
DEBABRATA DATTA et al.: EXAMINATION SCHEDULER USING A LINEAR-TIME GRAPH COLORING ALGORITHM

DOI: 10.21917/ijsc.2022.0382

2678

EXAMINATION SCHEDULER USING A LINEAR-TIME GRAPH COLORING

ALGORITHM

Debabrata Datta, Rush Guha, Neelabha Banerjee, Sohan Adhikary and Anal Acharya
Department of Computer Science, St. Xavier’s College, India

Abstract

The primary aim of the study aims to provide a solution for scheduling

examinations for most of the universities and colleges across India

which follow the Choice Based Credit System (CBCS) using a graph

coloring algorithm. Nowadays, due to the flexibility of opting various

subjects, and many students taking up different courses in their

colleges and universities, it becomes difficult to schedule these

examinations. Creating an examination schedule can be quite

challenging and time-consuming for controlling the body of an

examination. Our research work focuses on reducing the efforts for

scheduling such examinations. With the knowledge of graph theory

and graph traversing and coloring algorithms, our algorithm with the

help of a few assumptions gives an efficient solution to the examination

scheduling problem. A detailed correctness proof along with

performance analysis has been done. The efficiency of our proposed

algorithm is then compared to that of the coloring algorithm using

backtracking.

Keywords:

Examination Scheduling, Graph Coloring Algorithm, Bipartite

Graphs, NP-Complete Problem, Linear Time Complexity, Meta-Graph

1. INTRODUCTION

The current flexible educational setup of our country allows

students to opt for various subjects from various fields according

to their choice. This leads to the cluttering of students among

various subjects and is a challenge for the administrative body of

the institutions to schedule the examinations in a manner such that

courses having common students do not fall on the same date.

Courses with no common students however can be evaluated on

the same day. Many students having a variety of subjects might

overwhelm the officials to arrange the exams within a particular

span such that there is no clash of timings for any student. Without

which some students may suffer due to lack of proper evaluation.

Also, a lengthy schedule may result in increase of expenses for

the education body and the students may slack off.

Our algorithm strives to solve this problem by scheduling

examinations within minimum days without clash of timings. The

students will be able to give their examinations for their respective

chosen subjects easily and without time clashes, making it flexible

and easy for them to prepare for the same. We are going to use the

celebrated coloring properties of a graph. With vertices

representing the courses and edges representing whether there are

any common students between two courses, a graph can be

constructed. Now, coloring that graph with minimum colors

(based on the chromatic number of the respective graph) and

applying partitioning based on the independent sets will allow us

to schedule the examinations in an efficient way and hence solve

the problem. This will not only make computation elegant and

faster but also avoid unnecessary elongation of the examination

period.

The objective of the algorithm is:

• To find out which subjects have common students, thus they

cannot be scheduled together.

• To schedule examinations within minimum days.

The main purpose of developing such an algorithm is two-

fold:

• We aim to make choosing subjects more flexible for students

so that they can learn whatever they want, without facing the

problem of exam time clashes.

• We wish to reduce the workload of the administrative body

of the educational institutes to schedule the examinations

without much fuss.

2. MATHEMATICAL PREREQUISITES

2.1 GRAPH DEFINITION

An undirected graph G is an ordered pair (V,E) where V is a

set of vertices and E is a set of non-directed edges between

vertices, such that E[V]2, i.e. the elements of E are 2-element

subsets of V. A graph can be represented using adjacency lists or

adjacency matrix.

2.2 CONNECTIVITY

A walk is a list v0, e1, v1,..., ek, vk of vertices and edges such

that, for 1 ≤ i ≤ k, the edge ei has end vertices vi-1 and vi.

A u-v path is a path in a non-empty graph G = (V,E) of the

form V = x0, x1,..., xk and E = x0, x1, x2,..., xk-1, xk, where xjis are all

distinct.

