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Abstract 

The primary aim of the study aims to provide a solution for scheduling 

examinations for most of the universities and colleges across India 

which follow the Choice Based Credit System (CBCS) using a graph 

coloring algorithm. Nowadays, due to the flexibility of opting various 

subjects, and many students taking up different courses in their 

colleges and universities, it becomes difficult to schedule these 

examinations. Creating an examination schedule can be quite 

challenging and time-consuming for controlling the body of an 

examination. Our research work focuses on reducing the efforts for 

scheduling such examinations. With the knowledge of graph theory 

and graph traversing and coloring algorithms, our algorithm with the 

help of a few assumptions gives an efficient solution to the examination 

scheduling problem. A detailed correctness proof along with 

performance analysis has been done. The efficiency of our proposed 

algorithm is then compared to that of the coloring algorithm using 

backtracking. 
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1. INTRODUCTION 

The current flexible educational setup of our country allows 

students to opt for various subjects from various fields according 

to their choice.  This leads to the cluttering of students among 

various subjects and is a challenge for the administrative body of 

the institutions to schedule the examinations in a manner such that 

courses having common students do not fall on the same date. 

Courses with no common students however can be evaluated on 

the same day. Many students having a variety of subjects might 

overwhelm the officials to arrange the exams within a particular 

span such that there is no clash of timings for any student. Without 

which some students may suffer due to lack of proper evaluation. 

Also, a lengthy schedule may result in increase of expenses for 

the education body and the students may slack off. 

Our algorithm strives to solve this problem by scheduling 

examinations within minimum days without clash of timings. The 

students will be able to give their examinations for their respective 

chosen subjects easily and without time clashes, making it flexible 

and easy for them to prepare for the same. We are going to use the 

celebrated coloring properties of a graph. With vertices 

representing the courses and edges representing whether there are 

any common students between two courses, a graph can be 

constructed. Now, coloring that graph with minimum colors 

(based on the chromatic number of the respective graph) and 

applying partitioning based on the independent sets will allow us 

to schedule the examinations in an efficient way and hence solve 

the problem. This will not only make computation elegant and 

faster but also avoid unnecessary elongation of the examination 

period. 

The objective of the algorithm is: 

• To find out which subjects have common students, thus they 

cannot be scheduled together. 

• To schedule examinations within minimum days. 

The main purpose of developing such an algorithm is two-

fold: 

• We aim to make choosing subjects more flexible for students 

so that they can learn whatever they want, without facing the 

problem of exam time clashes. 

• We wish to reduce the workload of the administrative body 

of the educational institutes to schedule the examinations 

without much fuss. 

2. MATHEMATICAL PREREQUISITES 

2.1 GRAPH DEFINITION 

An undirected graph G is an ordered pair (V,E) where V is a 

set of vertices and E is a set of non-directed edges between 

vertices, such that E[V]2, i.e. the elements of E are 2-element 

subsets of V. A graph can be represented using adjacency lists or 

adjacency matrix. 

2.2 CONNECTIVITY 

A walk is a list v0, e1, v1,..., ek, vk of vertices and edges such 

that, for 1 ≤ i ≤ k, the edge ei has end vertices vi-1 and vi. 

A u-v path is a path in a non-empty graph G = (V,E) of the 

form V = x0, x1,..., xk and E = x0, x1, x2,..., xk-1, xk, where xjis are all 

distinct. 

If P = x0, x1,...,xk-1, is a path and k ≥ 3, then the graph C := P + 

xk−1x0 is called a cycle. The length of a cycle is its number of edges 

(or vertices), the cycle of length k is called a k-cycle and denoted 

by Ck. As stated by West [10], the following lemma is useful in 

this connection: 

Lemma 2.1. Every u-v walk contains a u-v path. 

2.3 BIPARTITE GRAPHS 

Now, let us characterize bipartite graphs using cycles. A walk 

is odd or even as its length is odd or even. As in Lemma 2.1, a 

closed walk contains a cycle C if the vertices and edges of C occur 

as a sub-list of W, in cyclic order but not necessarily consecutive. 

