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Abstract 

Hierarchical Data mining using distributed environment is an 

imperative in big data analysis. Multilevel association rules can provide 

more substantial information than single level rules, and it also 

determines hierarchical knowledge from the dataset. Nowadays, 

numerous e-commerce and social networking sites generates vast 

amount of structural/semi-structural data in the form of sales data, 

tweets, text mails, web usages and so on. The data generated from such 

sources is so large that it becomes very difficult to process and analyze 

it using conventional approaches. This paper overcomes the computing 

limitation of single node by distributing the task on multi-node cluster. 

The performance of this system is compared based on minimum 

support threshold at diverse levels of concept hierarchy and by varying 

the dataset size. In this paper, the transactional dataset is created from 

huge sales dataset using Hadoop MapReduce framework. Then, two 

distributed multilevel frequent pattern mining algorithms MR-MLAB 

(MapReduce based Multilevel Apriori using Bottom-up approach) and 

MR-MLAT (MapReduce based Multilevel Apriori using Top-down 

approach) are implemented to find interesting level-crossing frequent 

itemset for each level of concept hierarchy. The hierarchical 

redundancy in multilevel association rules affects the quality of the 

market basket analysis. Hence, to improve the performance of the 

system, the hierarchical redundancy has to be removed from it. Finally, 

the time efficiency of proposed algorithms is compared with existing 

Traditional Multilevel Apriori (TMLA) Algorithm. The proposed 

algorithms with MapReduce framework are found efficient compared 

to the traditional algorithms. 

 

Keywords:  

Distributed Frequent Pattern Mining, Multi-Level Association Rule, 

MapReduce, Level Crossing Rules 

1. INTRODUCTION 

Association rule mining is one of the data mining techniques 

to discover the relationships in the given dataset. Related terms 

used in this paper are mentioned below. 

Itemset: Let I = {I1, I2, …, In} be a set of distinct items. A set of 

items (X) which is subset of I is called itemset. An itemset X with 

k distinct items is known as k-itemset [1].  

Association Rule: An association rule is represented in the form 

X → Y, where X and Y are the itemsets. This rule disclosures the 

connection between the itemset X with the itemset Y [2].  

• Big Data: Big data is a collection of huge data sets that are 

processed using traditional data processing tools [3]-[5].  

• Hadoop: Hadoop is an open-source MapReduce based 

programming model in the distributed processing [6].  

• Hadoop Distributed File System (HDFS): The Hadoop 

runtime system is attached with HDFS that supports 

parallelism and concurrency to obtain system reliability [6].  

• MapReduce: The MapReduce framework consists of two 

functions [7]: Mapper and Reducer. The Mapper function 

takes an input as <key, value> pair and generates a set of 

<key, value> pair as an intermediate result. The Reducer 

function receives an intermediate key generated and merges 

the values of the key.  

• Multi-level Association Rule Mining: Association rules 

produced from multiple levels of different concept hierarchy 

are known as multilevel association rules [8].  

• Level-crossing Association Rules: The set of association 

rules who’s antecedent and/or consequent have different 

level of hierarchy are called level-crossing association rules 

[9].  

In multiple-level association rule mining, the items exist in an 

itemset are categorized by conceptual hierarchy. By forming such 

a conceptual hierarchy, a procedure of determining association 

rules at multiple concept levels discovers more meaningful and 

interesting information from the data [10]. A sample concept 

hierarchy tree of AMUL dairy (the largest dairy of Asia) with 

taxonomy information is shown in Fig.1.  

Actual items are available at last level of concept hierarchy. In 

the concept-hierarchy tree, each node denotes a single item of an 

itemset. There are essentially four levels of the concept hierarchy 

in this dataset. At any level, item i is children of item at level i-1. 

Fresh Products and Frozen Products are two items at first level. 

Moreover, Fresh Products has two child nodes namely Milk 

Products and Milk. Frozen Products have Ice-cream and Snacks 

as children. Such hierarchy continues accordingly. Each node is 

allocated a number that represents its id. The encoding is carried 

out from left to right in a sequence. For example, the encoding 

value for Rose Lassi is 1111 where first digit indicates Fresh 

Products, second digit indicates Milk Products, third digit 

indicates Fresh.  
AMUL Dairy

 Products

 0

Fresh Products

 1

Frozen 

Products

 2

Milk Products

 11

Milk

 12

Fresh Lassi

 111

Curd

 112
Toned Milk

 121

Icecream

 21

Snacks

 22

Cup

 212

Family Pack

 211

Frozen Pizza

 221

Toned Bulk 

Curd

 1121

Skimmed Curd

 1122
Rose Lassi

 1111

Taaza Milk

 1211

Vanilla

 2111

Butter Scotch

 2121

Delicious Pizza

 2211
 

Fig.1. Sample Concept-Hierarchy AMUL Dairy Products with 

Taxonomy Information 

This research paper is summarized in three easy steps in brief: 

(i) In the first step, the distributed multilevel frequent pattern 
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mining algorithm using top-down and bottom-up approach is 

implemented to generate multi-level frequent itemsets including 

level crossing, (ii) In the second step, multi-level frequent 

itemsets are analyzed based on the retailer, (iii) Finally, the 

redundant rules are excluded for deriving interesting multilevel 

association rules. The proposed distributed multi-level frequent 

pattern mining algorithms are tested on hierarchical sales dataset 

of AMUL Dairy. 