If P = x0, x1,...,xk-1, is a path and k ≥ 3, then the graph C := P +

xk−1x0 is called a cycle. The length of a cycle is its number of edges

(or vertices), the cycle of length k is called a k-cycle and denoted

by Ck. As stated by West [10], the following lemma is useful in

this connection:

Lemma 2.1. Every u-v walk contains a u-v path.

2.3 BIPARTITE GRAPHS

Now, let us characterize bipartite graphs using cycles. A walk

is odd or even as its length is odd or even. As in Lemma 2.1, a

closed walk contains a cycle C if the vertices and edges of C occur

as a sub-list of W, in cyclic order but not necessarily consecutive.

We can think of a closed walk or a cycle as starting at any vertex,

the next lemma requires this view point.

A bipartition of G is a specification of two disjoint

independent sets in G whose union is V(G). The statement ‘Let G

be a bipartite graph with bipartition X, Y’ specifies one such

partition. An X, Y - bigraph is a bipartite graph with bipartition X,

Y. The sets of bipartitions are partite sets. As mentioned by Konig

[5], we have the following theorem:

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2679

Theorem 2.1 (Konig’s Theorem). A graph is bipartite if and only

if it has no odd cycle.

2.4 GRAPH COLORING

A coloring of a graph is an assignment of colors to its vertices

so that no two adjacent vertices have the same color. The set of

all vertices with any one color is independent and is called a color

class.

 Fig.1. Three colorings of a Graph

The chromatic number χ(G) is defined as the minimum

number ‘n’ for which G has an n-coloring. A graph G is n-

colorable if χ(G)n and is n-chromatic if χ(G) = n.

Since G obviously has a p-coloring and a χ(G) - coloring, it

must also have an n-coloring whenever χ(G)<n<p. The graph of

Fig.1 is 2-chromatic; n-colorings for n = 2, 3, 4 are displayed, with

different colors.

2.4.1 Chromatic Partitioning:

As mentioned by Liu [11], the proper coloring of a graph G

induces a partitioning of its vertex set V(G) into different subsets

based on its colors. In Fig.1(b), it is seen that the vertices can be

partitioned into three sub-sets based on the colors red, blue and

green.

It may be observed that no two vertices in any of the set three

subsets are adjacent. Such a subset is called an independent set.

A set of vertices in a graph is said to be independent set if and

only if no two vertices in the set are adjacent.

A maximal independent set is an independent set in which no

other vertex can be added without affecting its independence

property. Our primary concern in this paper i.e., an optimal

scheduling of examinations reduces to find the independent sets

in the input graph G which belongs to the NP-hard class.

3. RELATED LITERATURE

General graph coloring algorithms have become common and

have already been extensively studied by researchers. Various

approaches have already been used to solve the scheduling

problems.

Akbulut and Yilmaz [3] have considered a system aimed to

schedule different exams in the same halls simultaneously. The

main motive was to use hall ‘capacity more efficiently and

decrease cheating attempts considerably. In their work, they have

considered the final exam weeks of the universities as their main

problem to be solved. The students appearing for different exams

can sit beside each other so that the capacity of the hall will

increase. However, at this point, the coordination problem of the

students’ seating positions will arise. The solution that they came

up with is to identify each student with an Radio Frequency

Identification (RFID) tag. The card reader reads the scheduled

exams of the particular student and displays them on a screen.

They made use of two algorithms: A Hybrid Approach and their

Graph Coloring Algorithm.

Malkawi and Hassan [2] aimed at solving the exam scheduling

problem by using the node graph coloring technique. In their

paper, they tried to achieve the objectives of fairness, accuracy,

and optimal exam time period with respect to exam scheduling.

The noteworthy point is that they considered some important

assumptions and constraints, closely related to the general exam

scheduling, and mainly driven from the real-life requirements

collected through the experience at various universities. Such

assumptions and constraints were distinct from those present in

more general graph coloring problems.

Leighton [9] has introduced a new Recursive Largest First

(RLF) coloring algorithm in his paper and compared it to various

known algorithms. Various other existing coloring procedures

were presented and their performance comparison with respect to

the RLF algorithm was done on a wide range of test data. He came

up with a procedure for generating random graphs with known

chromatic numbers. This provided a standard method for testing

the accuracy of graph coloring algorithms.