We can think of a closed walk or a cycle as starting at any vertex, 

the next lemma requires this view point. 

A bipartition of G is a specification of two disjoint 

independent sets in G whose union is V(G). The statement ‘Let G 

be a bipartite graph with bipartition X, Y’ specifies one such 

partition. An X, Y - bigraph is a bipartite graph with bipartition X, 

Y. The sets of bipartitions are partite sets. As mentioned by Konig 

[5], we have the following theorem: 
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Theorem 2.1 (Konig’s Theorem). A graph is bipartite if and only 

if it has no odd cycle. 

2.4 GRAPH COLORING 

A coloring of a graph is an assignment of colors to its vertices 

so that no two adjacent vertices have the same color. The set of 

all vertices with any one color is independent and is called a color 

class. 

 

 Fig.1. Three colorings of a Graph 

The chromatic number χ(G) is defined as the minimum 

number ‘n’ for which G has an n-coloring. A graph G is n-

colorable if χ(G)n and is n-chromatic if χ(G) = n. 

Since G obviously has a p-coloring and a χ(G) - coloring, it 

must also have an n-coloring whenever χ(G)<n<p. The graph of 

Fig.1 is 2-chromatic; n-colorings for n = 2, 3, 4 are displayed, with 

different colors. 

2.4.1 Chromatic Partitioning: 

As mentioned by Liu [11], the proper coloring of a graph G 

induces a partitioning of its vertex set V(G) into different subsets 

based on its colors. In Fig.1(b), it is seen that the vertices can be 

partitioned into three sub-sets based on the colors red, blue and 

green. 

It may be observed that no two vertices in any of the set three 

subsets are adjacent. Such a subset is called an independent set. 

A set of vertices in a graph is said to be independent set if and 

only if no two vertices in the set are adjacent. 

A maximal independent set is an independent set in which no 

other vertex can be added without affecting its independence 

property. Our primary concern in this paper i.e., an optimal 

scheduling of examinations reduces to find the independent sets 

in the input graph G which belongs to the NP-hard class. 

3. RELATED LITERATURE 

General graph coloring algorithms have become common and 

have already been extensively studied by researchers. Various 

approaches have already been used to solve the scheduling 

problems. 

Akbulut and Yilmaz [3] have considered a system aimed to 

schedule different exams in the same halls simultaneously. The 

main motive was to use hall ‘capacity more efficiently and 

decrease cheating attempts considerably. In their work, they have 

considered the final exam weeks of the universities as their main 

problem to be solved. The students appearing for different exams 

can sit beside each other so that the capacity of the hall will 

increase.  However, at this point, the coordination problem of the 

students’ seating positions will arise. The solution that they came 

up with is to identify each student with an Radio Frequency 

Identification (RFID) tag. The card reader reads the scheduled 

exams of the particular student and displays them on a screen. 

They made use of two algorithms: A Hybrid Approach and their 

Graph Coloring Algorithm. 

Malkawi and Hassan [2] aimed at solving the exam scheduling 

problem by using the node graph coloring technique. In their 

paper, they tried to achieve the objectives of fairness, accuracy, 

and optimal exam time period with respect to exam scheduling. 

The noteworthy point is that they considered some important 

assumptions and constraints, closely related to the general exam 

scheduling, and mainly driven from the real-life requirements 

collected through the experience at various universities. Such 

assumptions and constraints were distinct from those present in 

more general graph coloring problems.  

Leighton [9] has introduced a new Recursive Largest First 

(RLF) coloring algorithm in his paper and compared it to various 

known algorithms. Various other existing coloring procedures 

were presented and their performance comparison with respect to 

the RLF algorithm was done on a wide range of test data. He came 

up with a procedure for generating random graphs with known 

chromatic numbers. This provided a standard method for testing 

the accuracy of graph coloring algorithms. 

