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Abstract 

This study introduces an enhanced feature selection method that is 

efficient in differentiating the malignant tumor patients from the 

benign patients by using K-Means clustering method combined with 

enhanced harmony search algorithm. The start of malignant tumor is 

caused by gene mutation process, it is very vital to identify and classify 

the presence or absence of the malignant tumor through analyzing the 

gene information. The planned methodology composed of four steps. 

The first step is to preprocess the original data by using min-max 

normalization. In the next step, generalized fisher score is used to find 

and eliminate the redundant data to confine the significant candidate 

genes. Selection of representative gene from each cluster is done by the 

K-Means clustering technique in the next phase. In the final phase the 

vital features for classification are selected by enhanced harmony 

search algorithm. The selected gene combination through this method 

for feature selection is then applied to the classification model and 

verified by means of 5-fold cross validation method. The projected 

model obtained a classification accuracy of up to 96.67%. Additionally, 

on comparing the projected method with other methods, the projected 

method performs well in classifying malignant tumor. This new method 

performs well in classification of brain tumors to malignant or benign. 

The projected model cannot be restricted only with the classification of 

brain tumors, but can also be used for other gene-related diseases 

effectively. 

 

Keywords:  

Min-Max Normalization, K-Means Clustering, Enhanced Harmony 

Search, Gene expression, Feature selection, Classification 

1. INTRODUCTION 

Glioma begins from glial cells and neuronal precursors, and 

constitutes 80% of all malignant primary brain and CNS (Central 

Nervous System tumors). Glioblastoma represent about 15% of 

all major brain tumors [1]. They are malignant Grade IV tumors, 

where a large segment of tumor cells is reproducing and 

separating at any given time. The tumor is principally made up of 

abnormal astrocytic cells, but also holds a mix of different cell 

types (including blood vessels) and areas of dead cells (necrosis). 

Glioblastoma are commonly originated in the cerebral 

hemispheres of the brain, but can be found anyplace in the brain. 

Glioblastoma are a little more common in men than in women. In 

general, these tumors tend to be slower in increasing initially, but 

can progressively develop into aggressive. IDH (isocitrate 

dehydrognase) mutant glioblastoma account for approximately 

10% of all glioblastoma. Glioblastoma are usually diagnosed as 

either IDH-wildtype or IDH-mutant [21]. IDH-wildtype 

glioblastoma is more common, tend to be more aggressive, and 

have poorer prognosis than IDH-mutant glioblastoma.  It is 

exceedingly rare for glioblastoma [2] to extend outside of the 

brain. 

Numerous studies have focused on the genetics of this tumor 

to further dissect the underlying mechanisms and to contribute to 

a better prognosis. Over the last decade several genetic lesions 

including TP53 and PTEN mutations [3] have been identified in 

glioblastoma tissue. There is strong epidemiologic evidence of 

family clustering of this tumor. Familial gliomas occur in 

approximately 5% of all glioma cases, the majority of which is 

associated with neoplastic syndromes like the Li-Fraumeni 

syndrome [4] and neurofibromatosis type 1. The genetic mutation 

happens in the normal cells lead to tumor. A gene is the basic 

physical and functional unit of heredity. Genes are made up of 

DNA. DNA, short for deoxyribonucleic acid, is the molecule that 

contains the genetic code of organisms [5]. DNA is in each cell in 

the organism and tells cells what proteins to make. Gene 

expression refers to the process of producing a protein, the final 

product of DNA. Genetic information is transcribed into mRNA 

and translated by the amino acid sequence of the protein [6]. 

Translated genetic information catalyzes biological reactions or 

forms of specific structures and is expressed in cells and 

individuals. During this process, when a gene becomes abnormal, 

it creates the wrong protein and mutations take place. 

Glioblastoma due to genetic reasons is caused when one such 

process occurs. Mutant genes [7] that cause disease can be 

identified through special genetic [8] tests. These state-of-the-art 

tests enable early diagnosis, treatment, and active prevention, but 

they are expensive and suffer from the disadvantage that the 

patient has to wait for approximately a month for the test results. 

In addition, it is not easy to identify the mutant gene using these 

tests as [9] the probability of having a gene that causes 

Glioblastoma is 3–5%, [10] considering the total number of genes 

that make up the human body. It is difficult to choose a small 

number of genes compared to the high cost of genetic testing and 

the total number of genes. 

In this proposed method the aforementioned difficulties can 

be overcome with the help of diagnosing genetic Glioblastoma. 