The remaining of this paper is organized as follows. Related 

work is given in section 2. Section 3 shows the proposed 

methodology. In section 4, the performance of proposed method 

is assessed based on sales data. Finally, the conclusions and future 

scope are drawn in section 5. 

2. RELATED WORK 

Thakur et al. [9] proposed a top-down approach to reduce 

support and filter the transaction table, T for different levels of 

concept hierarchy. The processing time is improved and it 

generates less candidate itemsets. Han and Fu [10] generated 

more interesting multilevel association rules including level 

crossing using different interestingness measures. The Authors 

also suggest the improvement of the methods for mining single 

level association rules to multiple level association rules. Wan et 

al. [11] proposed a novel approach for efficiency, integrality and 

accuracy improvement from primitive concept level of hierarchy. 

The method proposed in this paper, also considers the dynamic 

concept hierarchies. By using this approach, different users can 

generate multilevel association rules based on requirement. The 

author also declared various issues for support calculation as well 

as multilevel association rules generation at specific level.  

The authors in [12] [13], proposed hierarchical redundancy 

removal approach using closed itemsets and generators. Author 

suggests that this approach can also be apply to the approximate 

basis rule for removal of redundancy and mining of more efficient 

frequent itemset. Hong et al. [14] proposed an incremental 

multilevel association rule mining algorithm based on the pre-

large concept and efficiently mining of the dataset with taxonomy 

information. The author proposed algorithm for reduction of 

mining cost. Gautam and Pardasani [15] proposed a method to 

discover frequent itemsets using Boolean matrix. The proposed 

approach scans the transaction database only once without 

generating itemsets. It also adopts the Boolean vector-based 

method to discover frequent itemset.  

Prakash et al. [16] proposed a novel approach for frequent and 

in-frequent interesting association rules mining by removing the 

redundant rules. The proposed approach discovers the complete 

rules based upon propositional logic. Gautam and Pardasani [17] 

proposed Partition and Boolean based method for frequent 

itemsets generation at each level of concept hierarchy by 

reduction of database scans, I/O cost and overhead of CPU. In this 

paper, a top-down frequent pattern mining approach is used for 

multi-level rules generation. Srivastava et al. [18] compared 

multilevel association rule mining algorithms based on number of 

transactions. In this paper, the performance the ML_TMLA 

algorithm is compared with ML_T2L1 and ML_T1LA algorithms 

for various values of minimum support threshold. The authors 

concluded that ML_TMLA algorithm is, more efficient than 

ML_T2L1 and ML_T1LA algorithms for lower minimum support 

and less efficient than ML_T2L1 and ML_T1LA algorithms for 

higher minimum support. The author also showed that the level 

crossing association rule mining algorithms ML_T1LA-C and 

ML_TMLAC are more efficient than the ML_T1LA and 

ML_TMLA algorithms, respectively, for lower minimum support 

threshold. 

Gautam and Shukla [19] proposed a reduced minimum 

support threshold at each level to reduces I/O operations and 

improve the efficiency. Karim et al. [20] proposed an improved 

MapReduce framework of distributed system to mine the 

business-related transactional datasets. The proposed model is 

highly scalable even though the database size is too large. In this 

paper, authors implemented “Associated-Correlated-

Independent” algorithm to mine the purchase rules more 

effectively. Zhuang and Wang [21] proposed a novel method for 

mining weighted concise association rules using closed itemsets 

and weighted support. Here, each item having different 

importance is assigned different weight to it. The proposed 

algorithm mines all the weighted association rules and prunes the 

duplicate weighted itemset. The experimental results show that 

the present algorithm is scalable in the case of time. 

Chandanan and Shukla [22] proposed an algorithm for 

hierarchical redundant rules removal using upper level closed 

frequent itemset and generator. The algorithm proposed in this 

paper decreases the length of the association rules for quality 

improvement and information loss reduction. Pumjun and 

Kreesuradej [23] proposed Incremental Multilevel Association 

Rule Mining of a Dynamic Database under a Change of a 

Minimum Support Threshold (IML-ARMCS) algorithm that 

maintains dynamic database with changing minimum support 

threshold means new transactions can be added dynamically. 

Authors compared execution time and number of database scans 

with existing ML-T2 algorithm. The algorithm proposed in this 

paper, cannot used when few transactions are removed from the 

actual dataset. Authors have suggested to extend the present 

algorithm for covering the multilevel reduced dataset as a future 

work. Muhammad and Usman [24] proposed a conceptual model 

to mine the multi-level association rules from real world datasets. 

The authors presented a method to discover multi-level 

association rules using multidimensional schema. Authors also 

presented hierarchical clustering at different levels of data 

abstraction.  

In big data analysis, mining huge pattern is more important for 

the transactional database containing unique itemset. However, 

some of the above-mentioned work deal with single level 

association rule mining using MapReduce and other work deals 

with multilevel association rule mining without use of distributed 

environment. Hence, the problem of multilevel association rule 

mining from huge data in distributed environment is novel idea to 

improve the time efficiency. The distributed multilevel frequent 

pattern mining algorithm using top-down and bottom-up 

approach is applied to generate level-crossing frequent itemsets. 

