calculates the dominant colors of an image can be 

very useful in image processing. The k-means clustering algorithm has 

this potential since it partitions a set of data into n clusters and returns 

a representative data point from each cluster. We discuss k-means with 

sampling for images, which applies k-means clustering to a random 

sample of image pixels. We found that even with a small random 

sample of pixels from the image, k-means with sampling exhibits no 

significant loss of correctness. We examine the usefulness and 

limitations of k-means clustering in determining the prominent colors 

of an image and identifying trends in large sets of image data. 
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1. INTRODUCTION 

The analysis of image data drives world industries of security, 

science, entertainment, marketing, and historical studies. One 

way to evaluate image data is through the lens of color theory. A 

human can look at several images and perhaps identify some 

prominent color trends. But when analyzing millions of images 

for color trends, it is necessary to use a program that will process 

the images efficiently. 

A major topic that needs to be addressed when approaching 

such a problem is this: how can a computer recognize color 

themes? And how does a quantitative measure of color compare 

to human opinion? A simple method would just average all the 

colors that make up an image. However, this will not yield the 

image’s defining color; it usually results in nondescript grey or 

brown. To achieve our goal, it is necessary to use a different 

method that can identify a few specific color values that best 

represent all the colors in the image. 

If a data set consists of a very specific type of image with 

clearly identifiable rules and labels, one might choose to use a 

supervised learning algorithm for the purposes defined above. For 

example, if all considered images are photos of flowers, then a 

programmer can train an algorithm to recognize the different parts 

of the flower and assign representative colors to them. However, 

what if the image set has no specifications? For example, a 

fashion company may find it useful to process millions of photos 

on social media and determine the most popular colors of this 

month. Without specific features to expect, it is difficult to tailor 

a supervised algorithm to be effective and efficient in all possible 

scenarios. 

Thus we consider the k-means clustering algorithm. It is an 

unsupervised method of image processing that will classify data 

without human training or complex pre-defined labels [1]. This 

makes k-means clustering a valuable candidate for determining 

color trends across large sets of disparate images. The k-means 

clustering algorithm is used by data science professionals in many 

industries, such as customer analysis, sales, and health 

monitoring. It an efficient tool and can identify groups that were 

not previously defined.  

In this paper we will discuss the usefulness of the k-means 

clustering algorithm specifically for determining the most 

prominent colors of an image. We will show that an efficient color 

clustering program does not need to process every pixel of an 

image to give an accurate result. Applying k-means clustering to 

a small fraction of the original image, even as small as one-tenth, 

will yield results nearly equivalent to applying k-means clustering 

to the complete set of pixels. Yet running k-means clustering on a 

dataset with one-tenth of the pixels will execute in one-tenth of 

the runtime. We refer to this sampling adjustment to the k-means 

algorithm as “k-means with sampling”.  

2. K-MEANS CLUSTERING ALGORITHM 

We have introduced the k-means clustering algorithm as a tool 

to sort data into groups. In this section we address further details. 

When using this algorithm for the purpose of determining the 

dominant colors of an image, our data points will be the colors of 

each pixel. We will refer to an image’s set of most prominent 

colors as its “color theme”. We represent color in the RGB color 

space, with the expectation that the user’s purpose is to analyze 

photos and online images, so the color of each pixel in an image 

will be represented by three integers, each between 0 and 255 

(inclusive). The magnitude of each integer corresponds to the 

pixel’s intensity of red, green, or blue, respectively [2]. When 

calculating Euclidean distances in k-means clustering, a pixel’s R, 

G, B integers will be evaluated as a three-dimensional vector. 

Given pixel A with RGB value [R1,G1,B1] and pixel B with RGB 

value [R2,G2,B2], the Euclidean distance between A and B is 

√(𝑅2 − 𝑅1)2 + (𝐺2 − 𝐺1)2 + (𝐵2 − 𝐵1)2 . 