This study proposes the following feature selection method. First, 

candidate genes are selected for distribution between normal and 

abnormal classes using the generalized fisher score. Based on the 

data selected as a subset, K-means clustering is performed and 

representative genes for each cluster are found. Subsequently, 

using the harmony search (HS) algorithm, representative genes 

are searched for the optimal combination, which leads to high 

classification accuracy by using only a few genes. 

2. RELATED WORK 

The prediction of genetic diseases can be identified by the 

DNA information [11]. The complexity of diagnosis increased, 

because of the huge quantity of data or genetic mutations. In 

recent studies, with the progress made in the field of artificial 

intelligence, research of predicting diseases by means of 

biological data [12] has been dynamically conducted.  
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This TCGA dataset contains summing up of data 

visualizations and clinical data from a broad sampling of 592 

glioblastoma multiformes. The data was gathered as part of the 

PanCancer Atlas initiative, which aims to reply big, overarching 

questions in relation to cancer by examining the full set of tumors 

characterized in the robust TCGA dataset. The clinical data 

includes mutation count, in order about mutated genes, patient 

demographics, disease status, tumor typing, and chromosomal 

gain or loss. The data set also includes copy-number segment data 

downloadable as .seg files and viewable via the Integrative 

Genomics Viewer.  

In the above study, data were analyzed by means of random 

ensembles, and a support vector machine was used as a classifier 

to calculate MRI brain tumor type based on cancer gene 

information [13]. TCGA portal for cancer genomics is used to 

present the cancer data. R/MATLAB is obtainable with this tool 

for processing the gene information. The ability to supervise the 

evolution of the glioma genome through a minimally insidious 

technique [1] could move forward the clinical improvement and 

use of genotype-directed therapies for glioma, one of the most 

antagonistic human cancers.  

There is also a study on feature selection using K-means 

clustering, wherein classification presentation was compared 

using known methods, such as mRMR, SVM-RFE, HSIC-

LASSO, Clustering + mRNR, Clustering + SVM-RFE, and 

Clustering + HSICLASSO. 

3. MATERIALS AND METHODS 

The TCGA-cBioPortal for Cancer genomics provides 

researchers and physicians an insight of large-scale genomics data 

sets [2], helping out these persons to create and select better 

treatments for the patients. Glioma (MSKCC, Clin Cancer Res 

2019) data set has been taken for processing in this study. 924 

patient details are available in this dataset with 1004 samples. The 

number of samples per patient and mutation count is taken 

differently for patients. The sample types are of primary and 

recurrence type. 

Totally 2000 GBM gene types are taken from 58 people for 

the purpose of classification from the data set TCGA-cBioPortal. 

The data used in this experiment are of types: DNA copy-number 

alterations, mRNA and microRNA expression, DNA 

Methylation, protein abundance and phospoprotein abundance 

[22]. The Fig.1 shows the steps proposed in this study. The 

parameters used in this study and their threshold values taken for 

this experiment is described in the process step by step. 

3.1 MIN-MAX NORMALIZATION 

Normalization is the course of action of scaling the attribute 

into a smaller particular range [14]. The range of the attribute may 

be defined in the range of -1.0 to 1.0 or 0.0 to 1.0. This procedure 

is particularly useful for classification algorithms relating neural 

networks, or distance measurements such as clustering and 

adjacent neighbor classification. Normalizing the input values for 

each attribute calculated in the training samples will help pace up 

the learning phase. The common techniques used for 

normalization is Min-Max normalization, Z-Score normalization 

and Decimal scaling. 

 

Fig.1. Schematic diagram of Proposed Method 

Min-Max normalization performs a linear alteration on the 

original data. MinA and MaxA are the minimum and maximum 

values of an attribute A [15]. Min-Max normalization maps a 

value of A to v in the range by computing new_MinA, new_MaxA. 