Existing TMLA algorithm [9] generates large candidate itemset 

and its execution time is also higher while dealing with big data. 

The proposed algorithms improve the drawback of existing 

traditional algorithms and also generate interesting hierarchical 

patterns. The objective of proposed work is to eliminate the 

drawbacks of relational database and facilitate MapReduce 
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framework to improve the execution time of the system and it also 

generates small candidate itemset. 

3. PROPOSED METHODOLOGY  

The proposed methodology with architecture is shown in 

Fig.2. The AMUL dairy sales data is given as input to distributed 

multilevel frequent pattern mining algorithm. The main drawback 

of existing multilevel frequent pattern mining algorithms is, (i) It 

generates a huge candidate itemsets; (ii) The execution time is 

also high while dealing with big data, and (iii) Some of the 

interesting level-crossing rules are missed completely. The 

distributed multilevel frequent pattern mining algorithm proposed 

in this paper removes these drawbacks. In the proposed 

methodology, once the actual transactional dataset is stored in 

HDFS, the entire dataset is divided into smaller parts. Then, each 

part is transformed to the data nodes.  

 

Fig.2. Proposed Methodology 

3.1 DISTRIBUTED MULTILEVEL FREQUENT 

PATTERN MINING ALGORITHM 

The distributed multilevel frequent pattern mining algorithms 

are categorized as MapReduce based Multilevel Apriori using 

Top-down Approach (MR-MLAT) and MapReduce based 

Multilevel Apriori using Bottom-up Approach (MR-MLAB). The 

proposed algorithms are improved versions of single level Apriori 

algorithm, where frequent itemsets are generated level wise as 

described in the following subsections. 

3.1.1 MR-MLAT Algorithm: 

Mapreduce based top-down approach produces huge frequent 

itemsets including level-crossing at different concept level. The 

Map function is executed on each data segment and it generates 

level crossing <key,value> pairs for each transaction of dataset. 

The MapReduce framework makes group of all <key,value> pairs 

with same items and also executes the Reducer function by 

passing the candidate itemsets. Map function generates local 

candidate itemsets in each database scan. Global counts are 

generated using Reduce function by adding individual local 

counts. For each level, the MapReduce function produces a 

frequent itemset including level-crossing at that specific level. 

The iteration continues until no further frequent itemsets are 

found for that level. The Reduce function sums up all the values 

of Map function and generates a count for the candidate itemset.  

The distributed frequent pattern mining algorithm MR-MLAT 

[25] [26] shown in Fig.3, uses notation CT[l,k] as a set of 

candidate k-itemset at level l without frequency count, C[l,k] as a 

set of candidate k-itemset at level l with frequency count, and 

L[l,k] as a set of frequent k-itemset at level l. A dataset is given to 

Mapper in line by line manner. Each line of transaction is split 

into itemsets followed by items. Here, number of digits in itemset 

is represented by String_length function and first n number of 

digits is represented by Sub_string function. The map function 

generates <itemset,1> as <key,value> pairs with level-crossing. 

The MapReduce framework generates all <key, value> pairs with 

same items and also executes the reducer function by passing the 

list of values for candidate itemsets. The output of mapper is 

combined by the reducer function and finally, frequent itemsets 

are generated. This computation process will be stopped if the 

reduce task cannot generate larger candidate itemsets.  

3.1.2 MR-MLAB Algorithm: 

In the case of top-down approach, for each level of concept 

hierarchy, the database is repeatedly scanned for each frequent 

itemset. This is main drawback of top-down approach. As 

compared to top-down approach, bottom-up approach scans the 

dataset only once for each level. In the proposed algorithm, 

candidate and frequent 1-itemset is generated for last level. The 

candidate 1-itemset at level l-1 is derived from level l by 

considering first l-1 digits. Then, respective minimum support 

threshold is applied to find frequent itemset of level l-1 to 1. Once, 

frequent 1-itemset is generated for each level, frequent k-itemset 

is calculated level wise in bottom-up manner. The distributed 

frequent pattern mining algorithm MR-MLAB shown in Fig.4, 

uses notations C[l,k] as a set of candidate k-itemset without level-

crossing at level l, CLC[l,k] as a set of candidate k-itemset with 

level-crossing only at level l, CF[l,k] as a set of all the candidate 

k-itemset including level-crossing at level l, and L[l,k] as a set of 

frequent k-itemset at level l. 

The Map1 function is executed on each data segment of the 

last level in concept hierarchy to generate <key,value> pairs. The 

transactional data is given as an input to the Map1 function, line 

by line. Each line is split into itemset and generates the output 

<key,value> pair consisting of the candidate itemset and value 1. 

Here, value is local frequency of the itemset. The Reduce1 

function combines the output of Map1 function and it generates 

the frequent itemset for that level. The Map2 function is used for 

finding the count of level-crossing itemset. The Map2 function 

takes input as <candidate itemset in the last level, value> pair and 

generates the output as a <candidate itemset at level L, count> 

pair. The String_length function returns number of digits in 

itemset. The Sub_string function gives first n digits from given 

itemset. The Reduce2 function adds up all the values of list having 

similar candidate itemset. It generates <candidate itemset, 

support_count> pair for the candidate itemset at that level. The 

illustration of this algorithm is given by following example. 