We now define the generic k-means clustering algorithm (that 

we will later specialize for color selection). Let the integer k be 

the number of groups into which the data will be partitioned. The 

algorithm’s goal is to cluster the data into k groups, with each 

group having one centroid. A centroid is the data point in a group 

for which the Euclidean distance between the centroid and all 

other data points in the group is minimized. An optimal solution 

has been found when the algorithm has minimized the sum, over 

all k clusters, of the sum of the Euclidean distances between the 

k-th centroid and each data point in the k-th cluster. In practice, 

this optimization problem is NP-Hard [3], so k-means clustering 

is generally implemented to settle for an approximate solution 

after some number of maximum iterations. Informally, we refer 

to how close centroids are to their respective data points as 

“compactness”. 
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Heuristic k-means clustering algorithm: 

(i) Randomly select k centroids. 

(ii) Assign each data point to the nearest centroid, forming k 

clusters. 

(iii) Recalculate the centroid of each cluster. 

(iv) Repeat steps 2 and 3 until each centroid does not change 

location significantly, or until the maximum number of 

iterations has been reached. 

At each iteration of the algorithm, the k centroids are the 

current best representative data point of that cluster. At the 

termination of the algorithm, it is expected that the centroids 

represent the k most distinct groupings of the data [4]. 

When k-means clustering is applied in image processing, the 

data points are the RGB color values of each pixel. As previously 

mentioned, we use minimum Euclidean distances between [R, G, 

B] vectors to determine centroids and data point reassignments 

during each iteration. This heuristic k-means clustering algorithm 

has a runtime of O(n·k·t·d), where n is the number of data points, 

k is the number of clusters, t is the maximum number of iterations, 

and d is the dimension of each data point (d = 3 in the case of 

RGB colors as data points) [5]. With the maximum iteration 

termination condition, as in step 4 above, the program may 

terminate before the optimal solution has been found. However, it 

has been experimentally shown that in most practical cases, the 

centroids will change only very slightly after 20 iterations [6]. 

A common way to adjust k-means clustering for efficiency is 

to implement a centroid movement threshold ε. The parameter ε 

is an upper bound on the Euclidean distance between a centroid’s 

current position and its previous position. When for each centroid 

this distance changes by less than ε, the algorithm terminates. It 

has been experimentally shown that the first few iterations of k-

means clustering produce the largest changes in centroid 

distances; later iterations mainly consist of small oscillations 

around their optimal values [6]. 

3. RELATED WORK 

The goal of our research is to analyze the usefulness of the k-

means clustering algorithm for determining prominent colors, and 

to present our findings on k-means with sampling, an adjustment 

which improves the runtime of the bare k-means clustering 

algorithm for color analysis. There are several published 

enhancements to the general k-means clustering algorithm to 

improve runtimes using methods different than k-means with 

sampling and not specifically related to color analysis. Some 

methods discuss ways to choose better initial centroids (using 

refinement algorithms to replace random selection), since a poor 

choice of initial centroids can necessitate more iterations [7]. 

Methods of avoiding this include choosing centroids from 

strategic increments in a sorted list or mathematical projection of 

data points [8].  

The repeated k-means strategy applies k-means clustering 

multiple times from different initial centroids to increase the 

probability of a compact result. In our study, we use the repeated 

k-means strategy, with multiple attempts, where each attempt uses 

a new choice of random initial centroids. Other common ways to 

increase k-means efficiency include refining centroid assignment 

criteria [1] and storing data points in a kd-tree as the k-means 

clustering algorithm is executed [9]. These runtime-improving 

techniques are all applicable and may be used in addition to the 

methods we will discuss in our paper. However, we will not 

include those techniques in our upcoming analysis and instead we 

will focus on methods to improve program efficiency specific to 

the area of digital image analysis. 

A factor that may affect the usefulness of k-means clustering 

results for an image is the value of k. A k-value that is too low 

may not reveal the true dominant colors of an image, while a high 

k-value may result in redundant colors (as well as a long runtime). 

