
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04
DOI: 10.21917/ijsc.2022.0385

2697

TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL

ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN DISTRIBUTED

ENVIRONMENT

Dinesh J. Prajapati
Department of Information Technology, A.D. Patel Institute of Technology, India

Abstract

Hierarchical Data mining using distributed environment is an

imperative in big data analysis. Multilevel association rules can provide

more substantial information than single level rules, and it also

determines hierarchical knowledge from the dataset. Nowadays,

numerous e-commerce and social networking sites generates vast

amount of structural/semi-structural data in the form of sales data,

tweets, text mails, web usages and so on. The data generated from such

sources is so large that it becomes very difficult to process and analyze

it using conventional approaches. This paper overcomes the computing

limitation of single node by distributing the task on multi-node cluster.

The performance of this system is compared based on minimum

support threshold at diverse levels of concept hierarchy and by varying

the dataset size. In this paper, the transactional dataset is created from

huge sales dataset using Hadoop MapReduce framework. Then, two

distributed multilevel frequent pattern mining algorithms MR-MLAB

(MapReduce based Multilevel Apriori using Bottom-up approach) and

MR-MLAT (MapReduce based Multilevel Apriori using Top-down

approach) are implemented to find interesting level-crossing frequent

itemset for each level of concept hierarchy. The hierarchical

redundancy in multilevel association rules affects the quality of the

market basket analysis. Hence, to improve the performance of the

system, the hierarchical redundancy has to be removed from it. Finally,

the time efficiency of proposed algorithms is compared with existing

Traditional Multilevel Apriori (TMLA) Algorithm. The proposed

algorithms with MapReduce framework are found efficient compared

to the traditional algorithms.

Keywords:

Distributed Frequent Pattern Mining, Multi-Level Association Rule,

MapReduce, Level Crossing Rules

1. INTRODUCTION

Association rule mining is one of the data mining techniques

to discover the relationships in the given dataset. Related terms

used in this paper are mentioned below.

Itemset: Let I = {I1, I2, …, In} be a set of distinct items. A set of

items (X) which is subset of I is called itemset. An itemset X with

k distinct items is known as k-itemset [1].

Association Rule: An association rule is represented in the form

X → Y, where X and Y are the itemsets. This rule disclosures the

connection between the itemset X with the itemset Y [2].

• Big Data: Big data is a collection of huge data sets that are

processed using traditional data processing tools [3]-[5].

• Hadoop: Hadoop is an open-source MapReduce based

programming model in the distributed processing [6].

• Hadoop Distributed File System (HDFS): The Hadoop

runtime system is attached with HDFS that supports

parallelism and concurrency to obtain system reliability [6].

• MapReduce: The MapReduce framework consists of two

functions [7]: Mapper and Reducer. The Mapper function

takes an input as <key, value> pair and generates a set of

<key, value> pair as an intermediate result. The Reducer

function receives an intermediate key generated and merges

the values of the key.

• Multi-level Association Rule Mining: Association rules

produced from multiple levels of different concept hierarchy

are known as multilevel association rules [8].

• Level-crossing Association Rules: The set of association

rules who’s antecedent and/or consequent have different

level of hierarchy are called level-crossing association rules

[9].

In multiple-level association rule mining, the items exist in an

itemset are categorized by conceptual hierarchy. By forming such

a conceptual hierarchy, a procedure of determining association

rules at multiple concept levels discovers more meaningful and

interesting information from the data [10]. A sample concept

hierarchy tree of AMUL dairy (the largest dairy of Asia) with

taxonomy information is shown in Fig.1.

Actual items are available at last level of concept hierarchy. In

the concept-hierarchy tree, each node denotes a single item of an

itemset. There are essentially four levels of the concept hierarchy

in this dataset. At any level, item i is children of item at level i-1.

Fresh Products and Frozen Products are two items at first level.

Moreover, Fresh Products has two child nodes namely Milk

Products and Milk. Frozen Products have Ice-cream and Snacks

as children. Such hierarchy continues accordingly. Each node is

allocated a number that represents its id. The encoding is carried

out from left to right in a sequence. For example, the encoding

value for Rose Lassi is 1111 where first digit indicates Fresh

Products, second digit indicates Milk Products, third digit

indicates Fresh.
AMUL Dairy

 Products

 0

Fresh Products

 1

Frozen

Products

 2

Milk Products

 11

Milk

 12

Fresh Lassi

 111

Curd

 112
Toned Milk

 121

Icecream

 21

Snacks

 22

Cup

 212

Family Pack

 211

Frozen Pizza

 221

Toned Bulk

Curd

 1121

Skimmed Curd

 1122
Rose Lassi

 1111

Taaza Milk

 1211

Vanilla

 2111

Butter Scotch

 2121

Delicious Pizza

 2211

Fig.1. Sample Concept-Hierarchy AMUL Dairy Products with

Taxonomy Information

This research paper is summarized in three easy steps in brief:

(i) In the first step, the distributed multilevel frequent pattern

DINESH J PRAJAPATI: TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN

DISTRIBUTED ENVIRONMENT

2698

 Y
ea

r
2
0
1

2

mining algorithm using top-down and bottom-up approach is

implemented to generate multi-level frequent itemsets including

level crossing, (ii) In the second step, multi-level frequent

itemsets are analyzed based on the retailer, (iii) Finally, the

redundant rules are excluded for deriving interesting multilevel

association rules. The proposed distributed multi-level frequent

pattern mining algorithms are tested on hierarchical sales dataset

of AMUL Dairy.

The remaining of this paper is organized as follows. Related

work is given in section 2. Section 3 shows the proposed

methodology. In section 4, the performance of proposed method

is assessed based on sales data. Finally, the conclusions and future

scope are drawn in section 5.

2. RELATED WORK

Thakur et al. [9] proposed a top-down approach to reduce

support and filter the transaction table, T for different levels of

concept hierarchy. The processing time is improved and it

generates less candidate itemsets. Han and Fu [10] generated

more interesting multilevel association rules including level

crossing using different interestingness measures. The Authors

also suggest the improvement of the methods for mining single

level association rules to multiple level association rules. Wan et

al. [11] proposed a novel approach for efficiency, integrality and

accuracy improvement from primitive concept level of hierarchy.