Input: Database in HDFS containing encoded concept hierarchy 

information (D), Maximum level of concept hierarchy 

(Max_level), Minimum Support Threshold for each level l 

(Min_sup [l]). 

Output: L [l], Level-crossing frequent itemsets for each level l. 

Method: 

Step 1: For each level l in concept hierarchy do  

Step 2: L[l,1] = find frequent1-itemsets from (D). 

Step 3: For each frequent k-itemset in level l do 
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Step 4: CT[l, k] = L[l, k-1]  L[l, k-1]. //Candidate itemset 

without level crossing 

Step 5: If (l > 1) then 

Step 6: For  j=1 to  l-1 do 

Step 7: CT[l, k] + = L[j, k-1]    L[l, k-1].   // Candidate itemset 

with level crossing 

Step 8: C[l, k] = Map(); // Apply Map function on CT[l, k] to 

generate the candidate itemsets 

Step 9: L[l, k] = Reduce(); // Apply Reduce function on C[l, k] 

to generate the frequent itemsets 

Step 10: L [l] = L [l] Uk L[l, k]. 

Map Function 

Input: Transaction Ti  

Output: <candidate itemset, value> 

Method: 

Step 11: For each transaction Ti  D do 

Step 12: For each itemset Si  in Candidate Itemset do 

Step 13: For each item Ii  Si do 

Step 14: n = String_length (Ii).  //  String_length function returns 

number of digits 

Step 15: If (Sub_string(Ii , n) ∉ Ti)  then // Sub_string function 

gives first n digits  

Step 16: Terminate the current itemset Si.  

Step 17: Generate the output <Si,1> as <key, value> pair.       

Reduce Function 

Input: <candidate itemset, list> 

Output: <frequent itemset, support_count> 

Method: 

Step 18: count = 0. 

Step 19: For each number in list do 

Step 20: count + = number. 

Step 21: If (count> = Min_sup) then 

Step 22: Generate the output <frequent itemset, count> as <key, 

value> pair. 

Step 23: End if 

Step 24: End For 

Fig.3 The MR-MLAT Algorithm 

Input: Database in HDFS containing encoded concept hierarchy 

information (D),  

Maximum level of concept hierarchy (Max_level),  

Minimum Support Threshold for each level l (Min_sup [l]). 

Output: L[l], Level-crossing frequent itemsets for each level l 

Method: 

Step 1: // Generation of frequent 1-itemset for each level l  

Step 2: For l = Max_level down to 1 do 

Step 3: If (l  =  Max_level) then  

Step 4: T[l,1] = Map1 (); // Apply Map1 function on all the items 

at level Max_level. 

Step 5: Else  

Step 6: T[l,1] = Sub_string (C[Max_level,1], l). // Sub_string 

function gives first l digits 

Step 7: C[l,1] = Reduce2 (); // Apply Reduce2 function on T[l,1]. 

Step 8: L[l,1]  = Reduce1 (); // Apply Reduce1 function on T[l,1]. 

Step 9: // Generation of frequent k-itemset for each level l  

Step 10: For l = Max_level down to 1 do 

Step 11: For each frequent k-itemset in level l do 

Step 12: If (l = = Max_level) then  

Step 13: C1[l, k] = C[l, k-1]  C[l, k-1].   

Step 14: T[l, k] = Map1 (); // Apply Map1 function on C1[l, k].    

Step 15: C[l, k] = Reduce2 (); // Apply Reduce2 function on T[l, 

k]  

Step 16: Else         

Step 17: T1[l, k] = Sub_string (C[Max_level , k] , l).   

Step 18: For each items x in itemset do 

Step 19: If any two items are not similar then  

Step 20: T2[l, k] = T1[l, k]; 

Step 21: C[l, k]  = Reduce2 (); // Apply Reduce2 function on T2[l, 

k] 

Step 22: If (l> 1) then   

Step 23: If (k = = 2) then  

Step 24: For j = l-1 down to 1   

Step 25: For each itemset x in C[j, k-1] do 

Step 26: For each itemset y in C[l, k-1] do 

Step 27: If x is not an ancestor of y then  

Step 28: C2[l, k] + = C[l, k-1]  C[j, k-1].  

Step 29: Else 

Step 30: C2[l, k] =  C[l, k-1]   CLC[l, k-1].  

Step 31: CT[l, k] = Map2 (); // Apply Map2 function on C2[l, k].    

Step 32: CLC[l, k]  = Reduce2 (); // Apply Reduce2 function on 

CT[l, k]  

Step 33: CF[l, k] = C[l, k] + CLC[l, k].  // Candidate itemset 

including level crossing  

Step 34: L[l, k]  = Reduce1 (); // Apply Reduce1 function on CF 

[l, k].    

Step 35: Else  

Step 36: L[l, k]  = Reduce1 (); // Apply Reduce1 function on C[l, 

k] 

Step 37: L [l] = L [l] Uk L[l, k]. 

Map1 Function 

Input: Transaction Ti  

Output: <candidate itemset, value> 

Method: 

Step 38: For each transaction TiD do 

Step 39: For each itemset Ii in Candidate Itemset do 

Step 40: If (Ii  Ti) then  

Step 41: Generate the output <Ii,1> as <key, value> pair.  