There are established methods that select an appropriate k-value 

and solve this problem [10], so we will not discuss the issue in 

detail in this paper. Additionally, there are methods to addresses 

another weakness of k-means clustering: it does not consider 

distinct shapes and objects in its determination of prominent 

colors. The spatial constrained k-means approach is proposed to 

correct this weakness by iteratively separating an image into 

object regions, while maintaining the generic and efficient 

properties of basic k-means clustering [11]. 

We chose the k-means clustering algorithm because it is a 

popular, fast, and simple technique. There are other image 

segmentation algorithms that are also commonly used. The 

nearest centroid or “Rocchio” method performs non-parametric 

classification that has centroid-point distance minimization goals 

similar to k-means clustering. There are also graph-based image 

segmentation techniques, which will analyze images as networks, 

linking adjacent pixels based on certain properties. Particle swarm 

optimization (PSO), which uses “swarms” of candidate solutions 

and a fitness function, has also demonstrated good performance 

and results when applied to image clustering [12]. Additionally, 

the partial least squares discriminant analysis (an extension of 

PLS regression) is a good choice for image analysis; however, it 

is a supervised learning method that requires some training data 

to calibrate appropriate probabilities [13]. The k-means clustering 

algorithm we utilize can certainly be used jointly with supervised 

learning algorithms for certain purposes, such as in the case of 

color correction based on a set of training images [14]. 

The method of k-means clustering with a selection of random 

data has been addressed, though not with our specific analyses in 

prominent color determination. Convergence performance has 

been analyzed for an optimized k-means program that uses 

random sampling and parallelization on general (non-image) data 

[15].  In our study, we specifically analyze k-means with sampling 

with small samples to determine color themes. 

4. K-MEANS WITH SAMPLING 

Since the runtime of k-means clustering is O(n·k·t·d), the 

runtime of an image clustering program can be decreased by 

decreasing n or k or t or d. For color analysis we have d = 3, the 

dimension of the RGB color value of a pixel. This cannot be 

changed. The extent to which it is practical to decrease k and t 

depends on the needs of the user. The user may want to determine 

few or many prominent colors in an image, and that influences 

what k value is chosen. In determining the appropriate t value, 

users should consider that increasing t typically yields centroid 

values closer to their final converged values. Additionally, if the 

user decides to implement a threshold value ε, lower values of ε 

correspond to centroids closer to their final converged values. 
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Lower stopping thresholds require smaller changes to centroid 

values between iterations before the algorithm can terminate. 

The expected runtime O(n·k·t·d) is proportional to n. In many 

data processing applications, it is standard to process all or most 

data points to expect accurate results. However, in this paper we 

will show this is not necessarily true for the problem of 

determining the most prominent colors of an image. Tens of 

thousands of pixels are not needed to identify the most prominent 

color clusters in an image. It is adequate to study a sample of 

pixels, especially if many of the pixels are the same color 

We investigated the consequences of applying k-means to a 

random sample of the pixels of an image. We reasonably expect 

hat a random selection of the pixels is a good representation of the 

entire image, but there is always the risk of an unlucky selection 

(one that includes mostly outlier colors or does not reflect the 

proportions of colors in the original image). Hence, using the 30 

images in Fig.1, we experimentally measured the disparity 

between the results of k-means clustering on a small random 

sample of the pixels versus the complete set of all pixels. These 

images in this data set were chosen from articles from popular 

online news sites appearing on April 19, 2021. We compared k-

means results with k = 4 and ε = 0.5 (thus computing the four most 

dominant colors of each image, and terminating k-means when 

each centroid position moved less than .5 between two 

consecutive iterations). 

 

Fig.1. 30 photos from various news sites: New York Times, 

CNN, MSNBC, NBC. Refs. [16] - [42] 

For this analysis, we implemented k-means clustering in 

Python, using the cv.kmeans() function on the cv2 Python module 

[43]. This module has an added parameter, attempts, which stores 

an integer representing the number of times the program will run 

k-means clustering with different random starting centroids. (The 

final centroids will be the ones from the attempt with the highest 

compactness.) Additionally, the cv.kmeans() function contains 

“extra” code outside k-means clustering where data is initially 

ingested and managed. We will ignore the runtime of these 

“extra” operations in our analysis.  