The method proposed in this paper, also considers the dynamic

concept hierarchies. By using this approach, different users can

generate multilevel association rules based on requirement. The

author also declared various issues for support calculation as well

as multilevel association rules generation at specific level.

The authors in [12] [13], proposed hierarchical redundancy

removal approach using closed itemsets and generators. Author

suggests that this approach can also be apply to the approximate

basis rule for removal of redundancy and mining of more efficient

frequent itemset. Hong et al. [14] proposed an incremental

multilevel association rule mining algorithm based on the pre-

large concept and efficiently mining of the dataset with taxonomy

information. The author proposed algorithm for reduction of

mining cost. Gautam and Pardasani [15] proposed a method to

discover frequent itemsets using Boolean matrix. The proposed

approach scans the transaction database only once without

generating itemsets. It also adopts the Boolean vector-based

method to discover frequent itemset.

Prakash et al. [16] proposed a novel approach for frequent and

in-frequent interesting association rules mining by removing the

redundant rules. The proposed approach discovers the complete

rules based upon propositional logic. Gautam and Pardasani [17]

proposed Partition and Boolean based method for frequent

itemsets generation at each level of concept hierarchy by

reduction of database scans, I/O cost and overhead of CPU. In this

paper, a top-down frequent pattern mining approach is used for

multi-level rules generation. Srivastava et al. [18] compared

multilevel association rule mining algorithms based on number of

transactions. In this paper, the performance the ML_TMLA

algorithm is compared with ML_T2L1 and ML_T1LA algorithms

for various values of minimum support threshold. The authors

concluded that ML_TMLA algorithm is, more efficient than

ML_T2L1 and ML_T1LA algorithms for lower minimum support

and less efficient than ML_T2L1 and ML_T1LA algorithms for

higher minimum support. The author also showed that the level

crossing association rule mining algorithms ML_T1LA-C and

ML_TMLAC are more efficient than the ML_T1LA and

ML_TMLA algorithms, respectively, for lower minimum support

threshold.

Gautam and Shukla [19] proposed a reduced minimum

support threshold at each level to reduces I/O operations and

improve the efficiency. Karim et al. [20] proposed an improved

MapReduce framework of distributed system to mine the

business-related transactional datasets. The proposed model is

highly scalable even though the database size is too large. In this

paper, authors implemented “Associated-Correlated-

Independent” algorithm to mine the purchase rules more

effectively. Zhuang and Wang [21] proposed a novel method for

mining weighted concise association rules using closed itemsets

and weighted support. Here, each item having different

importance is assigned different weight to it. The proposed

algorithm mines all the weighted association rules and prunes the

duplicate weighted itemset. The experimental results show that

the present algorithm is scalable in the case of time.

Chandanan and Shukla [22] proposed an algorithm for

hierarchical redundant rules removal using upper level closed

frequent itemset and generator. The algorithm proposed in this

paper decreases the length of the association rules for quality

improvement and information loss reduction. Pumjun and

Kreesuradej [23] proposed Incremental Multilevel Association

Rule Mining of a Dynamic Database under a Change of a

Minimum Support Threshold (IML-ARMCS) algorithm that

maintains dynamic database with changing minimum support

threshold means new transactions can be added dynamically.

Authors compared execution time and number of database scans

with existing ML-T2 algorithm. The algorithm proposed in this

paper, cannot used when few transactions are removed from the

actual dataset. Authors have suggested to extend the present

algorithm for covering the multilevel reduced dataset as a future

work. Muhammad and Usman [24] proposed a conceptual model

to mine the multi-level association rules from real world datasets.

The authors presented a method to discover multi-level

association rules using multidimensional schema. Authors also

presented hierarchical clustering at different levels of data

abstraction.

In big data analysis, mining huge pattern is more important for

the transactional database containing unique itemset. However,

some of the above-mentioned work deal with single level

association rule mining using MapReduce and other work deals

with multilevel association rule mining without use of distributed

environment. Hence, the problem of multilevel association rule

mining from huge data in distributed environment is novel idea to

improve the time efficiency. The distributed multilevel frequent

pattern mining algorithm using top-down and bottom-up

approach is applied to generate level-crossing frequent itemsets.

Existing TMLA algorithm [9] generates large candidate itemset

and its execution time is also higher while dealing with big data.

The proposed algorithms improve the drawback of existing

traditional algorithms and also generate interesting hierarchical

patterns. The objective of proposed work is to eliminate the

drawbacks of relational database and facilitate MapReduce

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2699

framework to improve the execution time of the system and it also

generates small candidate itemset.

3. PROPOSED METHODOLOGY

The proposed methodology with architecture is shown in

Fig.2. The AMUL dairy sales data is given as input to distributed

multilevel frequent pattern mining algorithm. The main drawback

of existing multilevel frequent pattern mining algorithms is, (i) It

generates a huge candidate itemsets; (ii) The execution time is

also high while dealing with big data, and (iii) Some of the

interesting level-crossing rules are missed completely. The

distributed multilevel frequent pattern mining algorithm proposed

in this paper removes these drawbacks. In the proposed

methodology, once the actual transactional dataset is stored in

HDFS, the entire dataset is divided into smaller parts. Then, each

part is transformed to the data nodes.

Fig.2. Proposed Methodology

3.1 DISTRIBUTED MULTILEVEL FREQUENT

PATTERN MINING ALGORITHM

The distributed multilevel frequent pattern mining algorithms

are categorized as MapReduce based Multilevel Apriori using

Top-down Approach (MR-MLAT) and MapReduce based

Multilevel Apriori using Bottom-up Approach (MR-MLAB). The

proposed algorithms are improved versions of single level Apriori

algorithm, where frequent itemsets are generated level wise as

described in the following subsections.

3.1.1 MR-MLAT Algorithm:

Mapreduce based top-down approach produces huge frequent

itemsets including level-crossing at different concept level. The

Map function is executed on each data segment and it generates

level crossing <key,value> pairs for each transaction of dataset.