On the other hand, Mehta [7] in his paper expanded the

objective of examination scheduling to not just deriving a conflict

free minimum time period schedule. He proved that when the

number of minimum time frame solutions become greater than the

number of time frames in which the examinations are required to

be scheduled then there will be a problem of finding a schedule

with a minimum number of conflicts. This paper explains one of

the faster heuristic procedures for scheduling semester

examinations for a particular college.

Bharti [4] under the supervision of Kumar considered the

construction of the exam schedule as a part of the time table

problem which is basically are source allocation problem. Time

tabling is basically a procedure to schedule a set of slots for a

particular work and the table itself is a series of events arranged

according to their schedule. In this thesis they attempted to

compare the two cases of exam scheduling (i.e., one with

consecutive exams when syllabus is less and the other being no

consecutive exams to be set when syllabus is more) based on

graph coloring approach.

In any educational institution, course time tabling and exam

time tabling are the two most common academic scheduling

problems. Ganguli and Roy [8], had collaborated in a paper in

which their sole focus was on college course time tabling where

both hard and soft constraints had been considered. After properly

coloring the course conflict graph and transforming the coloring

into conflict-free time slots of courses, they constructed the graph

with courses as nodes and edges drawn between conflicting

courses i.e., having common students. Since there is no fixed

algorithm to solve a scheduling problem whose complexity is

directly proportional to the number of constraints involved, they

considered a typical honor (major) and general (minor) course

combination scheduling problem under university curriculum.

4. PROPOSED METHODOLOGY

In this part we come to the proposed algorithm for scheduling

the exams (in section 4.2.2). A small test case is shown in section

DEBABRATA DATTA et al.: EXAMINATION SCHEDULER USING A LINEAR-TIME GRAPH COLORING ALGORITHM

2680

in order to explain the step-by-step execution of the algorithm.

Later its correctness proof has been done along with the analysis

of its running time in section 5. This coloring algorithm is then

compared with the Naïve Graph Coloring algorithm using

backtracking (as proposed in section 4.1), where it is observed

that although both the algorithms strive to solve the same

problem, the coloring algorithm proposed in this paper (in section

4.2.2) has an edge over the running time and efficiency of the

naïve algorithm. In order to achieve fairness, as discussed in the

Introduction section, a few constraints have been taken into

consideration:

a) A student can be assigned at most one examination in the

same time period.

b) A student can have only one examination scheduled on the

same day.

c) The number of students taking up the exam is less than the

number of examination halls present in the college.

d) There is a fixed number of time slots available on a

particular day for examinations to be scheduled.

e) A student is not doing a double major.

4.1 GRAPH COLORING ALGORITHM USING

BACKTRACKING

Input: An undirected graph G=(V,E), where the vertices denote

the set of courses and there is an edge between any two vertices if

and only if there is any common student between the two courses.

The cardinality of the vertex set V is n = |V| and that of the edge

set E is m = |E|.

Output: A sequence of scheduled timeslots.

Pseudocode:

C := An array containing the ‘v’ colors used for graph coloring

Procedure getColor (starting vertex s)

{

Select color c from C

colors := c

delete c from C

for every vertex v of the remaining n-1 vertices by backtracking

select color k from C

if k is already used to color the adjacent vertices of v

color v := the next color in C

else

color v := k

end loop

}

In the above algorithm, the for loop is executed at most n-1

times and as there are ‘v’ colors available in C, the total number

of possible color configurations are vn. Thus, the time complexity

of this algorithm is O(nvn), i.e., exponential, which is very large.

The major drawbacks of this algorithm are:

a) It does not always use a minimum number of colors as this

problem belongs to the NP-complete class of problems.

b) The number of colors used, sometimes depends on the

order in which the vertices are processed.