The threshold value for the Min-Max range is fixed as [0, 1] 

( )_ _ _
V MinA

V new MaxA new MinA new MinA
MaxA MinA

−
 = − +

−
(1) 

Table.1. Min-Max Normalized values of 10 patients with respect 

to Attribute-1 

Patient 

Number 

Value of 

Attribute-1 

Min-Max 

Normalized Value 

1 3735.7501 −1.031397365 

2 3332.3087 −1.223890725 

3 6356.4587 −0.248737577 

4 2410.3552 −1.45667784 

5 4763.2275 −0.763844707 

6 4872.1662 −0.660730665 

58 9712.3725 0.67785507 

59 7730.625 −0.092196709 

61 6434.6225 −0.252561151 

62 7572.01 0.147503275 

The normalization is completed by substituting the innovative 

genetic information value into Table.1. The Table.1 shows the 
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values used with Min-Max normalization of Attribute-1 of each 

genetic information values for every patient [16]. The count of 

patients included in the actual experiment was 58, but Table.1 

only shows, as an example, the value of Attribute 1 for 10 

different patients taken from the dataset. The average of Attribute 

1 gene information of 58 was 0.34567. The average of Attribute 

1 is subtracted from the patient’s genetic information (MinA of 

Attribute-1) value and divided by the difference of Maximum 

value of Attribute A and minimum value of Attribute A of the 

gene information [17]. As a result of this, a normalized number is 

obtained using the threshold value using within the specified 

threshold range of [0,1], as listed in the Table.1, which applies to 

all data. 

3.2 GENERALIZED FISHER SCORE 

A generalized Fisher score for feature selection. Rather than 

selecting each feature alone the proposed method selects a subset 

of features at the same time. It aims to locate a subset of features, 

which maximize the lower bound of conventional Fisher score 

[18]. It is able to consider the blend of features, and eliminate the 

unnecessary features. The resulting feature selection problem is a 

mixed integer programming, 

This is further reformulated as a quadratically controlled linear 

programming (QCLP). It can be solved by cutting plane 

algorithm, in each iteration of which a various kernel learning 

problem [19] is solved by multivariate ridge regression and 

projected gradient descent alternatively.  

F(W,p)=tr{(WTdiag(p)Sbdiag(p)W)(WTdiag(p)(St+I)diag(p)W)-1}, 

 Subject to: p{0;1}d; pT
1=m: where WRd×c (2) 

3.3 K-MEANS CLUSTERING 

The k-means algorithm takes the input parameter k, and 

partitions a set of n objects into k clusters. So, the resulting intra-

cluster similarity is high but the inter-cluster similarity is low [28]. 

Cluster similarity is measured in regard to the mean value of the 

objects in a cluster. This can be viewed as the cluster’s center of 

gravity. 

Procedure of K-Means algorithm 

Step 1: It randomly selects k of the objects, each of which 

initially represents a cluster mean or center. 

Step 2: For each of remaining objects, an object is assigned to 

the cluster to which it is the most alike. 

Step 3: Based on the distance connecting the object and the 

cluster mean, it then computes the new mean in favor of 

each cluster. 

Step 4: This process iterates continually until Principle Function 

converges. The squared error criterion is defined as: 

 
2

1 i

k

i

i p C

E p m
= 

= −  (3) 

where, E is the summation of squared errors for all the objects in 

the database. p is the position in space representing a given object 

and mi is the mean of cluster Ci. The criterion tries to make the 

resulting k clusters as dense and as separate as possible. This 

method is relatively scalable and capable in processing bigger 

data sets [23]. The computational complication of the algorithm 

is O(nkt), where n is the total quantity of objects, k is the number 

of clusters and t is the number of iterations. 

In this study, the overall number of clusters was set to 20. The 

cluster consists of samples divided for the classification of MRI 

brain image [24]. Using all 1000 genes for feature selection, 20 

representative genes were selected to account for variety. In each 

cluster, the gene whose information data were closest to the 

median value was chosen as the representative gene of the cluster 

[25]. The distance between the data and the median is calculated 

using the cosine distance. The cosine distance between the data 

points u and v can be calculated by the Eq.(4). The weights for 

each value is u and v. The computation of the cosine distance 

using a scipy, spatial and distance library. 

 

2 2

1
u v

W
u v


= −   (4) 

3.4 ENHANCED HARMONIC SEARCH 

Step 1: Parameters and Memory initialization of Harmony 

Memory 

The first step in this harmony search is to initialize the 

variables and the harmony values to employ the harmony 

memory. The factor used in this algorithm has to be known for 

better understanding.  As the working principle of HS algorithm 

[30] is analogous to an evolutionary algorithm, it can be compared 

well with a genetic algorithm. The genes are the fundamental 

elements of the chromosome in the genetic algorithm, is alike as 

the tones used in musical instruments. The tones are the basic 

element that constitutes the harmony vector array [31]. The 

Harmony memory size refers to the total number of harmonies in 

one harmony memory.  They are randomly initialized in the 

preliminary stages of HS method implementation, and in the 

consecutive iterations the preceding harmony values are used for 

the follow up progression.  