The MapReduce framework makes group of all <key,value> pairs

with same items and also executes the Reducer function by

passing the candidate itemsets. Map function generates local

candidate itemsets in each database scan. Global counts are

generated using Reduce function by adding individual local

counts. For each level, the MapReduce function produces a

frequent itemset including level-crossing at that specific level.

The iteration continues until no further frequent itemsets are

found for that level. The Reduce function sums up all the values

of Map function and generates a count for the candidate itemset.

The distributed frequent pattern mining algorithm MR-MLAT

[25] [26] shown in Fig.3, uses notation CT[l,k] as a set of

candidate k-itemset at level l without frequency count, C[l,k] as a

set of candidate k-itemset at level l with frequency count, and

L[l,k] as a set of frequent k-itemset at level l. A dataset is given to

Mapper in line by line manner. Each line of transaction is split

into itemsets followed by items. Here, number of digits in itemset

is represented by String_length function and first n number of

digits is represented by Sub_string function. The map function

generates <itemset,1> as <key,value> pairs with level-crossing.

The MapReduce framework generates all <key, value> pairs with

same items and also executes the reducer function by passing the

list of values for candidate itemsets. The output of mapper is

combined by the reducer function and finally, frequent itemsets

are generated. This computation process will be stopped if the

reduce task cannot generate larger candidate itemsets.

3.1.2 MR-MLAB Algorithm:

In the case of top-down approach, for each level of concept

hierarchy, the database is repeatedly scanned for each frequent

itemset. This is main drawback of top-down approach. As

compared to top-down approach, bottom-up approach scans the

dataset only once for each level. In the proposed algorithm,

candidate and frequent 1-itemset is generated for last level. The

candidate 1-itemset at level l-1 is derived from level l by

considering first l-1 digits. Then, respective minimum support

threshold is applied to find frequent itemset of level l-1 to 1. Once,

frequent 1-itemset is generated for each level, frequent k-itemset

is calculated level wise in bottom-up manner. The distributed

frequent pattern mining algorithm MR-MLAB shown in Fig.4,

uses notations C[l,k] as a set of candidate k-itemset without level-

crossing at level l, CLC[l,k] as a set of candidate k-itemset with

level-crossing only at level l, CF[l,k] as a set of all the candidate

k-itemset including level-crossing at level l, and L[l,k] as a set of

frequent k-itemset at level l.

The Map1 function is executed on each data segment of the

last level in concept hierarchy to generate <key,value> pairs. The

transactional data is given as an input to the Map1 function, line

by line. Each line is split into itemset and generates the output

<key,value> pair consisting of the candidate itemset and value 1.

Here, value is local frequency of the itemset. The Reduce1

function combines the output of Map1 function and it generates

the frequent itemset for that level. The Map2 function is used for

finding the count of level-crossing itemset. The Map2 function

takes input as <candidate itemset in the last level, value> pair and

generates the output as a <candidate itemset at level L, count>

pair. The String_length function returns number of digits in

itemset. The Sub_string function gives first n digits from given

itemset. The Reduce2 function adds up all the values of list having

similar candidate itemset. It generates <candidate itemset,

support_count> pair for the candidate itemset at that level. The

illustration of this algorithm is given by following example.

Input: Database in HDFS containing encoded concept hierarchy

information (D), Maximum level of concept hierarchy

(Max_level), Minimum Support Threshold for each level l

(Min_sup [l]).

Output: L [l], Level-crossing frequent itemsets for each level l.

Method:

Step 1: For each level l in concept hierarchy do

Step 2: L[l,1] = find frequent1-itemsets from (D).

Step 3: For each frequent k-itemset in level l do

Support

Decision

System

Distributed

Multilevel

Frequent

Pattern

Mining

Algorithm

Multilevel

Association

Rule

Generation

Hierarchical

Redundancy

Removal

B
ig

 t
ra

n
sa

ct
io

n
al

d
at

as
et

F
re

q
u
en

t

It
em

se
t

S
tr

o
n

g
 M

u
lt

il
ev

el

A
ss

o
ci

at
io

n
 R

u
le

s

L
ev

el
 C

ro
ss

in
g

A
ss

o
ci

at
io

n
 R

u
le

s

DINESH J PRAJAPATI: TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN

DISTRIBUTED ENVIRONMENT

2700

Step 4: CT[l, k] = L[l, k-1] L[l, k-1]. //Candidate itemset

without level crossing

Step 5: If (l > 1) then

Step 6: For j=1 to l-1 do

Step 7: CT[l, k] + = L[j, k-1] L[l, k-1]. // Candidate itemset

with level crossing

Step 8: C[l, k] = Map(); // Apply Map function on CT[l, k] to

generate the candidate itemsets

Step 9: L[l, k] = Reduce(); // Apply Reduce function on C[l, k]

to generate the frequent itemsets

Step 10: L [l] = L [l] Uk L[l, k].

Map Function

Input: Transaction Ti

Output: <candidate itemset, value>

Method:

Step 11: For each transaction Ti D do

Step 12: For each itemset Si in Candidate Itemset do

Step 13: For each item Ii Si do

Step 14: n = String_length (Ii). // String_length function returns

number of digits

Step 15: If (Sub_string(Ii , n) ∉ Ti) then // Sub_string function

gives first n digits

Step 16: Terminate the current itemset Si.

Step 17: Generate the output <Si,1> as <key, value> pair.

Reduce Function

Input: <candidate itemset, list>

Output: <frequent itemset, support_count>

Method:

Step 18: count = 0.

Step 19: For each number in list do

Step 20: count + = number.

Step 21: If (count> = Min_sup) then

Step 22: Generate the output <frequent itemset, count> as <key,

value> pair.

Step 23: End if

Step 24: End For

Fig.3 The MR-MLAT Algorithm

Input: Database in HDFS containing encoded concept hierarchy

information (D),

Maximum level of concept hierarchy (Max_level),

Minimum Support Threshold for each level l (Min_sup [l]).

Output: L[l], Level-crossing frequent itemsets for each level l

Method:

Step 1: // Generation of frequent 1-itemset for each level l

Step 2: For l = Max_level down to 1 do

Step 3: If (l = Max_level) then

Step 4: T[l,1] = Map1 (); // Apply Map1 function on all the items

at level Max_level.