Map2 Function 

Input: <candidate itemset in the last level (CMax_level), value> 
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Output: <candidate itemset at level L, count> 

Method: 

Step 42: For each candidate itemset in CMax_level do 

Step 43: For each itemset Si  in Candidate Itemset  do 

Step 44: For each item Ii  Si do 

Step 45: n = String_length (Ii).  //  String_length function returns 

number of digits 

Step 46: If (Sub_string (Ii,n) ∉ CMax_level)  // Sub_string function 

gives first n digits  

Step 47: Terminate the current itemset Si.  

Step 48: count = CMax_level.value. 

Step 49: Generate the output <Si, count> as <key, value> pair.              

Reduce1 Function 

Input: <candidate itemset, list> 

Output: <frequent itemset, support_count> 

Method: 

Step 50: count = 0. 

Step 51: For each number in list do 

Step 52: count + = number. 

Step 53: If (count> = Min_sup) then  

Step 54: Generate the output <frequent itemset, count> as <key, 

value> pair. 

Reduce2 Function 

Input: <candidate itemset, list> 

Output: <frequent itemset, support_count> 

Method: 

Step 55: count = 0. 

Step 56: For each number in list do 

Step 57: count + = number. 

Step 58: Generate the output <frequent itemset, count> as <key, 

value> pair. 

Fig.4. The MR-MLAB Algorithm 

3.2 MOTIVATIONAL EXAMPLE 

Consider the dataset containing 8 transactions with minimum 

support threshold at level 3, 2 and 1 is 1, 2 and 3 respectively 

(Table.1).  

Table.1. Transaction Table 

Transaction ID Transactional Dataset 

T1 111,121, 211 

T2 111, 211, 222 

T3 122, 221 

T4 111,121 

T5 111,122,211,221 

T6 311, 411 

T7 113, 221, 231 

T8 112,131, 411 

First of all, candidate 1-itemset of level 3, C[3,1] is calculated 

by scanning the database. To prune the infrequent items at this 

level, minimum support threshold is applied. The frequent 1-

itemset, L[3,1] is generated for level 3. The candidate 1-itemset at 

level 2, C[2,1] is derived from C[3,1] by considering first two 

digits only. The minimum support threshold at level 2 is filter 

infrequent itemset and generates L[2,1]. Similarly, candidate 1-

itemset at level 1, C[1,1] is derived from C[3,1] by considering 

first digit only. 

The minimum support threshold at level 2 is filter infrequent 

itemset and generates L[1,1]. The result of candidate and frequent 

1-itemset along with support count (SC) at all the level is shown 

in Fig.5. 

3.2.1 L[3,2] - Level 3 Frequent 2-Itemset: 

C1[3,2] is calculated by joining C[3,1] with C[3,1] which 

generates 2-itemset pair as {111,112}, {111,113}, {111,121}, 

{111,122}, {111,131}, {111, 211}, {111, 221}, {111, 222}, {111, 

231}, {111, 311}, {111, 411}, and so on. The map1 function is 

applied on C1[3,2] which generates T[3,2]. The reduce2 function 

is applied on T[3,2] to generate C[3,2], candidate 2-itemset 

without level crossing only. The C2[3,2] is calculated by joining 

C[3,1] with C[2,1] and C[3,1] with C[1,1] after checking ancestor 

relationship among the items. The map2 function is applied on 

C2[3,2] which generates CT[3,2]. The reduce2 function is applied 

on CT[3,2] to generate CLC[3,2], candidate 2-itemset with level 

crossing only. Then, candidate 2-itemset including level crossing 

is generated by appending C[3,2] along with CLC[3,2] and result 

is stored in CF[3,2]. Finally, frequent 2-itemset is generated by 

applying reduce1 function on it. 

3.2.2 L[3,3] - Level 3 Frequent 3-Itemset: 

C1[3,3] is calculated by joining C[3,2] with C[3,2] which 

generates 3-itemset pair as {111,112,113}, {111,112,121}, and so 

on. The map1 function is applied on C1[3,3] which generates 

T[3,3]. The reduce2 function is applied on T[3,3] to generate 

C[3,3], candidate 2-itemset without level crossing only. The 

C2[3,3] is calculated by joining C[3,2] with CLC[3,2]. The map2 

function is applied on C2[3,3] which generates CT[3,3]. The 

reduce2 function is applied on CT[3,3] to generate CLC[3,3], 

candidate 3-itemset with level crossing only. Then, candidate 3-

itemset including level crossing is generated by appending C[3,3] 

along with CLC[3,3] and result is stored in CF[3,3]. Finally, 

frequent 3-itemset is generated by applying reduce1 function on 

it. Similarly, for level 3 frequent 4-itemset and 5-itemset is 

generated. Here, frequent 5-itemset is NULL.  

3.2.3 L[2,2] - Level 2 Frequent 2-Itemset: 

T1[2,2] is generated from C[3,2] by considering only first two 

digits of each itemset. The similar items in a itemset is filtered and 

result is stored in T2[2,2]. The 2-itemset pair is generated as 

{11*,12*}, {11*,13*}, and so on. The reduce2 function is applied 

on it to generate C[2,2], candidate 2-itemset without level 

crossing only. The C2[2,2] is calculated by joining C[2,1] with 

C[1,1] after checking ancestor relationship among the items. The 

map2 function is applied on C2[2,2] which generates CT[2,2]. 