On the other hand, Mehta [7] in his paper expanded the 

objective of examination scheduling to not just deriving a conflict 

free minimum time period schedule. He proved that when the 

number of minimum time frame solutions become greater than the 

number of time frames in which the examinations are required to 

be scheduled then there will be a problem of finding a schedule 

with a minimum number of conflicts. This paper explains one of 

the faster heuristic procedures for scheduling semester 

examinations for a particular college. 

Bharti [4] under the supervision of Kumar considered the 

construction of the exam schedule as a part of the time table 

problem which is basically are source allocation problem. Time 

tabling is basically a procedure to schedule a set of slots for a 

particular work and the table itself is a series of events arranged 

according to their schedule. In this thesis they attempted to 

compare the two cases of exam scheduling (i.e., one with 

consecutive exams when syllabus is less and the other being no 

consecutive exams to be set when syllabus is more) based on 

graph coloring approach. 

In any educational institution, course time tabling and exam 

time tabling are the two most common academic scheduling 

problems. Ganguli and Roy [8], had collaborated in a paper in 

which their sole focus was on college course time tabling where 

both hard and soft constraints had been considered. After properly 

coloring the course conflict graph and transforming the coloring 

into conflict-free time slots of courses, they constructed the graph 

with courses as nodes and edges drawn between conflicting 

courses i.e., having common students. Since there is no fixed 

algorithm to solve a scheduling problem whose complexity is 

directly proportional to the number of constraints involved, they 

considered a typical honor (major) and general (minor) course 

combination scheduling problem under university curriculum. 

4. PROPOSED METHODOLOGY 

In this part we come to the proposed algorithm for scheduling 

the exams (in section 4.2.2). A small test case is shown in section 
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in order to explain the step-by-step execution of the algorithm. 

Later its correctness proof has been done along with the analysis 

of its running time in section 5. This coloring algorithm is then 

compared with the Naïve Graph Coloring algorithm using 

backtracking (as proposed in section 4.1), where it is observed 

that although both the algorithms strive to solve the same 

problem, the coloring algorithm proposed in this paper (in section 

4.2.2) has an edge over the running time and efficiency of the 

naïve algorithm. In order to achieve fairness, as discussed in the 

Introduction section, a few constraints have been taken into 

consideration: 

a) A student can be assigned at most one examination in the 

same time period. 

b) A student can have only one examination scheduled on the 

same day. 

c) The number of students taking up the exam is less than the 

number of examination halls present in the college. 

d) There is a fixed number of time slots available on a 

particular day for examinations to be scheduled. 

e) A student is not doing a double major. 

4.1 GRAPH COLORING ALGORITHM USING 

BACKTRACKING 

Input: An undirected graph G=(V,E), where the vertices denote 

the set of courses and there is an edge between any two vertices if 

and only if there is any common student between the two courses. 

The cardinality of the vertex set V is n = |V| and that of the edge 

set E is m = |E|. 

Output: A sequence of scheduled timeslots. 

Pseudocode: 

C := An array containing the ‘v’ colors used for graph coloring 

Procedure getColor (starting vertex s) 

{ 

Select color c from C 

colors := c 

delete c from C 

for every vertex v of the remaining n-1 vertices by backtracking 

select color k from C 

if k is already used to color the adjacent vertices of v 

color v := the next color in C 

else 

color v := k 

end loop 

} 

In the above algorithm, the for loop is executed at most n-1 

times and as there are ‘v’ colors available in C, the total number 

of possible color configurations are vn. Thus, the time complexity 

of this algorithm is O(nvn), i.e., exponential, which is very large. 

The major drawbacks of this algorithm are: 

a) It does not always use a minimum number of colors as this 

problem belongs to the NP-complete class of problems. 

b) The number of colors used, sometimes depends on the 

order in which the vertices are processed. 