Step 5: Else

Step 6: T[l,1] = Sub_string (C[Max_level,1], l). // Sub_string

function gives first l digits

Step 7: C[l,1] = Reduce2 (); // Apply Reduce2 function on T[l,1].

Step 8: L[l,1] = Reduce1 (); // Apply Reduce1 function on T[l,1].

Step 9: // Generation of frequent k-itemset for each level l

Step 10: For l = Max_level down to 1 do

Step 11: For each frequent k-itemset in level l do

Step 12: If (l = = Max_level) then

Step 13: C1[l, k] = C[l, k-1] C[l, k-1].

Step 14: T[l, k] = Map1 (); // Apply Map1 function on C1[l, k].

Step 15: C[l, k] = Reduce2 (); // Apply Reduce2 function on T[l,

k]

Step 16: Else

Step 17: T1[l, k] = Sub_string (C[Max_level , k] , l).

Step 18: For each items x in itemset do

Step 19: If any two items are not similar then

Step 20: T2[l, k] = T1[l, k];

Step 21: C[l, k] = Reduce2 (); // Apply Reduce2 function on T2[l,

k]

Step 22: If (l> 1) then

Step 23: If (k = = 2) then

Step 24: For j = l-1 down to 1

Step 25: For each itemset x in C[j, k-1] do

Step 26: For each itemset y in C[l, k-1] do

Step 27: If x is not an ancestor of y then

Step 28: C2[l, k] + = C[l, k-1] C[j, k-1].

Step 29: Else

Step 30: C2[l, k] = C[l, k-1] CLC[l, k-1].

Step 31: CT[l, k] = Map2 (); // Apply Map2 function on C2[l, k].

Step 32: CLC[l, k] = Reduce2 (); // Apply Reduce2 function on

CT[l, k]

Step 33: CF[l, k] = C[l, k] + CLC[l, k]. // Candidate itemset

including level crossing

Step 34: L[l, k] = Reduce1 (); // Apply Reduce1 function on CF

[l, k].

Step 35: Else

Step 36: L[l, k] = Reduce1 (); // Apply Reduce1 function on C[l,

k]

Step 37: L [l] = L [l] Uk L[l, k].

Map1 Function

Input: Transaction Ti

Output: <candidate itemset, value>

Method:

Step 38: For each transaction TiD do

Step 39: For each itemset Ii in Candidate Itemset do

Step 40: If (Ii Ti) then

Step 41: Generate the output <Ii,1> as <key, value> pair.

Map2 Function

Input: <candidate itemset in the last level (CMax_level), value>

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2701

Output: <candidate itemset at level L, count>

Method:

Step 42: For each candidate itemset in CMax_level do

Step 43: For each itemset Si in Candidate Itemset do

Step 44: For each item Ii Si do

Step 45: n = String_length (Ii). // String_length function returns

number of digits

Step 46: If (Sub_string (Ii,n) ∉ CMax_level) // Sub_string function

gives first n digits

Step 47: Terminate the current itemset Si.

Step 48: count = CMax_level.value.

Step 49: Generate the output <Si, count> as <key, value> pair.

Reduce1 Function

Input: <candidate itemset, list>

Output: <frequent itemset, support_count>

Method:

Step 50: count = 0.

Step 51: For each number in list do

Step 52: count + = number.

Step 53: If (count> = Min_sup) then

Step 54: Generate the output <frequent itemset, count> as <key,

value> pair.

Reduce2 Function

Input: <candidate itemset, list>

Output: <frequent itemset, support_count>

Method:

Step 55: count = 0.

Step 56: For each number in list do

Step 57: count + = number.

Step 58: Generate the output <frequent itemset, count> as <key,

value> pair.

Fig.4. The MR-MLAB Algorithm

3.2 MOTIVATIONAL EXAMPLE

Consider the dataset containing 8 transactions with minimum

support threshold at level 3, 2 and 1 is 1, 2 and 3 respectively

(Table.1).

Table.1. Transaction Table

Transaction ID Transactional Dataset

T1 111,121, 211

T2 111, 211, 222

T3 122, 221

T4 111,121

T5 111,122,211,221

T6 311, 411

T7 113, 221, 231

T8 112,131, 411

First of all, candidate 1-itemset of level 3, C[3,1] is calculated

by scanning the database. To prune the infrequent items at this

level, minimum support threshold is applied. The frequent 1-

itemset, L[3,1] is generated for level 3. The candidate 1-itemset at

level 2, C[2,1] is derived from C[3,1] by considering first two

digits only. The minimum support threshold at level 2 is filter

infrequent itemset and generates L[2,1]. Similarly, candidate 1-

itemset at level 1, C[1,1] is derived from C[3,1] by considering

first digit only.

The minimum support threshold at level 2 is filter infrequent

itemset and generates L[1,1]. The result of candidate and frequent

1-itemset along with support count (SC) at all the level is shown

in Fig.5.

3.2.1 L[3,2] - Level 3 Frequent 2-Itemset:

C1[3,2] is calculated by joining C[3,1] with C[3,1] which

generates 2-itemset pair as {111,112}, {111,113}, {111,121},

{111,122}, {111,131}, {111, 211}, {111, 221}, {111, 222}, {111,

231}, {111, 311}, {111, 411}, and so on. The map1 function is

applied on C1[3,2] which generates T[3,2]. The reduce2 function

is applied on T[3,2] to generate C[3,2], candidate 2-itemset

without level crossing only. The C2[3,2] is calculated by joining

C[3,1] with C[2,1] and C[3,1] with C[1,1] after checking ancestor

relationship among the items. The map2 function is applied on

C2[3,2] which generates CT[3,2]. The reduce2 function is applied

on CT[3,2] to generate CLC[3,2], candidate 2-itemset with level

crossing only. Then, candidate 2-itemset including level crossing

is generated by appending C[3,2] along with CLC[3,2] and result

is stored in CF[3,2]. Finally, frequent 2-itemset is generated by

applying reduce1 function on it.