First, we experimentally confirmed the proportional 

relationship between runtime and input data size. In Fig.2, the 

vertical axis is the ratio of k-means with sampling runtime to 

normal k-means clustering, and the horizontal axis is the fraction 

of pixels used for k-means with sampling. Using the 30 images in 

Fig.1, we collected average runtimes for k-means clustering on 

samples of 15, 20, 25, ..., 50 percent of the original pixels, and 

compared these values to the runtime of k-means on the entire 

image. Data is displayed with various values for the number of 

maximum iterations (represented by different point sizes) and 

number of attempts (represented by different point colors). 

Fig.2. Runtime Ratio 

As expected, the runtime ratios are generally proportional to 

data size. K-means clustering on 10% of the original pixels takes 

approximately 10% of the runtime for k-means clustering on all 

original pixels; similar results follow for samples of 15, 20, 25, ..., 

50 percent of the original pixels.  

We also observe from Fig.2 that the lower ratios of each 

sample size are represented by larger green points. This implies 

that a low number of attempts and a high number of max iterations 

create the smallest ratios. This occurs because with fewer 

attempts, there are fewer results to process to choose the most 

compact one. A high number of maximum iterations broadens the 

runtime difference between processing small and large data sets 

because centroids for small data sets are likely to converge sooner. 

For example, in an image with only 100 pixels, the algorithm is 

more likely to choose four starting centroids at random whose 

values are close to the four final centroids, versus an image with 

10,000 pixels. 

 

Fig.3. Centroid Error 

With these insights into how data size, maximum iteration 

limit, and number of attempts affect the runtime of k-means 

clustering, we now quantify the error introduced by k-means with 

sampling.  To explain how the error is computed, suppose (for 
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illustrative purposes) that k=3, and we process a given image to 

obtain two sets, each containing three centroids: one set (call it set 

X) obtained by processing all the pixels, and one set (call it set Y) 

obtained by processing a random sample of the pixels. Suppose 

we pair the centroid X1 = (Rx1, Gx1, Bx1) in X with the centroid 

Y1 = (Ry1, Gy1, By1) in Y. We define the error err(X1, Y1) by 

err(X1, Y1) = [abs(Rx1-Ry1) + abs(Gx1-Gy1) + abs(Bx1-By1)] / 

3, where abs( ) is the absolute value function. Similarly, if 

centroid X2 in X is paired with centroid Y2 in Y we define the error 

err(X2, Y2) by err(X2, Y2) = [abs(Rx2-Ry2) + abs(Gx2- Gy2) + 

abs(Bx2-By2)] / 3, and we can similarly define the error err(X3, 

Y3) if centroid X3 in X is paired with centroid Y3 in Y. The total 

error err(X, Y) for this set of pairings between the three centroids 

in X and the three centroids in Y is err(X, Y) = err(X1, Y1) + 

err(X2, Y2) + err(X3, Y3). Since err(X, Y) depends on the pairings 

between centroids in X and centroids in Y, we find the set of 

pairings that minimizes this error, and this minimized error is 

taken to be the error introduced by k-means with random sampling 

for this image. The Fig.3 displays this error on the vertical axis 

(labelled “average centroid difference”). This Fig.shows that a 

low number of attempts and a low number of maximum iterations 

leads to the highest inaccuracies for the small samples. This is to 

be expected, since fewer attempts allow for fewer chances to 

achieve compact results, and fewer iterations of the algorithm 

reduces the opportunities to get centroids close to optimal 

centroids. 