Random vectors (V1, V2,…,VHMS) are generated, as many as 

Harmony memory size and assigned to the Harmony Matrix as 

below: 

 HM-Matrix =

1 1 1 1

1 2

2 2 2 2

1 2

1 2

n x

n x

hms hms hms hms

n x

v v v f

v v v f

v v v f

 
 
 
 
 

 (5) 

Step 2: Creation of a new harmony 

In this phase, ratio for grouping can be in tune and a new 

harmony can be created with wider variety of combinations. A set 

of harmonies created as many as HMS [32] is created in one 

harmony memory. From each memory harmony a distinctive 

harmony vector is randomly selected within the same location. 

The selected harmony vector becomes a novel harmony vector at 

the corresponding position in the harmony memory. Latest values 

at a location subsequent to each variable in the harmony are 

grouped together to create a new harmony. 1-HMCR is the 

probability of randomly initializing a harmony vector when 

creating the first harmony, in the succeeding stages a harmony is 

created and added to the harmony memory. The variant to the 

harmony vector is motivated by tuning [34] the pitch adjusting 

rate (PAR). PAR is used to achieve a various set of combinations. 

• Generate new harmonies v then for every element of v: 
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• With the probability value of HMCR (Harmony Memory 

Considering Rate: 0≤HMCR≤1) 

• Select a value from the HM such that  

 
Ivvi

(int(rand[0.1]XHMS)+1) (6) 

• With the probability value of (1-HMCR), perform the 

uniform exploration between lower and upper bounds [35]. 

Step 3: Update Harmony Memory  

In this phase, the newly occupied harmony vector is evaluated. 

The implication of the harmony is tested based on the threshold 

value of the harmony. If the new harmony generated in Step 2 is 

better, than the worst fit present in the harmony memory is 

eliminated, the new one vector is integrated in the harmony 

memory.  

The HMCR and PAR variables can be updated [36] with the 

position update value and genetic mutation respectively. This will 

put off the algorithm from getting trapped in the local optimum. 

Here, VBestj and Vworstj are the best and worst Vi in HM, 

respectively, based on the objective function f(x); vU and vL are 

the upper and lower bounds of the objective function, 

respectively; and rand .0 ≈1 is a random value between 0 and 1. 

Another modification on the original HS [37] is when the worst 

value is updated with the new Vj even if the new value is not better 

than the worst one.  

Step 4: Repeating Step 2 and Step 3 

Steps 2 and 3 are repeated as many times as the particular 

iteration. With each iteration, [38] the harmony with the lowest 

fitness is detached, and thus, a range of combinations are 

generated with the harmony of high fitness. 

However, a new method of feature selection by modifying the 

existing HS.  The related pseudocode is shown in Algorithm 1: 

Algorithm 1 

Step 1: Initialize the Parameters PAR, BDR, HMS and HMCR. 

Step 2: Set i=0 [ initialization of iterative variable] 

Step 3: Assign Boolean values 0 and 1 for Initial Harmony 

Step 4: BDR=HMS*0.1// Assignment of upper and lower bound 

area 

Step 5: Do  

Step 6: Generate the initial harmony; i++ 

Step 7: While (i≤HMS) 

Step 8: While(j=1:N) //upper area harmony search 

Step 9: vnew = Random Selection in the range v1j to v(BDR)j 

Step 10: Generation of a new harmony (vnew)  

Step 11: If(Random(0,1)<HMCR) then   //Lower area harmony 

search 

Step 12: For (j=1:N) then vnew =  Randomly select in the range of 

v(BDR)1j  to v(HMS)j 

Step 13: If (Random(0,1)< PAR) then {|vnew= vnew-1|} 

Step 14: End if;  

Step 15: End For 

Step 16: Generate new harmony (vnew) 

Step 17: Else 

Step 18: Generate a harmony in Random manner 

Step 19: End if 

Step 20: For j = 1 to Each Dimension D // Memory updating by 

elimination of local optimum  

Step 21: 2 Best Worst

R j jv v v= −  

Step 22: If(vR>vu) 

Step 23: vR=vu   

Step 24: else if (vR<vl)s 

Step 25: vR=v1 

Step 26: End if 

Step 27: ( )0 1 *Worst Worst

j j R jv v rand v v = +  −  

Step 28: If (rand (0≈1)≤PMR)   

Step 29: 
jv  = vl+rand(0≈1)*(vu-vl)  

Step 30: End if 

Step 31: Update the memory 

Step 32: Update i = i+1 

Step 33: Until (i≤max_iteration) 

Step 34: Derive the Best Harmony. 