3.2.2 L[3,3] - Level 3 Frequent 3-Itemset:

C1[3,3] is calculated by joining C[3,2] with C[3,2] which

generates 3-itemset pair as {111,112,113}, {111,112,121}, and so

on. The map1 function is applied on C1[3,3] which generates

T[3,3]. The reduce2 function is applied on T[3,3] to generate

C[3,3], candidate 2-itemset without level crossing only. The

C2[3,3] is calculated by joining C[3,2] with CLC[3,2]. The map2

function is applied on C2[3,3] which generates CT[3,3]. The

reduce2 function is applied on CT[3,3] to generate CLC[3,3],

candidate 3-itemset with level crossing only. Then, candidate 3-

itemset including level crossing is generated by appending C[3,3]

along with CLC[3,3] and result is stored in CF[3,3]. Finally,

frequent 3-itemset is generated by applying reduce1 function on

it. Similarly, for level 3 frequent 4-itemset and 5-itemset is

generated. Here, frequent 5-itemset is NULL.

3.2.3 L[2,2] - Level 2 Frequent 2-Itemset:

T1[2,2] is generated from C[3,2] by considering only first two

digits of each itemset. The similar items in a itemset is filtered and

result is stored in T2[2,2]. The 2-itemset pair is generated as

{11*,12*}, {11*,13*}, and so on. The reduce2 function is applied

on it to generate C[2,2], candidate 2-itemset without level

crossing only. The C2[2,2] is calculated by joining C[2,1] with

C[1,1] after checking ancestor relationship among the items. The

map2 function is applied on C2[2,2] which generates CT[2,2].

The reduce2 function is applied on CT[2,2] to generate CLC[2,2],

candidate 2-itemset with level crossing only. Then, candidate 2-

itemset including level crossing is generated by appending C[2,2]

along with CLC[2,2]. Finally, the frequent 2-itemset is generated

by applying reduce1 function on it.

DINESH J PRAJAPATI: TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN

DISTRIBUTED ENVIRONMENT

2702

3.2.4 L[2,3] - Level 2 Frequent 3-Itemset:

T1[2,3] is generated from C[3,3] by considering only first two

digits of each itemset. The similar items in an itemset are filtered

and result is stored in T2[2,2]. The 3-itemset pair is generated as

{11*,12*,13*}, and so on. The reduce2 function is applied on it

to generate C[2,3], candidate 3-itemset without level crossing

only. The C2[2,3] is calculated by joining C[2,2] with CLC[2,2].

The map2 function is applied on C2[2,3] which generates

CT[2,3]. The reduce2 function is applied on CT[2,3] to generate

CLC[2,3], candidate 3-itemset with level crossing only. Then,

candidate 3-itemset including level crossing is generated by

appending C[2,3] along with CLC[2,3] and result is stored in

CF[2,3] file. Finally, frequent 3-itemset is generated by applying

reduce1 function on it. Similarly, for level 2 frequent 4-itemset is

generated. Here, frequent 4-itemset is NULL.

3.2.5 L[1,2] - Level 1 Frequent 2-Itemset:

T1[1,2] is generated from C[3,2] by considering only first digit

of each itemset. The similar items in a itemset is filtered and result

is stored in T2[1,2]. The 2-itemset pair is generated is {1**, 2**},

{1**, 3**}, and so on. The reduce2 function is applied on it to

generate C[1,2], candidate 2-itemset without level crossing only.

Since there is no ancestor of level 1, there do not exist level

crossing itemset pair. Finally, frequent 2-itemset is generated by

applying reduce1 function on it.

3.2.6 L[1,3] - Level 1 Frequent 3-Itemset:

T1[1,3] is generated from C[3,3] by considering only first digit

of each itemset. The similar items in a itemset is filtered and result

is stored in T2[1,3]. The 3-itemset pair is generated i.e. {1**, 2**,

3**}, {1**, 2**, 4**}, and so on. The reduce2 function is applied

on it to generate C[1,3], candidate 3-itemset without level

crossing only. Since there is no ancestor of level 1, there do not

exist level crossing itemset pair. Finally, frequent 3-itemset is

generated by applying reduce1 function. Here, frequent 3-itemset

is NULL. Hence, the algorithm will terminate.

3.3 MULTILEVEL ASSOCIATION RULE

GENERATION

The distributed multilevel frequent mining algorithm

generates frequent itemsets for each level with level crossing

frequent itemset. Multilevel association rules are generated based

on following steps [27,28].

1) For all the level of concept hierarchy,

a) Generate all non-empty subsets of f for each level-

crossing frequent k-itemset f.

b) Generates the multilevel association rule as s → (f - s)

such that (Support(f) / Support (s)) ≥ min_conf, where,

min_conf is the minimum confidence threshold at that

level repeat this for every non-empty subset s of f.

C[3,1] L[3,1] C[2,1] L[2,1] C[1,1] L[1,1]

Item
Support

Count

111 4

112 1

113 1

121 2

122 2

131 1

211 3

221 3

222 1

231 1

311 1

411 2

Item
Support

Count

111 4

112 1

113 1

121 2

122 2

131 1

211 3

221 3

222 1

231 1

311 1

411 2

Item
Support

Count

11* 6

12* 4

13* 1

21* 3

22* 4

23* 1

31* 1

41* 2

Item
Support

Count

11* 6

12* 4

21* 3

22* 4

41* 2

Item
Support

Count

1** 11

2** 8

3** 1

4** 2

Item
Support

Count

1** 11

2** 8

Fig.5. Candidate and Frequent 1-itemset for level 3, 2 and 1

3.4 ELIMINATING HIERARCHICAL

REDUNDANT RULES

Due to “ancestor” relationships among items, even though

multilevel association rules are generated with high confidence

threshold, then also, large numbers of redundant rules are

generated. The processing of such redundant rules can take a long

time, so the performance is degraded. To overcome this problem,

hierarchical redundant rules are eliminated. The primary idea for

the redundancy elimination is to improve the quality as well as

importance of the rules without loss of any information [28]. In

the case of top-down approach, candidate itemset of current

iteration is calculated based on join operation on frequent itemset

of previous iteration; while in the case of bottom-up approach,

candidate itemset of current iteration is calculated based on join

operation on candidate itemset of previous iteration. Thus, the

top-down approach excludes some of the hierarchical interesting

association rules while bottom-up approach will not. For example,

Suppose the hierarchical dataset have three levels L1, L2 and L3.