4.2 PROPOSED GRAPH COLORING ALGORITHM 

USING BIPARTITE PROPERTY OF GRAPH 

4.2.1 Preliminaries: 

Following are few assumptions that are required for the 

algorithm to function correctly: 

1. Each student in a respective semester is assumed to take an 

equal number of Core and General Elective (G.E.) and 

other compulsory papers. For example, as discussed in the 

test case in Section 7.1, for each undergraduate student in 

the third semester, the number of papers must be 4 (3 Core 

papers, 1 G.E. paper). 

2. The degree of all the Core vertices is assumed to be the 

same for all departments.  

3. A student does not have any double majors. 

4. There may exist at least one course which is taken by each 

and every student in the college. 

5. Each department has its respective G.E. courses which 

must be taken by at least one student from at least two 

departments. 

6. A student can take only one G.E. paper in a particular 

semester. 

The algorithm follows these basic steps: 

i) If assumption 4 holds, i.e., there is at least one course 

which is taken by each and every student, then that 

respective vertex is assigned a color first. Then that vertex 

is deleted from the graph. 

ii) Next, the graph G is converted into a meta-graph M(G) 

which takes the set of vertices for the core papers of one 

department as one single super vertex with respect to the 

Department Core papers and the respective G.E. papers as 

its vertices. So, we map the total edges incident from a 

respective department on each G.E. to a single edge. 

iii) The meta-graph M(G) obtained is claimed to be bipartite 

and the two independent sets consisting of Core and G.E. 

can be quite easily detected through a single Breadth-First-

Search method. 

iv) Then, we color the vertices present in G.E. set with a single 

color, i.e., they can be scheduled in a single day. 

v) And for the Core set, we make an observation: Let us have 

‘k’ meta-core nodes and suppose the ith meta-core node has 

mi vertices in it. Then, the total number of nodes to be 

colored is 
1

k

i

i

m
=

 . 

4.3 ALGORITHM 

Input: An undirected graph G = (V,E), where the vertices denote 

the set of courses and there is an edge between any two vertices if 

and only if there is any common student between the two courses. 

The cardinality of the vertex set V is n = |V| and that of the edge 

set E is m = |E|. The number of core papers (d) in a semester. 

Output: A sequence of scheduled time slots. 

Pseudocode: 

C: = An array containing the colors used for graph coloring 

d: = The number of Core papers in a semester 
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M: = Meta Graph of G 

H: = An empty array for final scheduling purpose 

Procedure Scheduling (G) 

{ 

If there is a vertex v with degree = n-1 //for a compulsory paper 

Select a color c from C 

color v := c //assigning color to compulsory paper 

obtain graph G’ by deleting v from G 

delete color c from C 

create a meta-graph M(G’) 

get partition of G.E. and Core vertices of M 

select a color p from C 

for every vertex v in set G.E. //assign the same color to all G.E. 

papers 

color v: = p 

end loop 

delete color p from C 

select a color subset K of size d from C 

for every vertex u in set Core //using ‘d’ number of colors to 

color vertices of Core 

for every vertex u’ in u 

assign a distinct color t from K to u’ 

end loop 

end loop 

get the chromatic partitions x of the vertices and perform 

scheduling 

map every element of x to H //mapping all vertices to H based 

on their color 

return H// H contains the sequence of vertices ready for 

scheduling 

end procedure Scheduling 

5. CORRECTNESS 

In order to prove that the algorithm runs correctly, it is 

required to prove a few necessary observations as stated below: 

Claim 5.1. The input graph G is connected. 

Proof. Let us assume if possible, the graph is disconnected.  

Thus, ∄u-v path ∀u,v ∈ V(G) 

Now define two sets Xu and Yv such that Xu: ={x|∃u-xpath}, 

Yv:={y|∃v-ypath}. 

Clearly, X, Y are non-empty (∵ u∈X, v∈Y). 