The reduce2 function is applied on CT[2,2] to generate CLC[2,2], 

candidate 2-itemset with level crossing only. Then, candidate 2-

itemset including level crossing is generated by appending C[2,2] 

along with CLC[2,2]. Finally, the frequent 2-itemset is generated 

by applying reduce1 function on it. 
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3.2.4 L[2,3] - Level 2 Frequent 3-Itemset: 

T1[2,3] is generated from C[3,3] by considering only first two 

digits of each itemset. The similar items in an itemset are filtered 

and result is stored in T2[2,2]. The 3-itemset pair is generated as 

{11*,12*,13*}, and so on. The reduce2 function is applied on it 

to generate C[2,3], candidate 3-itemset without level crossing 

only. The C2[2,3] is calculated by joining C[2,2] with CLC[2,2]. 

The map2 function is applied on C2[2,3] which generates 

CT[2,3]. The reduce2 function is applied on CT[2,3] to generate 

CLC[2,3], candidate 3-itemset with level crossing  only. Then, 

candidate 3-itemset including level crossing is generated by 

appending C[2,3] along with CLC[2,3] and result is stored in 

CF[2,3] file. Finally, frequent 3-itemset is generated by applying 

reduce1 function on it. Similarly, for level 2 frequent 4-itemset is 

generated. Here, frequent 4-itemset is NULL.  

3.2.5 L[1,2] - Level 1 Frequent 2-Itemset: 

T1[1,2] is generated from C[3,2] by considering only first digit 

of each itemset. The similar items in a itemset is filtered and result 

is stored in T2[1,2]. The 2-itemset pair is generated is {1**, 2**}, 

{1**, 3**}, and so on. The reduce2 function is applied on it to 

generate C[1,2], candidate 2-itemset without level crossing only. 

Since there is no ancestor of level 1, there do not exist level 

crossing itemset pair. Finally, frequent 2-itemset is generated by 

applying reduce1 function on it. 

3.2.6 L[1,3] - Level 1 Frequent 3-Itemset: 

T1[1,3] is generated from C[3,3] by considering only first digit 

of each itemset. The similar items in a itemset is filtered and result 

is stored in T2[1,3]. The 3-itemset pair is generated i.e. {1**, 2**, 

3**}, {1**, 2**, 4**}, and so on. The reduce2 function is applied 

on it to generate C[1,3], candidate 3-itemset without level 

crossing only. Since there is no ancestor of level 1, there do not 

exist level crossing itemset pair. Finally, frequent 3-itemset is 

generated by applying reduce1 function. Here, frequent 3-itemset 

is NULL. Hence, the algorithm will terminate. 

3.3 MULTILEVEL ASSOCIATION RULE 

GENERATION 

The distributed multilevel frequent mining algorithm 

generates frequent itemsets for each level with level crossing 

frequent itemset. Multilevel association rules are generated based 

on following steps [27,28]. 

1) For all the level of concept hierarchy,  

a) Generate all non-empty subsets of f for each level-

crossing frequent k-itemset f. 

b) Generates the multilevel association rule as s → (f - s) 

such that (Support(f) / Support (s)) ≥ min_conf, where, 

min_conf is the minimum confidence threshold at that 

level repeat this for every non-empty subset s of f. 

C[3,1] L[3,1] C[2,1] L[2,1] C[1,1] L[1,1] 
 

Item 
Support  

Count 

111 4 

112 1 

113 1 

121 2 

122 2 

131 1 

211 3 

221 3 

222 1 

231 1 

311 1 

411 2 

Item 
Support  

Count 

111 4 

112 1 

113 1 

121 2 

122 2 

131 1 

211 3 

221 3 

222 1 

231 1 

311 1 

411 2 
 

 

Item 
Support  

Count 

11* 6 

12* 4 

13* 1 

21* 3 

22* 4 

23* 1 

31* 1 

41* 2 

Item 
Support  

Count 

11* 6 

12* 4 

21* 3 

22* 4 

41* 2 
 

Item 
Support  

Count 

1** 11 

2** 8 

3** 1 

4** 2 
 

Item 
Support  

Count 

1** 11 

2** 8 
 

Fig.5. Candidate and Frequent 1-itemset for level 3, 2 and 1 

3.4 ELIMINATING HIERARCHICAL 

REDUNDANT RULES  

Due to “ancestor” relationships among items, even though 

multilevel association rules are generated with high confidence 

threshold, then also, large numbers of redundant rules are 

generated. The processing of such redundant rules can take a long 

time, so the performance is degraded. To overcome this problem, 

hierarchical redundant rules are eliminated. The primary idea for 

the redundancy elimination is to improve the quality as well as 

importance of the rules without loss of any information [28]. In 

the case of top-down approach, candidate itemset of current 

iteration is calculated based on join operation on frequent itemset 

of previous iteration; while in the case of bottom-up approach, 

candidate itemset of current iteration is calculated based on join 

operation on candidate itemset of previous iteration. Thus, the 

top-down approach excludes some of the hierarchical interesting 

association rules while bottom-up approach will not. For example, 

Suppose the hierarchical dataset have three levels L1, L2 and L3. 