Minimum support threshold for each level is 5, 4 and 3

respectively i.e. MSL1 = 5, MSL2 = 4 and MSL3 = 3. Suppose the

item 1**, 22* and 333 have support count values 4, 3 and 3

respectively. In the case of top-down approach,1** and 22* are

not frequent so while calculating candidate 2-itemset; 1** and 22*

will never be considered. Hence, for all the rules containing 1**

and/or 22* as a subset of consequent and/or antecedent; will never

be obtained. While in the case of bottom-up approach, even if 1**

and 22* are not frequent 1-itemset then also they are considered

while calculating candidate 2-itemset.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2703

4. EXPERIMENTAL SETUP AND RESULTS

For the experimental purpose, a cluster of four computers with

i5 processor and 4GB DDR-3 RAM are used. The proposed

algorithms are tested on AMUL dairy sales data containing more

than 1500 different dairy products. For this experiment, the

dataset of last two years having size 5GB is used and it can be

extended further. The distributed multilevel frequent pattern

mining algorithms are applied only on concept hierarchical

dataset. So, the preprocessing is useful to transform sales dataset

into hierarchical form.

4.1 GENERATION OF MULTILEVEL FREQUENT

PATTERN

The transactional big dataset is given as input to the TMLA,

MR-MLAT and MR-MLAB algorithms to generate frequent

itemsets without level-crossing and including level-crossing.

4.1.1 Multilevel Frequent Pattern Mining without Level

Crossing:

Minimum support threshold needs to be adjusted properly to

reduce missing of interesting multilevel association rules. Thus,

minimum support threshold is adjusted such that it decreases from

higher level to lower level of the hierarchy tree. The execution

time for the TMLA, MR-MLAT and MR-MLAB algorithms

applied on the 5GB dataset distributed over single node clusters

for reducing minimum support threshold level wise is shown in

Fig.6. The level wise minimum support threshold 4-3-2-1

indicates min_sup of 4% for level 1, 3% for level 2, 2% for level

3 and 1% for level 4, respectively. For this experiment, 8 mappers

and 3 reducers are used. It is observed that the execution time of

the proposed MR-MLAB and MR-MLAT algorithms is

significantly lower as compared to TMLA algorithm.

Fig.6. Level-wise Minimum Support Threshold vs. Execution

Time

4.1.2 Multilevel Frequent Pattern Mining including Level

Crossing:

The minimum support threshold is considered similar for all

the levels of concept hierarchy for generating multilevel frequent

itemsets. For this experiment, 8 mappers and 3 reducers are used.

The results of TMLA, MR-MLAT and MR-MLAB algorithms on

AMUL datasets for the varying database size 256MB,

512MB,1GB, 2GB and 5GB is applied on single node cluster with

minimum support threshold of 1% is shown in Fig.7. For a data

set of size 5GB that was distributed on single node, the execution

time for the TMLA, MR-MLAT and MR-MLAB algorithms are

68000 seconds, 4800 seconds and 3120 seconds respectively. The

experiment shows that the execution time of proposed algorithms

is less as compared to the traditional approach. The performance

of proposed algorithms is improved compared to TMLA

algorithm for large dataset.

Fig.7. Dataset Size vs. Execution Time for Single Node Cluster

Similarly, the results of MR-MLAT and MR-MLAB

algorithms on AMUL datasets for the varying database size

256MB, 512MB,1GB, 2GB and 5GB is applied on multi-node

clusters of two nodes and three nodes with minimum support

threshold of 1% are shown in Fig.8 and Fig.9, respectively. For

the small dataset size, the execution time of both the algorithms is

almost closer but when the size of dataset increases, the execution

time of bottom-up approach is considerably less as compared to

the top-down approach. It can be observed from the experimental

results that the performance of the algorithm depends on the

number of nodes and the size of dataset. So, in order to improve

the time efficiency, the number of nodes must be increased with

an increased database size. When the number of processors is

increases in private hadoop cluster then the privacy is not reduced

necessarily since we would be controlling all of the nodes. The

privacy may be loss up to some extend if a MapReduce job is

deployed on a public cloud.

Fig.8 Dataset Size vs. Execution Time for Two Node Cluster

The results of MR-MLAT and MR-MLAB algorithms on 5GB

AMUL datasets is applied on single node, two node and three

node cluster with minimum support threshold of 1% is shown in

100

10100

20100

30100

40100

50100

4-3-2-1 5-4-3-2 6-5-4-3 7-6-5-4 8-7-6-5

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Threshold (%)

MR-MLAB Algorithm
MR-MLAT Algorithm
TMLA Algorithm

100

20100

40100

60100

80100

100100

256 512 1024 2048 5120

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Dataset Size (MB)

MR-MLAB Algorithm
MR-MLAT Algorithm
TMLA Algorithm

0

900

1800

2700

3600

4500

256 512 1024 2048 5120

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Dataset Size (MB)

MR-MLAB Algorithm

MR-MLAT Algorithm

DINESH J PRAJAPATI: TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN

DISTRIBUTED ENVIRONMENT

2704

Fig.10. The experimental results shows that the execution time of

MR-MLAT algorithm on single node, two node and three node

cluster is 4800 seconds, 3891 seconds and 2418 seconds,

respectively. Thus, the speedup of two node cluster with respect

to single node is 1.234 times and three node cluster with respect

to single node is 1.985 times. Similarly, the execution time of

MR-MLAB algorithm on single node, two node and three node

cluster are 3120 seconds, 2489 seconds and 1565 seconds,

respectively. Thus, the speedup of two node cluster with respect

to single node is 1.254 times and three node cluster with respect

to single node is 1.994 times.

Fig.9. Dataset Size vs. Execution Time for Three Node Cluster

Fig.10. Time Efficiency Comparison based on Number of Nodes

in a Cluster

The results of TMLA, MR-MLAT and MR-MLAB algorithms

on 5GB AMUL dataset for the varying minimum support

threshold of 1% to 5% is applied on single node cluster as shown

in Fig.11. The experiment shows that the execution time of

proposed algorithms is significantly improved compared to

traditional approach.