 

Fig.4. Each entry in the “Difference of [x] for each RGB value” 

column has 3 color blocks. Each of these color blocks deviates 

from the original color RGB values by x. The first block shows 

each RGB value increased by x. The second block shows each 

RGB value decreased by x. The third block shows the R and B 

values increased by x, with the G value decreased by x. For 

example, the “Difference of 5 for each RGB value” column for 

the first color [235, 200, 32] will have color blocks of these 

RGB values: [240, 204, 37], [230, 195, 27], [240, 195, 37] 

Surprisingly, we observe low error even with few attempts and 

small samples. The maximum average error between any R, G, or 

B values is less than 14. In the RGB color space, this value is 

relatively low since the possible average error can range from 0 

to 255. The Fig.4 displays a color and its RGB values in the 

leftmost column. In the same row of Fig.4, we compare each 

smaller, individual block of color to the original. At a difference 

of 5 for each R, G, and B value, the visual disparity between an 

individual color block and the original is hardly discernible. At a 

difference of 10, the original color still looks very similar when 

compared to each individual color block. When each R, G, and B 

value deviates from the original by 20, the human eye can begin 

to detect obvious differences. Therefore, a maximal RGB error of 

at most 14 implies that the centroids from the sampled image are 

visually extremely close to the centroids from the original image. 

The permissible error depends on context. For the user’s 

project, how vital is it that the algorithm outputs the 

mathematically perfect centroid values for an image, considering 

that an error of 10 for each R, G, B value is visually trivial? If the 

user prioritizes program runtime, they can often expect visually 

accurate results even when using values as low as 5 attempts and 

20 maximum iterations on one-tenth of the original pixels. This 

implies that k-means clustering can achieve near-identical results 

when applied to a set of all pixels of an image and when applied 

to one-tenth of the original pixels. 

5. LIMITATIONS AND USEFULNESS IN 

DETERMINING PROMINENT COLORS 

The k-means clustering algorithm partitions the pixels of an 

image into k clusters with k centroids, but do those centroids 

represent the k most prominent colors of an image? Just how 

useful is k-means clustering is for determining the color theme of 

an image? We consider the results of the algorithm to be useful if 

the algorithm outputs the “correct” colors, but it can be argued 

that the color theme of an image is a subjective, qualitative trait. 

 

Fig.5. To examine this, we surveyed twenty people (11 women 

and 9 men, all 17 years or older). We asked them to consider 

four images (see Fig.5) and choose four colors that they thought 

were the most prominent in the image. We compared the 

participants’ responses to the results of our Python-implemented 

k-means clustering with k = 4 (with t = 25 and ε = 0.5). These 

results are represented in Fig.6. The first set of 4 columns 

reflects data for image 1, the next set of 4 columns reflects data 

for image 2, etc. The four resulting centroids determined by k-

means clustering (topmost blocks of colors) are separated from 

participant choices by a red line. Each row represents the 

participant’s 16 choices (4 choices per each of the 4 images) 
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Fig.6. For images 1, 2, and 4, we visually observe that many 

participant’s color choices have some acceptable correlation that 

supports the usefulness of k-means clustering for determining an 

image’s dominant color theme. For example, for image 2, both 

the algorithm and most participants agreed that the color theme 

should consist of blue-purple and various shades of brown. 

Similar claims can be made for images 1 and 4 

However, for image 3, the k-means clustering algorithm 

chooses 4 colors that resemble a monochromatic brown theme. 

Yet the majority of the surveyed people chose a bright red or 

orange hue that is not represented in the k-means result. One could 

argue that for this image, the k-means clustering result for the four 

most prominent colors is not a useful result; the k-means 

clustering result does not accurately represent what a human 

perceives to be the important colors of this image. From this 

observation, it is prudent to discuss the limitations of the k-means 

algorithm. Why might it fail to produce a result that significantly 

corresponds to human opinion? 

One reason may be that the k-means algorithm does not make 

any association between object recognition and identifying color, 

the way a human might. The algorithm also considers background 

colors to be equally as important as foreground colors. The k-

means algorithm is not tailored for the purpose of image analysis, 

but generally for partitioning data into clusters. It operates without 

regard for the order or positioning of the original data points. 

This can make a difference in image analysis because the 

positioning of the pixels in an image is important to human color 

perception. The Fig.7 is image 3 from the survey. The Fig.8 is 

image 3 with all pixels randomly re-arranged. The Fig.9 is also 

composed of all the pixels from image 3 re-arranged, but this time 

arranged into a position that supports the algorithm’s result. If a 

human were asked to identify the prominent color theme of those 

three images, they might have three very different responses. 