4.2 PROPOSED GRAPH COLORING ALGORITHM

USING BIPARTITE PROPERTY OF GRAPH

4.2.1 Preliminaries:

Following are few assumptions that are required for the

algorithm to function correctly:

1. Each student in a respective semester is assumed to take an

equal number of Core and General Elective (G.E.) and

other compulsory papers. For example, as discussed in the

test case in Section 7.1, for each undergraduate student in

the third semester, the number of papers must be 4 (3 Core

papers, 1 G.E. paper).

2. The degree of all the Core vertices is assumed to be the

same for all departments.

3. A student does not have any double majors.

4. There may exist at least one course which is taken by each

and every student in the college.

5. Each department has its respective G.E. courses which

must be taken by at least one student from at least two

departments.

6. A student can take only one G.E. paper in a particular

semester.

The algorithm follows these basic steps:

i) If assumption 4 holds, i.e., there is at least one course

which is taken by each and every student, then that

respective vertex is assigned a color first. Then that vertex

is deleted from the graph.

ii) Next, the graph G is converted into a meta-graph M(G)

which takes the set of vertices for the core papers of one

department as one single super vertex with respect to the

Department Core papers and the respective G.E. papers as

its vertices. So, we map the total edges incident from a

respective department on each G.E. to a single edge.

iii) The meta-graph M(G) obtained is claimed to be bipartite

and the two independent sets consisting of Core and G.E.

can be quite easily detected through a single Breadth-First-

Search method.

iv) Then, we color the vertices present in G.E. set with a single

color, i.e., they can be scheduled in a single day.

v) And for the Core set, we make an observation: Let us have

‘k’ meta-core nodes and suppose the ith meta-core node has

mi vertices in it. Then, the total number of nodes to be

colored is
1

k

i

i

m
=

 .

4.3 ALGORITHM

Input: An undirected graph G = (V,E), where the vertices denote

the set of courses and there is an edge between any two vertices if

and only if there is any common student between the two courses.

The cardinality of the vertex set V is n = |V| and that of the edge

set E is m = |E|. The number of core papers (d) in a semester.

Output: A sequence of scheduled time slots.

Pseudocode:

C: = An array containing the colors used for graph coloring

d: = The number of Core papers in a semester

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2681

M: = Meta Graph of G

H: = An empty array for final scheduling purpose

Procedure Scheduling (G)

{

If there is a vertex v with degree = n-1 //for a compulsory paper

Select a color c from C

color v := c //assigning color to compulsory paper

obtain graph G’ by deleting v from G

delete color c from C

create a meta-graph M(G’)

get partition of G.E. and Core vertices of M

select a color p from C

for every vertex v in set G.E. //assign the same color to all G.E.

papers

color v: = p

end loop

delete color p from C

select a color subset K of size d from C

for every vertex u in set Core //using ‘d’ number of colors to

color vertices of Core

for every vertex u’ in u

assign a distinct color t from K to u’

end loop

end loop

get the chromatic partitions x of the vertices and perform

scheduling

map every element of x to H //mapping all vertices to H based

on their color

return H// H contains the sequence of vertices ready for

scheduling

end procedure Scheduling

5. CORRECTNESS

In order to prove that the algorithm runs correctly, it is

required to prove a few necessary observations as stated below:

Claim 5.1. The input graph G is connected.

Proof. Let us assume if possible, the graph is disconnected.

Thus, ∄u-v path ∀u,v ∈ V(G)

Now define two sets Xu and Yv such that Xu: ={x|∃u-xpath},

Yv:={y|∃v-ypath}.

Clearly, X, Y are non-empty (∵ u∈X, v∈Y).

Also, X ∩ Y = φ (∵ we assumed the graph is disconnected)

But since assumption 4 in section 4.2.1 holds, i.e., there exists

a course which is taken by all the students,

⇒∃a node, n ∈ V(G) such that (x,n) ∈ E(G) ∀ x ∈ V(G).

⇒X ∩ Y ≠ φ (∵n ∈ X ∩ Y).

This is a contradiction to our assumption that the graph is

disconnected. Hence, it is proved that the input graph G is

connected.