Algorithm 2 

Step 1: Initializing Variable and Harmony 

Primarily the harmony vector is initialized with the values 0 

and 1, to create a combination of 20 representative genes. Value 

0 in the representative gene information indicates, it is not used as 

a feature for classification principle [39]. Value 1 in the gene 

information represents that it is used as a feature for classification 

task. The parameter value for HMCR is assigned as 0.9 and PAR 

is assigned as 0.1, and the number of iterations (i=300). HMS 

parameter value is set to 30. 

Step 2: Formation of New Harmony memory and division of 

harmony memory 

This step is a superior part of the existing HS for this work 

[28]. The creation of New Harmony memory follows the identical 

steps as in the existing HS algorithm. The research was conducted 

by separating the harmony memory into two distinct areas, as 

shown in Fig.2. 

 

Fig.2. Harmony Memory Partition 

The upper most area holds the harmonies having the fitness of 

the top 20% within one harmony memory area. The parameters 

HMCR and PAR are not taken into considerations in this step [24] 

The combination of higher fit can be found, when the combination 

is recombined within harmony of the upper most area. The 

following process is the formation of new harmonies. In the lower 
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area, new harmonies are created by the use of existing HS 

algorithm, which is by using HMCR and PAR parameters [20].  

Step 3: Updating Harmony Memory 

The fit is calculated based on each harmony value and is 

arranged in the order of harmony with the higher-level fitness. 

Two old harmonies with the lowest fitness value are assigned as 

per the Fig.3 and removed to match the size of the HMS that was 

initially specified [19].  

The local optima search is not applied in this approach. By 

successive re-assignment of fitting the best and worst harmony in 

the process the local optima search is not used and avoids the 

search space significantly in the HMS. The generated worst 

harmonies are then eliminated from the Memory [23]. 

 

Fig.3. Poor Harmony Elimination 

Step 4: Repeating Step 2 and Step 3 

Based on the number of iterations assumed the step 2 and step 

3 are repeated continuously. The upper memory region holds the 

harmonies with a higher degree of fitness inside the combination 

and with higher appropriateness [14]. The lower region takes the 

advantages of the exiting HS with the combinations according to 

the variety. As the count of iterations increases, the accuracy of 

classification task is advanced by storing two areas within one 

harmony as a text file. Classification accuracy changes as the 

iteration progress increases [13]. 

 

Fig.4. Architecture Diagram of ANN  

4. CLASSIFICATION AND VALIDATION 

PROCESS 

In this study, an artificial neural network has been used as a 

classifier [35]. It is a network that abstracts the working principle 

of human brain. The Fig.4 shows the architecture of the ANN used 

in this study. 5 nodes are assumed for input and hidden layers. The 

output layer consists of a single node, and the activation function 

taken here is sigmoid function.  

A 5-Fold cross validation technique is functional for the 

experimental verification process [37]. The reliability of the data 

verification can be enhanced by using all the data as a test set at 

least once. 

The Fig.5 shows the method of training and testing data by 

means of 5-fold cross validation. The significant feature selected 

through the enhanced harmony search algorithm is verified 

through this 5-Fold cross validation approach [8]. 

 

Fig.5. 5-Fold Cross Validation Technique 

4.1 RESULTS 

In this study, a total of 2000 genes are chosen through the 

generalized fisher score out of which 1000 candidate genes are 

[32] selected and 20 clusters are bent by using the K-Means 

clustering technique. The Scikit environment decides the best 

possible number of clusters using the inertia value. The inertial 

value vary depends upon the number clusters used in this study. 

For lower inertia value the distance between the cluster and the 

centroid is closer [34]. Assigning minimal inertia value, creates a 

higher degree of aggregation of the data in the cluster to be 

evaluated. But too many clusters formation will increase the 

classification error rate. 