4.2 HIERARCHICAL INTERESTING

ASSOCIATION RULE GENERATION

After finding level-crossing frequent k-itemset for each level,

hierarchical redundant association rules are removed from it. For

this experiment, the number of hierarchical redundant association

rules is calculated for minimum confidence threshold, which

varies from 40% to 90% and minimum support threshold varies

from 1% to 5%, as shown in Fig.12. For this experiment,12

mappers and 3 reducers are used. It can be observed from the

graph that a smaller number of hierarchically redundant rules is

generated for the minimum confidence threshold ≥ 70% and

minimum support threshold ≥3%. The hierarchical association

rules which are generated using MR-MLAB algorithm, MR-

MLAT algorithm and TMLA algorithm for the minimum support

threshold of 1% and minimum confidence threshold varying from

40% to 90% are shown in Fig.13. It can be observed that MR-

MLAB algorithm generates additional hierarchical interesting

association rules as compare to other two algorithms.

4.3 COMPARATIVE ANALYSIS OF MULTILEVEL

FREQUENT PATTERN MINING

ALGORITHMS

The proposed MR-MLAT and MR-MLAB algorithms are

compared with the TMLA algorithm [9] and also with the

algorithm proposed by Chandanan and Shukla [22], based on

various parameters. For this experiment, multilevel frequent

pattern mining algorithms are compared based on approach,

efficiency, number of database scans, effectiveness of algorithm,

dependent on levels of concept hierarchy, database scalability and

removal of hierarchical redundancy as shown in Table.2.

Fig.11. Minimum Support Threshold vs. Execution Time (s)

Fig.12. Minimum Confidence Threshold vs. Hierarchical

Redundant Rules

The experimental results shows that multilevel distributed

frequent pattern mining using top-down and bottom-up approach

is more efficient as compare to other two algorithms.

0

500

1000

1500

2000

2500

256 512 1024 2048 5120

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Dataset Size (MB)

MR-MLAB Algorithm

MR-MLAT Algorithm

0

1000

2000

3000

4000

5000

6000

MR-MLAT MR-MLAB

T
im

e
(s

)

Algorithm

Single Node Cluster

Two Nodes Cluster

Three Nodes Cluster

200

20200

40200

60200

80200

100200

1 2 3 4 5

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Minimum Support Threshold

MR-MLAB Algorithm
MR-MLAT Algorithm
TMLA Algorithm

0

20

40

60

80

100

120

140

40 50 60 70 80 90

H
ie

ra
ch

ic
a

l
R

ed
u

n
d

a
n

t
R

u
le

s

Minimum Confidence Threshold (%)

1% Min_Support

2% Min_Support

3% Min_Support

4% Min_Support

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2705

Table.2. Comparative Analysis of Apriori based Multilevel Frequent Pattern Mining Algorithms

Parameters TMLA [9]
Chandanan and

Shukla [22]
MR-MLAT MR-MLAB

Approach Top-down Top-down Top-down Bottom-up

Time Complexity O(l2*k) NA O (l2*k) O(l*k)

Database Scans
1 1

[,]
l k

i j

L j i
= =

 NA
1 1

[,]
l k

i j

L j i
= =

 max_

1

[]
k

level

j

L j
=

Exclusion of Hierarchical Interesting Association Rules Yes Yes Yes No

Dependency on Levels of Concept Hierarchy High High High Low

Database Scalability No No Yes Yes

Removal of Hierarchical Redundancy No Yes Yes Yes

The experimental results also show that top-down approach

excludes some of the hierarchical interesting association rules as

compared to bottom-up approach. Hence, the MapReduce based

bottom-up approach is much better compare to other three

algorithms. In Table.2, L[j,i] indicates frequent j-itemset at level

i, L[j] indicates frequent j-itemset at last level and NA indicates

not available.

Fig.13. Minimum Confidence Threshold vs. Hierarchical

Interesting Rules

5. CONCLUSIONS AND FUTURE SCOPE

Traditional multilevel association rule mining algorithms are

not effectively used for analysis of huge data. HDFS and

MapReduce based algorithm plays a vital role for analysis of such

data. In this paper, MapReduce based distributed frequent pattern

mining approach is presented to process the transactional dataset.

MR-MLAB and MR-MLAT based on top-down and bottom-up

approaches respectively are proposed to mine multilevel

association rules for the same level as well as on different level of

concept hierarchy. The experimental results show that the

distributed frequent pattern mining algorithms are linearly

scalable with respect to number of nodes in cluster and size of the

dataset. The experimental results also show that even though size

of dataset increases, the proposed algorithms generate less

candidate itemset and uses less message passing. Hence, the

execution time of the proposed algorithms is relatively lower. It

was observed that in order to reduce execution time, the number

of nodes must increase with an increase in database size. For

higher value of minimum confidence threshold and minimum

support threshold, numbers of hierarchically redundant rules are

relatively less. The experimental results also show that TMLA

and MR-MLAT algorithm excludes some of the hierarchical

interesting association rules as compare to MR-MLAB algorithm.

The proposed algorithms are more flexible, scalable and efficient

distributed multilevel frequent pattern mining algorithm for

mining big data. The given approach is much more helpful in

analysis of big data and support decision system. The time

efficiency of the proposed algorithms can be yet improved by

using FP-tree based data structures for the candidate itemset

generation.

REFERENCES

[1] K. Srikumar and B. Bhasker, “Metamorphosis: Mining

Maximal Frequent Sets in Dense Domains”, International

Journal of Artificial Intelligence Tools, Vol. 14, No. 3, pp.

491-506, 2005.

[2] R. Agrawal, T. Imielinski and A. Swami, “Mining

Association Rules between Sets of Items in Large

Databases”, Proceedings of International Conference on

ACM-SIGMOD on Management of Data, pp. 207-216, 1993.

[3] J. Woo, S. Basopia and S.H. Kim, “Market Basket Analysis

Algorithm with NoSQL DB HBase and Hadoop”,

Proceedings of International Conference on Emerging

Databases, pp. 56-62, 2011.