Claim 5.2. In the metagraph M(G) constructed by the algorithm,

the meta core vertices consist of the set of vertices that correspond

to a sub-graph H(G), which is a complete graph.

Proof. It is to be shown that (u,v) ∈ E(H) ∀u,v ∈ V(H). For this,

we perform induction on the number of vertices.

Let our induction hypothesis,

P(n): = For a graph H consisting of ‘n’ vertices, i.e., the

number of edges is

 |E(H)| = n(n-1)/2 ∀ n ∈ N (1)

Basis Step (n=2): P(2) is true, as when there are just two

vertices in H and number of edges is |E(H)| = 2(2-1)/2 = 1 which

is true (by Claim 5.1).

Inductive Step: Assume that P(n) is true, i.e., Eq.(1) holds for

some non-negative integer n. Then adding another vertex in H, we

have, |E|=
()1

2

n n+
+n (∵adding a vertex means adding a Core

course which must have students in common to all other Core

courses of a respective department).

 |E(H)| =
()1

2

n n
n

+
+ =

()1 2

2

n n n− +
=

2

2

n n+
 =

()1

2

n n+

This proves P(n+1) is true. So, it follows by induction that

P(n) is true ∀n∈N.

Claim 5.3. The meta-graph M(G) constructed by the proposed

algorithm in Section 4.2.2 is bipartite.

Proof. Let us define two sets X, Y such that,

X: = {u| u is a Core vertex}

Y: = {v| v is a G.E. vertex}

Clearly, X ∩ Y = φ (∵a vertex cannot be both Core and G.E.).

Also, since, the meta-graph consists of only meta-Core and G.E.

vertices, X ∪ Y = V(M).

Now clearly, ∄(x,y)∈E(M) ∀x,y ∈ X (∵as stated by assumption

3). Also, ∄(a,b)∈E(M) ∀a,b∈Y (∵as stated by assumption 6).

The X, Y are independent sets. So, the meta-graph M can be

partitioned into two independent sets, which in turn proves our

claim.

Now, that we have proved the meta graph M(G) is bipartite,

we are just left with assigning colors to the corresponding

independent sets.

Claim 5.4. The proposed algorithm in Section 4.2.2 correctly

assigns colors for any input graph G taking all the assumptions

into consideration.

Proof. From Claim5.3, it has already been proved that the

meta-graph M(G) constructed by the algorithm is bipartite. Thus,

from Theorem 2.2, the meta-graph is bi-colorable. Now, we’ll

have to prove that the proposed algorithm assigns colors to both

the independent sets correctly. The proposed algorithm first colors

all the elements of the G.E. set with a single color and deletes that

color from the list. For, the Core set, clearly the number of Core

papers in a semester will be the number of colors required. Since,

the number of colors (d) is already provided with the input, the

algorithm chooses a set of d colors from the Color array, and it

colors each of the elements present in the Core meta-vertex using

two for loops and hence all the vertices are colored correctly.

https://www.compart.com/en/unicode/charsets/containing/U+2208
https://www.compart.com/en/unicode/charsets/containing/U+2208

DEBABRATA DATTA et al.: EXAMINATION SCHEDULER USING A LINEAR-TIME GRAPH COLORING ALGORITHM

2682

6. RUNNING TIME ANALYSIS

Claim6.1. Considering the necessary assumptions and every

choice of vertices and colors for every input graph G=(V,E), the

scheduling algorithm runs in θ(n+m) time, where n = |V| and m =

|E|.

Proof. Before analyzing the algorithm rigorously, let us see

what happened in the proposed algorithm. Primarily, we checked

for vertices having the highest degree and if found, we assigned it

a respective color and deleted that vertex from the corresponding

graph and the assigned color is also deleted from the color set.