However, these images each contain the exact same data set of 

colors. Thus, the k-means clustering algorithm would output the 

exact same color themes for all three images (if the same 4 initial 

centroids are used for each image). 

 

Fig.7. Image from Survey 

 

Fig.8. Randomly rearranged pixel 

 

Fig.9. Rearranged Pixel 

There are ways to incorporate object detection into the k-

means clustering algorithm’s criteria for determining prominent 

colors. There are established studies in artificial intelligence and 

supervised learning related this purpose [44]. However, there is a 

cost in runtime and complexity. The k-means algorithm is a very 

valuable image processing tool because of its simplicity and linear 

runtime. Adding object recognition criteria may be costly and 

especially complex if your data set lacks defined and recognizable 

features. 

Another limitation of k-means clustering is that results can 

vary in usefulness depending on the value of k. For some images, 

the colors that a human perceives to be important may not appear 

in the k-means clustering results if k has a low value. For example, 

we noticed that a red color was consistently chosen by survey 

participants responding to image 3, yet the algorithm did not 

output a similar color. However, when executing k-means 

clustering with k = 6 instead of k = 4 on the same image, a bright 

red hue was included in the final centroids. The algorithm was 

only able to isolate this color with a higher k value. Furthermore, 

it can be difficult to determine what k value is too low for an 

image. We found that k-means clustering can produce excellent 

results with k = 1 for an image whose most prominent color 

dominates over half of the pixels, but we have also observed 

instances that indicate the need for k values greater than 10. In 

addition, it is possible that the k-means clustering algorithm may 

output outlier colors as dominant, especially if an outlier color is 

selected as an initial centroid. Users may need to account for this 

by implementing the repeated k-means strategy to choose the most 

compact result, or by implementing a refinement algorithm to 

discard centroids with small clusters. 

Even though k-means clustering has its limitations, it is still 

highly applicable and relevant for quickly determining prominent 

colors in large diverse data sets. 

6. CONCLUSION 

The k-means clustering algorithm is an efficient tool for 

determining color themes of large, diverse sets of images. The 
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simplicity of k-means clustering as an unsupervised learning 

algorithm makes it applicable to many types of images. The 

runtime of k-means clustering is proportional to the number of 

pixels being processed, the maximal number of iterations, and the 

value of k. 

The k-means clustering algorithm minimizes the distance 

between centroid values and the data points in their respective 

clusters, and the produced centroid colors are highly successful in 

accurately representing an image’s most prominent colors. For 

most images, k-means clustering results can be expected to have 

a strong correlation to survey participant responses. For the 

minority of images where k-means clustering results do not 

strongly correlate to human opinion, users can address these 

issues depending on the use case. For example, to prevent the 

program from choosing outlier colors, users can implement code 

that checks the sizes of clusters and rejects centroids from very 

small clusters. If algorithm simplicity is not a priority, k-means 

clustering can be supplemented by object recognition technology 

to achieve more “human” results. 

This study’s primary finding is that the application of k-means 

clustering for determining prominent colors can be further 

optimized (with visually indistinguishable error) by using k-

means with sampling. Our research shows that for images with 

high resolutions (containing 5000 pixels or more), k-means with 

sampling with as little as 10% of the pixels will yield results 

nearly identical to applying k-means clustering to all pixels. In 

this scenario, k-means with sampling will execute in 10% of the 

runtime, which has promising implications for optimizing 

industry applications. 

K-means with sampling is a valuable tool for the many 

services that analyze large and diverse data sets for color 

representation. K-means with sampling is a simple, fast, and 

customizable to users’ runtime and convergence requirements. 

The ability to identify near-optimal centroids in images, and only 

process a small fraction of pixels, significantly increases 

efficiency in image processing applications. K-means with 

sampling to determine prominent colors in images has 

applications across all systems and projects that rely on image 

analysis. Our findings in runtime improvement and limitation 

analysis may be useful in the industries of entertainment and art, 

as well as in science and security. 
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