Minimum support threshold for each level is 5, 4 and 3 

respectively i.e. MSL1 = 5, MSL2 = 4 and MSL3 = 3. Suppose the 

item 1**, 22* and 333 have support count values 4, 3 and 3 

respectively. In the case of top-down approach,1** and 22* are 

not frequent so while calculating candidate 2-itemset; 1** and 22* 

will never be considered. Hence, for all the rules containing 1** 

and/or 22* as a subset of consequent and/or antecedent; will never 

be obtained. While in the case of bottom-up approach, even if 1** 

and 22* are not frequent 1-itemset then also they are considered 

while calculating candidate 2-itemset.  
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4. EXPERIMENTAL SETUP AND RESULTS 

For the experimental purpose, a cluster of four computers with 

i5 processor and 4GB DDR-3 RAM are used. The proposed 

algorithms are tested on AMUL dairy sales data containing more 

than 1500 different dairy products. For this experiment, the 

dataset of last two years having size 5GB is used and it can be 

extended further. The distributed multilevel frequent pattern 

mining algorithms are applied only on concept hierarchical 

dataset. So, the preprocessing is useful to transform sales dataset 

into hierarchical form.  

4.1 GENERATION OF MULTILEVEL FREQUENT 

PATTERN 

The transactional big dataset is given as input to the TMLA, 

MR-MLAT and MR-MLAB algorithms to generate frequent 

itemsets without level-crossing and including level-crossing.  

4.1.1 Multilevel Frequent Pattern Mining without Level 

Crossing: 

Minimum support threshold needs to be adjusted properly to 

reduce missing of interesting multilevel association rules. Thus, 

minimum support threshold is adjusted such that it decreases from 

higher level to lower level of the hierarchy tree. The execution 

time for the TMLA, MR-MLAT and MR-MLAB algorithms 

applied on the 5GB dataset distributed over single node clusters 

for reducing minimum support threshold level wise is shown in 

Fig.6. The level wise minimum support threshold 4-3-2-1 

indicates min_sup of 4% for level 1, 3% for level 2, 2% for level 

3 and 1% for level 4, respectively. For this experiment, 8 mappers 

and 3 reducers are used. It is observed that the execution time of 

the proposed MR-MLAB and MR-MLAT algorithms is 

significantly lower as compared to TMLA algorithm. 

 

Fig.6. Level-wise Minimum Support Threshold vs. Execution 

Time  

4.1.2 Multilevel Frequent Pattern Mining including Level 

Crossing: 

The minimum support threshold is considered similar for all 

the levels of concept hierarchy for generating multilevel frequent 

itemsets. For this experiment, 8 mappers and 3 reducers are used. 

The results of TMLA, MR-MLAT and MR-MLAB algorithms on 

AMUL datasets for the varying database size 256MB, 

512MB,1GB, 2GB and 5GB is applied on single node cluster with 

minimum support threshold of 1% is shown in Fig.7. For a data 

set of size 5GB that was distributed on single node, the execution 

time for the TMLA, MR-MLAT and MR-MLAB algorithms are 

68000 seconds, 4800 seconds and 3120 seconds respectively. The 

experiment shows that the execution time of proposed algorithms 

is less as compared to the traditional approach. The performance 

of proposed algorithms is improved compared to TMLA 

algorithm for large dataset.  

 

Fig.7. Dataset Size vs. Execution Time for Single Node Cluster 

Similarly, the results of MR-MLAT and MR-MLAB 

algorithms on AMUL datasets for the varying database size 

256MB, 512MB,1GB, 2GB and 5GB is applied on multi-node 

clusters of two nodes and three nodes with minimum support 

threshold of 1% are shown in Fig.8 and Fig.9, respectively. For 

the small dataset size, the execution time of both the algorithms is 

almost closer but when the size of dataset increases, the execution 

time of bottom-up approach is considerably less as compared to 

the top-down approach. It can be observed from the experimental 

results that the performance of the algorithm depends on the 

number of nodes and the size of dataset. So, in order to improve 

the time efficiency, the number of nodes must be increased with 

an increased database size. When the number of processors is 

increases in private hadoop cluster then the privacy is not reduced 

necessarily since we would be controlling all of the nodes. The 

privacy may be loss up to some extend if a MapReduce job is 

deployed on a public cloud. 

 

Fig.8 Dataset Size vs. Execution Time for Two Node Cluster 

The results of MR-MLAT and MR-MLAB algorithms on 5GB 

AMUL datasets is applied on single node, two node and three 

node cluster with minimum support threshold of 1% is shown in 
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Fig.10. The experimental results shows that the execution time of 

MR-MLAT algorithm on single node, two node and three node 

cluster is 4800 seconds, 3891 seconds and 2418 seconds, 

respectively. Thus, the speedup of two node cluster with respect 

to single node is 1.234 times and three node cluster with respect 

to single node is 1.985 times. Similarly, the execution time of 

MR-MLAB algorithm on single node, two node and three node 

cluster are 3120 seconds, 2489 seconds and 1565 seconds, 

respectively. Thus, the speedup of two node cluster with respect 

to single node is 1.254 times and three node cluster with respect 

to single node is 1.994 times.  