Checking for the degree can be done in linear-time by just

maintaining an extra array while creating the adjacency list for the

input graph. Now, creating the meta-graph can also be done in

linear time as while taking the input, we already store the Core

and G.E. vertices and so creating the array of vertices can be done

in linear time. Since the meta-graph will always be bipartite

according to Claim 5.3, so detecting it and obtaining the

independent sets can be done by a single breadth-first search loop

which again can be easily implemented in linear time. If the

number of Core meta-vertices (i.e. the number of departments)

formed from the graph is k and the number of vertices in ith meta-

vertex be mi, then the number of vertices representing the Core

courses, |Vcore|=
1

k

i

i

m
=

 , which is the number of times the iterations

from line 16-21 is executed in the proposed algorithm. Next the

coloring of Core and G.E. vertices is just assigning colors to the

vertices which again can be implemented in linear time, because

while doing so, the vertices are traversed at most once. After

coloring all the vertices we get the chromatic partitions from the

graph G and perform the scheduling. Therefore, as each vertex is

visited once and each edge is traversed, both are done in O(1)

time, thus the proposed algorithm runs in θ(n+m) time.

7. RESULTS AND FINDINGS

7.1 CASE STUDY

Most undergraduate colleges in India offer a variety of subject

combinations to its students under the CBCS curriculum. In

streams like B.A or B.Sc. students can take one subject as

Honours (Core) and two subjects as General Elective (G.E.)

papers. In the following subsection, we have presented a typical

case of the scheduling problem and its conflict free solution

timetable, maintaining equity.

Table.1. Core-G.E. Subject Combination

List of Core Papers G.E. Subject Combination

Computer Science (CS) M, P

Mathematics (M) CS, P

Physics (P) M, CS

Considering each course as a vertex, edge between two

vertices is drawn only if there is common student between two

courses. The following graph G, as seen in Fig.2 has been created.

Fig.2. Graph of the case study

In Fig.3, the adjacency list representation of G is shown.

Fig.3. Adjacency List of the Graph of Fig.3

The graph G has been considered for semester 3 examinations,

where we have the following representations of the vertices:

• CS1, CS2, CS3 - Core papers offered by the Department of

Computer Science

• M1, M2, M3 - Core papers offered by the Department of

Mathematics

• P1, P2, P3 - Core papers offered by the Department of

Physics

• CSg - G.E. paper offered by the Department of Computer

Science

• Mg - G.E. paper offered by the Department of Mathematics

• Pg - G.E. paper offered by the Department of Physics

In Fig.4, the corresponding meta-graph M(G) is shown.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2683

Fig.4. After Meta-Graph Construction

7.2 RESULTS

The coloring of the graph G in Fig.6 has been plotted in the

table shown in Table.3. The chromatic partitions of G have been

done based on the proposed algorithm where the set of colors =

{pink, blue, yellow, green}. Now, each of these colors represents

the day on which the exams need to be scheduled.

Fig.5. After bipartite construction

Fig.6. Final graph after applying the proposed algorithm

After applying the proposed graph coloring algorithm, the

resultant graph is seen in Fig.6 is properly colored with chromatic

number 4. This is the minimum number of non-conflicting

timeslots required for scheduling for all given courses.

Table 2: The chromatic partitions of G

Pink Blue Yellow Green

Mg M1 M2 M3

Pg P1 P2 P3

CSg CS1 CS2 CS3

The Table.2 shows the chromatic partitions for the given

graph, G and the final complete schedule is obtained and shown

in Table.3.

Table.3. Examination Schedule

Day 1 Day 2 Day 3 Day 4

Mg M1 M2 M3

Pg P1 P2 P3

CSg CS1 CS2 CS3

8. CONCLUSION AND FUTURE SCOPE

The proposed research work tried to give the solution for the

graph coloring problem by adopting a completely new approach

with the help of traditional data structures available. Although the

coloring of a graph is an NP-complete problem, using the greedy

algorithm does not always give the correct output, i.e., the

minimum number of required colors. Blind search and brute force

algorithm using backtracking is used as a hybrid approach for the

starting point. But the proposed algorithm in this paper is

specifically designed keeping in mind the symmetry of the CBCS

curriculum followed in India. Considering a few assumptions and

constraints, the pro-posed algorithm gives a blazing fast solution

running in linear time. These two algorithms have been applied to

the same data sets and different results are interpreted. The results

have been examined depending on the process speed and

efficiency. We have tried to address the graph coloring problem

and proposed a solution that will work efficiently in the case of

any kind of graph either a dense graph or a sparse graph as long

as the symmetry and assumptions in the examination structure is

maintained. Using the basic idea of graph coloring, at first, we

applied the backtracking algorithm to find an initial solution to

this problem restricted to a particular case involving certain

constraints. Then we move on to use the bipartite property of

graphs to implement our proposed methodology into an

algorithm. The correctness and the running-time of this algorithm

have been analyzed along with a case study to explain its working.