 

Fig.6. Inertia Value with respect to Number of clusters 

There were 104 genes were common between Lower Grade 

Glioma (LGG) and Glioblastoma (GBM). Patient survival rate is 

based on sequencing the gene data obtained from The Cancer 

Genome Atlas, which contains the gene expression for analysis 

[35]. The table represents a gene value according to a patient’s 

attribute, and each column is used to represents a patient’s gene 

information value for each attribute. The enhanced harmony 

search method selects 10 genes from 20 representative clusters.  
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Table.2. Representative genes used in Enhanced Harmony Search 

 352 455 742 720 1635 992 936 1897 1515 318 1244 1170 1177 737 640 482 109 980 43 33 AA 

1 -0.199 0.527 0.102 -0.068 -0.668 -0.030 -0.549 -0.663 0.137 -0.053 -0.364 -0.653 -0.522 -0.310 -0.218 -0.884 -0.842 0.479 -0.223 -0.263 0 

2 -0.767 0.440 0.576 0.372 0.997 0.424 -0.251 0.449 -0.020 -0.643 1.883 -0.334 -0.115 1.279 0.380 -0.443 0.110 0.758 -0.726 0.006 1 

3 3.057 -0.116 1.235 -0.524 -0.814 -0.992 -0.766 -0.811 -1.272 -1.290 0.724 -1.191 -0.532 -0.825 -0.881 -1.125 -1.164 0.258 -1.318 -1.088 0 

4 1.270 -0.090 0.874 -0.238 -0.594 -0.813 -0.718 -0.590 -0.522 -0.931 -0.334 -0.989 -0.699 0.133 -0.422 -0.876 -1.129 0.364 -1.031 -0.791 1 

5 -0.065 -0.332 -0.681 -0.845 -0.651 -0.980 -0.561 -0.422 -1.170 -0.622 -0.362 -0.525 -0.347 -1.021 -0.384 -0.381 -0.358 0.352 0.190 -0.638 0 

6 -0.261 -0.496 -1.119 -1.252 -0.259 -1.014 -0.766 0.075 -1.268 -0.647 -0.759 -0.989 -0.512 -0.799 -0.914 -0.716 -1.186 -0.036 -0.935 -0.624 1 

7 -0.673 0.989 -0.134 -0.029 -0.747 -0.307 -0.373 -0.669 -0.886 -0.681 -0.862 -0.898 -0.354 -1.038 -0.270 -0.553 -0.534 -0.019 -0.558 -0.732 0 

8 -0.631 -0.136 -0.842 -0.478 -0.382 -0.712 -0.313 -0.681 -1.254 -0.377 -0.301 -1.015 -0.187 -0.365 -0.625 -0.468 -1.059 1.036 -1.044 -0.364 1 

9 -1.048 2.248 1.639 0.170 -0.871 0.558 0.897 -0.558 1.476 0.814 -0.582 -0.899 -0.246 -0.336 0.910 0.984 -1.053 0.220 1.712 -1.674 0 

10 -0.255 0.390 -0.129 -0.483 0.596 -0.704 -0.531 0.529 -1.063 -0.563 -0.381 0.111 0.994 -0.513 -0.103 -0.270 0.537 0.222 -0.510 0.417 1 

11 0.464 3.183 -0.375 2.554 0.339 3.096 0.829 -0.247 -0.784 1.061 -0.122 3.411 3.189 -0.824 5.506 2.061 3.051 1.605 1.604 -0.081 0 

12 1.064 0.815 0.813 0.794 0.404 0.729 -0.334 0.697 0.276 0.003 1.397 -0.276 0.250 1.467 0.566 -0.318 0.103 0.047 0.012 -0.368 1 

13 -0.360 -0.378 -0.528 -0.017 -0.219 -0.688 0.004 -0.377 -0.995 -0.221 -0.542 -0.218 -0.524 -0.737 -0.543 -0.401 0.213 0.352 -0.085 -0.248 0 

14 0.673 -0.634 -0.589 -0.766 -0.050 -0.900 -0.528 -0.162 -0.768 -0.472 -0.540 -0.873 -0.892 -0.567 -0.712 -0.739 -0.446 0.025 -0.467 -0.542 1 

15 0.150 -0.489 -0.064 -0.639 -0.418 -0.699 -0.148 -0.474 -0.391 0.307 -0.194 -0.453 -0.246 -0.210 -0.613 -0.181 -0.337 2.824 0.460 0.323 0 

16 0.168 -0.764 -0.611 -1.221 -0.585 -1.129 -0.276 -0.830 -0.889 0.106 -0.873 -0.873 -0.895 -1.060 -0.915 -0.324 -0.033 0.417 0.007 -1.128 1 

17 -0.572 -0.846 -1.270 -0.383 -0.892 -0.384 -0.561 -0.644 -1.223 -0.716 -0.865 -0.988 -1.132 -0.855 -0.458 -0.612 -0.995 -1.021 0.600 -0.973 0 