[4] J. Woo, S. Basopia and S.H. Kim, “Market Basket Analysis

Algorithm with MapReduce of Cloud Computing”,

Proceedings of International Conference on Parallel and

Distributed Processing Techniques and Applications, pp. 1-

13, 2011.

[5] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A.

Wallach, M. Burrows and R.E. Gruber, “Bigtable: A

Distributed Storage System for Structured Data”, ACM

Transactions on Computer Systems, Vol. 26, No. 2, pp. 1-

14, 2008.

[6] Apache Hadoop, Available at http://hadoop.apache.org/,

Accessed at 2015.

[7] J.H.C. Yeung, C.C. Tsang, K.H. Tsoi, B. Kwan, C. Cheung,

A.P.C. Chan and P.H.W. Leong, “Map-Reduce as a

Programming Model for Custom Computing Machines”,

0

100

200

300

400

500

600

700

800

900

1000

40 50 60 70 80 90H
ie

ra
rc

h
ic

a
l

In
te

r
es

ti
n

g
 R

u
le

s

Minimum Confidence Threshold (%)

MR-MLAB Algorithm

MR-MLAT Algorithm

TMLA Algorithm

DINESH J PRAJAPATI: TOP-DOWN AND BOTTOM-UP APPROACH FOR MINING MULTILEVEL ASSOCIATION RULES FROM CONCEPT HIERARCHICAL DATA IN

DISTRIBUTED ENVIRONMENT

2706

Proceedings of International Conference on Field-

Programmable Custom Computing Machines, pp. 1-13,

2008.

[8] R.A. Angryk and F.E. Petry, “Mining Multi-Level

Associations with Fuzzy Hierarchies”, Proceedings of

International Conference on Fuzzy System, pp. 785-790,

2005.

[9] R.S. Thakur, R.C. Jain and K.R. Pardasani, “Mining Level-

Crossing Association Rules from Large Databases”, Journal

of Computer Science, Vol. 2, No. 1, pp. 76-81, 2006.

[10] J. Han and Y. Fu, “Mining Multiple-Level Association

Rules in Large Databases”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 11, No. 5, pp. 1-8,

1999.

[11] G. Shaw, Y. Xu and S. Geva, “Eliminating Redundant

Association Rules in Multilevel Datasets”, Proceedings of

International Conference on Data Mining, pp. 14-17, 2008.

[12] Y. Xu, G. Shaw and Y. Li, “Concise Representations for

Association Rules in Multilevel Datasets”, Journal of

Systems Science and Systems Engineering, Vol. 23, No. 1,

pp. 53-70, 2009.

[13] T. Hong, T. Huang and C. Chang, “Mining Multiple-level

Association Rules Based on Pre-large Concepts”, Data

Mining and Knowledge Discovery in Real Life Applications,

pp. 187-200, 2009.

[14] P. Gautam and K. R. Pardasani, “A Fast Algorithm for

Mining Multilevel Association Rule Based on Boolean

Matrix”, International Journal on Computer Science and

Engineering, Vol. 2, No. 3, pp. 746-752, 2010.

[15] S. Prakash, M. Vijayakumar, R.M.S. Parvathi, “A Novel

Method of Mining Association Rule with Multilevel

Concept Hierarchy”, International Journal of Computer

Applications, Vol. 12, No. 1, pp. 26-29, 2011.

[16] P. Gautam and K.R. Pardasani, “Efficient Method for

Multiple-Level Association Rules in Large Databases”,

Journal of Emerging Trends in Computing and Information

Sciences, Vol. 2, No. 12, pp. 722-732, 2011.

[17] S. Srivastava, H.K. Verma and D. Gupta, “On Performance

Evaluation of Mining Algorithm for Multiple-Level

Association Rules based on Scale-up Characteristics”,

Journal of Advances in Information Technology, Vol. 2, No.

4, pp. 234-238, 2011.

[18] P. Gautam and R. Shukla, “An Efficient Algorithm for

Mining Multilevel Association Rule Based on Pincer

Search”, International Journal of Computer Science Issues,

Vol. 9, No. 4, pp. 235-241, 2012.

[19] M.R. Karim, C.F. Ahmed, B. Jeong and H. Choi, “An

Efficient Distributed Programming Model for Mining

Useful Patterns in Big Datasets”, IETE Technical Review,

Vol. 30, No. 1, pp. 53-63, 2013.

[20] H. Zhuang and G. Wang, “Mining Multiple Level

Association Rules under Weighted Concise Support

Framework”, Computer Modelling and New Technologies,

Vol. 18, No. 11, pp. 394-400, 2014.

[21] A.K. Chandanan and M.K. Shukla, “Removal of Duplicate

Rules for Association Rule Mining from Multilevel

Dataset”, Proceedings of International Conference on

Advanced Computing Technologies and Applications, pp.

143-149, 2015.

[22] N. Pumjun and W. Kreesuradej, “Incremental Multilevel

Association Rule Mining of a Dynamic Database Under a

Change of a Minimum Support Threshold”, Advanced

Multimedia and Ubiquitous Engineering, Vol. 34, pp. 87-94,

2016.

[23] U. Muhammad and M. Usman, “Multi-Level Mining and

Visualization of Informative Association Rules”, Journal of

Information Sciences and Engineering, Vol. 32, pp. 1061-

1078, 2016.

[24] D.J. Prajapati and S. Garg, “MapReduce Based Multilevel

Association Rule Mining from Concept Hierarchical Sales

Data”, Proceedings of International Conference on

Advances in Computing and Data Sciences, pp. 624-636,

2017.

[25] D.J. Prajapati, S. Garg and N.C. Chauhan, “MapReduce

based Multilevel Consistent and Inconsistent Association

Rule Detection from Big Data Using Interestingness

Measures”, Big Data Research, Vol. 9, pp. 18-27, 2017.

[26] T. Ban, M. Eto, S. Guo, D. Inoue, K. Nakao and R. Huang,

“A Study on Association Rule Mining of Darknet Big Data”,

Proceedings of International Conference on Neural

Network, pp. 1-7, 2015.

[27] J. Han and M. Kamber, “Data Mining Concepts and

Techniques”, Morgan Kaufmann Publishers, 2004.