Later the proposed algorithm is found to be more efficient than

the algorithm using backtracking that has been used initially. The

model can be useful for scheduling examinations in colleges as

well, which can decrease their employees’ workload significantly.

Universities can schedule their mid-semester as well as semester

examinations easily in a short span of time using the same. The

students will be able to give their examinations for their respective

chosen subjects easily and without clash timings, making it

feasible for them.

CS1 CS2

CS3

M1 M2

M3

P1 P2

P3
CS2

CS2

CS2

DEBABRATA DATTA et al.: EXAMINATION SCHEDULER USING A LINEAR-TIME GRAPH COLORING ALGORITHM

2684

With the vast growth and spread of knowledge leading to

introduction of newer subjects now and then it seems that

scheduling examinations will be more complex, and this research

work has a wide scope ahead. We are currently investigating a

modification of the proposed algorithm, which will achieve the

minimum for a certain graph. Loosely speaking, later more

generalized algorithms may be developed, that can schedule

examinations for every college and university under the CBCS

curriculum in India, using Artificial Intelligence and Machine

Learning methodologies.

REFERENCES

[1] F. Harary, “Graph Theory”, Addison-Wesley Publishing

Company, 2001.

[2] M. Malkawi, M.A.H. Hassan and O.A.H. Hassan, “A New

Exam Scheduling Algorithm using Graph Coloring”,

International Arab Journal of Information Technology, Vol.

5, No. 1, pp. 1-14, 2008.

[3] A. Akbulut and G. Yilmaz, “University Exam Scheduling

System using Graph Coloring Algorithm and RFID

Technology”, International Journal of Innovation,

Management and Technology, Vol. 4, pp. 66-78, 2013.

[4] M. Bharti and R. Kumar, “Better Resource Utilization in

Exam Scheduling using Graph Coloring”, Ph.D.

Dissertations, Department of Computer Science and

Engineering, Thapar University, pp. 1-57, 2012.

[5] D. Konig, “The Infinite and Infinite Graphs”, Reprinted

Chelsea, 1950.

[6] J.D. Ullman, “NP-Complete Scheduling Problems”, Journal

of Computer and System Sciences, Vol. 10, pp. 384-393,

1975.

[7] N.K. Mehta, “The Application of A Graph Coloring Method

to An Examination Scheduling Problem”, Interfaces, Vol.

11, pp. 57-65, 1981.

[8] R. Ganguli and S. Roy, “A Study on Course Timetable

Scheduling using Graph Coloring Approach”, International

Journal of Computational and Applied Mathematics, Vol.

12, pp. 469-485, 2017.

[9] F.T. Ceighton, “A Graph Coloring Algorithm for Large

Scheduling Problems”, Journal of Research of The National

Bureau of Standards, Vol. 84, pp. 489-506. 1979.

[10] D. West, “Introduction to Graph Theory”, Prentice Hall,

2001.

[11] C.L. Liu, “Elements of Discrete Mathematics: A Computer

Oriented Approach”, Tata McGraw-Hill, 2008.

[12] J. Kleinberg, “Algorithm Design”, Pearson India Education

Services Pvt Ltd, 2014.

[13] K. Rosen, “Discrete Mathematics and Its Applications with

Combinatorics and Graph Theory”, McGraw-Hill, 2012.

[14] R. Diestel, “Graph Theory”, Springer, 2017.

[15] J.A. Bondy, “Graph Theory with Applications”, Elsevier,

1976.