18 -0.966 -0.674 -1.212 -0.783 -0.089 -0.472 -0.844 -0.552 -1.284 -1.144 -0.981 -1.070 -1.219 -0.961 -0.443 -0.849 -1.189 -0.363 -1.026 -0.651 1 

19 -1.044 -0.209 -0.612 -0.275 -0.954 -0.638 -0.248 -0.690 -0.737 -0.134 -0.743 -0.727 -0.908 -0.885 -0.045 -0.159 -1.249 -0.340 0.238 -0.913 0 

20 -0.253 0.153 -1.222 -0.872 0.436 -0.949 -0.573 0.030 -1.306 -0.552 -0.798 -0.637 -0.138 -0.991 -0.675 -0.600 -0.920 -0.048 -0.388 -0.181 1 

21 -0.922 1.024 0.186 0.133 -0.526 0.615 -0.050 -0.654 0.186 -1.465 -0.747 0.142 0.122 -0.245 -0.048 -0.266 -0.191 0.711 -0.282 0.592 0 

22 1.192 0.542 0.628 0.228 1.424 0.257 -0.649 0.190 0.123 -0.481 0.245 0.254 0.437 0.526 0.011 -0.802 0.481 1.496 -0.791 1.930 1 

23 -1.000 -1.296 -1.332 -0.997 -0.799 -1.045 -0.171 -0.697 -1.193 0.008 -0.921 -0.810 -0.779 -1.037 -0.530 0.194 -0.151 0.260 0.255 -0.684 0 

24 -1.125 -1.320 -1.518 -1.587 -0.600 -1.217 -1.035 -0.802 -1.393 -1.385 -1.047 -1.192 -1.257 -1.050 -0.962 -1.055 -1.268 -1.024 -1.420 -1.253 1 

25 2.153 -0.380 0.413 0.058 -0.611 -0.269 -0.015 -0.523 0.559 0.724 -0.772 -0.262 0.089 -0.560 -0.330 0.533 0.394 -0.840 1.521 -0.046 0 

26 -0.815 -0.333 -0.528 -0.208 -0.780 -0.686 -0.797 -0.694 0.017 -0.812 -0.733 0.052 -0.175 -0.894 -0.522 -0.670 0.571 -1.262 -0.881 -0.901 0 

27 -0.774 -0.602 -0.611 -0.538 -0.454 -0.242 -0.747 -0.582 0.024 -0.715 -0.688 -0.091 -0.197 -0.772 -0.584 -0.693 0.130 -1.323 -0.749 -0.874 0 

28 -0.911 0.517 1.098 0.555 -0.697 0.265 0.232 -0.552 2.166 1.076 -0.039 0.318 0.772 0.431 0.481 0.589 1.361 -0.521 0.926 -0.210 0 

29 -0.572 2.755 3.127 1.969 -0.009 1.186 -0.048 -0.189 2.991 0.420 0.357 2.058 3.010 -0.147 1.005 -0.139 2.787 -0.616 -0.109 0.457 0 

30 -0.916 1.660 1.195 2.319 -0.494 1.794 0.405 -0.311 1.471 0.468 -0.325 1.044 1.833 0.132 0.950 0.386 2.165 -0.355 0.609 -0.090 0 

31 -1.117 0.883 1.863 0.298 -0.360 0.268 0.357 0.390 2.500 0.958 4.194 0.275 1.211 1.057 -0.093 0.249 0.481 -0.820 0.326 0.544 0 

32 -0.983 -0.196 -1.357 -0.414 0.415 0.580 -0.527 0.111 -0.944 -0.746 -0.481 0.141 -0.281 -1.009 -0.201 -0.281 -0.381 -1.155 -0.517 -0.871 0 

33 -0.496 -0.013 -1.179 -0.239 -0.538 -0.336 -0.380 -0.608 -0.944 -0.118 -1.015 -0.304 -0.089 -1.076 -0.438 0.361 -0.355 -1.286 0.454 -0.465 0 

34 0.984 0.135 0.854 0.138 -0.442 0.036 0.705 -0.201 0.881 1.006 0.334 -0.173 0.436 0.347 -0.190 0.142 0.371 -0.490 0.348 -0.397 0 

35 -0.483 -0.339 -0.622 -0.129 -0.679 0.183 -0.300 -0.567 -0.140 -0.404 -0.225 -0.325 -0.600 -0.852 -0.294 -0.336 -1.043 -1.059 -0.886 -0.801 0 