 

Fig.9. Dataset Size vs. Execution Time for Three Node Cluster 

 

Fig.10. Time Efficiency Comparison based on Number of Nodes 

in a Cluster 

The results of TMLA, MR-MLAT and MR-MLAB algorithms 

on 5GB AMUL dataset for the varying minimum support 

threshold of 1% to 5% is applied on single node cluster as shown 

in Fig.11. The experiment shows that the execution time of 

proposed algorithms is significantly improved compared to 

traditional approach.  

4.2 HIERARCHICAL INTERESTING 

ASSOCIATION RULE GENERATION 

After finding level-crossing frequent k-itemset for each level, 

hierarchical redundant association rules are removed from it. For 

this experiment, the number of hierarchical redundant association 

rules is calculated for minimum confidence threshold, which 

varies from 40% to 90% and minimum support threshold varies 

from 1% to 5%, as shown in Fig.12. For this experiment,12 

mappers and 3 reducers are used. It can be observed from the 

graph that a smaller number of hierarchically redundant rules is 

generated for the minimum confidence threshold ≥ 70% and 

minimum support threshold ≥3%. The hierarchical association 

rules which are generated using MR-MLAB algorithm, MR-

MLAT algorithm and TMLA algorithm for the minimum support 

threshold of 1% and minimum confidence threshold varying from 

40% to 90% are shown in Fig.13. It can be observed that MR-

MLAB algorithm generates additional hierarchical interesting 

association rules as compare to other two algorithms.  

4.3 COMPARATIVE ANALYSIS OF MULTILEVEL 

FREQUENT PATTERN MINING 

ALGORITHMS  

The proposed MR-MLAT and MR-MLAB algorithms are 

compared with the TMLA algorithm [9] and also with the 

algorithm proposed by Chandanan and Shukla [22], based on 

various parameters. For this experiment, multilevel frequent 

pattern mining algorithms are compared based on approach, 

efficiency, number of database scans, effectiveness of algorithm, 

dependent on levels of concept hierarchy, database scalability and 

removal of hierarchical redundancy as shown in Table.2.  

 

Fig.11. Minimum Support Threshold vs. Execution Time (s) 

 

Fig.12. Minimum Confidence Threshold vs. Hierarchical 

Redundant Rules  

The experimental results shows that multilevel distributed 

frequent pattern mining using top-down and bottom-up approach 

is more efficient as compare to other two algorithms.  
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Table.2. Comparative Analysis of Apriori based Multilevel Frequent Pattern Mining Algorithms 

Parameters TMLA [9] 
Chandanan and  

Shukla [22] 
MR-MLAT MR-MLAB 

Approach Top-down Top-down Top-down Bottom-up 

Time Complexity O(l2*k) NA O (l2*k) O(l*k) 

Database Scans 
1 1

[ , ]
l k

i j

L j i
= =

  NA 
1 1

[ , ]
l k

i j

L j i
= =

  max_

1

[ ]
k

level

j

L j
=

  

Exclusion of Hierarchical Interesting Association Rules Yes Yes Yes No 

Dependency on Levels of Concept Hierarchy High High High Low 

Database Scalability No No Yes Yes 

Removal of Hierarchical Redundancy  No Yes Yes Yes 

The experimental results also show that top-down approach 

excludes some of the hierarchical interesting association rules as 

compared to bottom-up approach. Hence, the MapReduce based 

bottom-up approach is much better compare to other three 

algorithms. In Table.2, L[j,i]  indicates frequent j-itemset at level 

i, L[j] indicates frequent j-itemset at last level and NA indicates 

not available. 

 

Fig.13. Minimum Confidence Threshold vs. Hierarchical 

Interesting Rules  

5. CONCLUSIONS AND FUTURE SCOPE 

Traditional multilevel association rule mining algorithms are 

not effectively used for analysis of huge data. HDFS and 

MapReduce based algorithm plays a vital role for analysis of such 

data. In this paper, MapReduce based distributed frequent pattern 

mining approach is presented to process the transactional dataset. 

MR-MLAB and MR-MLAT based on top-down and bottom-up 

approaches respectively are proposed to mine multilevel 

association rules for the same level as well as on different level of 

concept hierarchy. The experimental results show that the 

distributed frequent pattern mining algorithms are linearly 

scalable with respect to number of nodes in cluster and size of the 

dataset. The experimental results also show that even though size 

of dataset increases, the proposed algorithms generate less 

candidate itemset and uses less message passing. Hence, the 

execution time of the proposed algorithms is relatively lower. It 

was observed that in order to reduce execution time, the number 

of nodes must increase with an increase in database size. For 

higher value of minimum confidence threshold and minimum 

support threshold, numbers of hierarchically redundant rules are 

relatively less. The experimental results also show that TMLA 

and MR-MLAT algorithm excludes some of the hierarchical 

interesting association rules as compare to MR-MLAB algorithm. 

The proposed algorithms are more flexible, scalable and efficient 

distributed multilevel frequent pattern mining algorithm for 

mining big data. The given approach is much more helpful in 

analysis of big data and support decision system. The time 

efficiency of the proposed algorithms can be yet improved by 

using FP-tree based data structures for the candidate itemset 

generation. 
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