36 -0.728 -0.870 -1.087 -0.855 -0.817 0.097 0.564 -0.548 -0.118 0.341 -0.681 -0.228 -0.814 -0.896 -0.607 0.606 -0.419 -0.850 0.591 -1.144 0 

The selected genes are as follows: CTSZ (cathepsin Z), 

EFEMP2 (EGF-containing fibulin-like extracellular matrix 

protein2), ITGA5 (integrin alpha-5), KDELR2 (KDEL 

Endoplasmic Reticulum Protein Retention Receptor 2), MDK 

(midkine), MICALL2 (Junctional Rab-13 functional protein), 

MAP 2 K3 (Mitogen-Activated Protein Kinase Kinase-3), 

PLAUR (Plasminogen Activator, Urokinase Receptor) 

SERPINE1 (endothelial plasminogen activator inhibitor), and 

SOCS3 (Suppressor of cytokine signaling-3). The classification 

accuracy [41] using the ANN architecture provides 96.67 %. Each 

attribute is significantly related to GBM type tumor, and the 

evidence for this is supported by research studies. 

5. COMPARITIVE ANALYSIS 

Numerous researchers have experimented with a set of 

classification algorithms using the GBM tumor data provided by 

the Cancer Genome Atlas. The classification accuracies with 

respect to the number of gene selected [46] for different studies 

are shown using table. The number of genes selected and the 

classification accuracy of each research study differs in their 

representative accuracy parameter. There are studies that provide 

the classification accuracy without taking into the account of 

feature selection phase. In recent studies, many researchers have 

used support vector machine (SVM), random forest (RF) and 

LogitBoot for 10-cross validation on the dataset provided by the 
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cancer genome atlas. Furthermore, the classification accuracy has 

been derived through feature selection by using Chameleon 

algorithm and supervised group Lasso method. 

Table.3. Performance Comparison 

Selected Genes Method Accuracy (%) 

2000 Random Forest 85.24 

2000 SVM 84.42 

2000 Two-Way Clustering 87.76 

2000 LogitBoot 86.67 

5 Chameleon 86.23 

22 Lasso (Supervised Group) 86.64 

10 MM-FS-KM-EHS (Proposed) 96.67 

The projected method achieved the highest level of accuracy, 

when compared with other methods. The achieved accuracy is 

compared with the studies that consider the feature selection as a 

step or no feature selection involved. The Chameleon algorithm 

is able to achieve significant accuracy level by taking minimum 

number of genes for its classification task [44]. Still, the projected 

method achieved better accuracy compared with the Chameleon 

algorithm. 

6. CONCLUSION  

The classification procedure in this study uses GBM gene 

information. Min-Max normalization is used to preprocess and 

normalize the gene information in the initial step. The 

Generalized fisher score method is used to eliminate the 

redundant genes to provide optimal set of gene information. The 

K-Means clustering method selects the representative genes from 

each cluster. The enhanced feature selection using enhanced 

harmony search method is used for critical feature selection 

process. 

The proposed improved feature selection process is done 

through enhanced harmony search method derived from the 

original HS algorithm, which retains higher accuracy and 

improves the performance of classification by applying different 

combinations of the model. This study showed a promising 

classification performance of 96.67% with only 10 genes selected 

using the proposed method. The selected attributes are: 

attribute1635, attribute936, attribute1897, attribute1515, 

attribute1170, attribute1177, attribute737, attribute43, attribute 

33 and attribute1244. This method takes only minimum number 

of genetic test information, which is cost-effective. Furthermore, 

the outcome of the study will contribute significantly in the 

prediction of not only the GBM gene. This method can be applied 

efficiently with other gene causing diseases. Heredity based colon 

cancer can also be predicted by using this genetic testing-based 

study. The likelihood confirmation through gene testing for 

people related with the family history of cancer related diseases is 

important. It improves the prediction accuracy of the people, who 

likely to develop tumor and takes precautionary medical 

assistance from the physician’s advice. 

In future, prediction of tumor can be found by using a 

minimum count of representative genes according to gene 

mutation. There is a possibility of conducting experiments on 

gene expression analysis in different ways. The analysis of gene 

information can be done by methods such as solo-atom tracing, 

time series data tracking. The analysis can be applied on non-

genetic data like smoking, diet and exercise-based gene 

information. New Models can be developed based on objectivity 

and suitability of the genetic data from the proposed model. 
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