Also, X ∩ Y = φ (∵ we assumed the graph is disconnected) 

But since assumption 4 in section 4.2.1 holds, i.e., there exists 

a course which is taken by all the students, 

⇒∃a node, n ∈ V(G) such that (x,n) ∈ E(G) ∀ x ∈ V(G). 

⇒X ∩ Y ≠ φ (∵n ∈ X ∩ Y). 

This is a contradiction to our assumption that the graph is 

disconnected. Hence, it is proved that the input graph G is 

connected. 

Claim 5.2. In the metagraph M(G) constructed by the algorithm, 

the meta core vertices consist of the set of vertices that correspond 

to a sub-graph H(G), which is a complete graph. 

Proof. It is to be shown that (u,v) ∈ E(H) ∀u,v ∈ V(H). For this, 

we perform induction on the number of vertices. 

Let our induction hypothesis, 

P(n): = For a graph H consisting of ‘n’ vertices, i.e., the 

number of edges is  

 |E(H)| = n(n-1)/2 ∀ n ∈ N (1) 

Basis Step (n=2): P(2) is true, as when there are just two 

vertices in H and number of edges is |E(H)| = 2(2-1)/2 = 1 which 

is true (by Claim 5.1). 

Inductive Step: Assume that P(n) is true, i.e., Eq.(1) holds for 

some non-negative integer n. Then adding another vertex in H, we 

have, |E|=
( )1

2

n n+
+n (∵adding a vertex means adding a Core 

course which must have students in common to all other Core 

courses of a respective department). 

 |E(H)| = 
( )1

2

n n
n

+
+ =

( )1 2

2

n n n− +
=

2

2

n n+
 = 

( )1

2

n n+
 

This proves P(n+1) is true. So, it follows by induction that 

P(n) is true ∀n∈N. 

Claim 5.3. The meta-graph M(G) constructed by the proposed 

algorithm in Section 4.2.2 is bipartite. 

Proof.  Let us define two sets X, Y such that,  

X: = {u| u is a Core vertex} 

Y: = {v| v is a G.E. vertex} 

Clearly, X ∩ Y = φ (∵a vertex cannot be both Core and G.E.). 

Also, since, the meta-graph consists of only meta-Core and G.E. 

vertices, X ∪ Y = V(M). 

Now clearly, ∄(x,y)∈E(M) ∀x,y ∈ X (∵as stated by assumption 

3). Also, ∄(a,b)∈E(M) ∀a,b∈Y (∵as stated by assumption 6). 

The X, Y are independent sets. So, the meta-graph M can be 

partitioned into two independent sets, which in turn proves our 

claim. 

Now, that we have proved the meta graph M(G) is bipartite, 

we are just left with assigning colors to the corresponding 

independent sets. 

Claim 5.4. The proposed algorithm in Section 4.2.2 correctly 

assigns colors for any input graph G taking all the assumptions 

into consideration. 

Proof. From Claim5.3, it has already been proved that the 

meta-graph M(G) constructed by the algorithm is bipartite. Thus, 

from Theorem 2.2, the meta-graph is bi-colorable. Now, we’ll 

have to prove that the proposed algorithm assigns colors to both 

the independent sets correctly. The proposed algorithm first colors 

all the elements of the G.E. set with a single color and deletes that 

color from the list.  For, the Core set, clearly the number of Core 

papers in a semester will be the number of colors required. Since, 

the number of colors (d) is already provided with the input, the 

algorithm chooses a set of d colors from the Color array, and it 

colors each of the elements present in the Core meta-vertex using 

two for loops and hence all the vertices are colored correctly.  

https://www.compart.com/en/unicode/charsets/containing/U+2208
https://www.compart.com/en/unicode/charsets/containing/U+2208
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6. RUNNING TIME ANALYSIS 

Claim6.1. Considering the necessary assumptions and every 

choice of vertices and colors for every input graph G=(V,E), the 

scheduling algorithm runs in θ(n+m) time, where n = |V| and m = 

|E|. 

Proof. Before analyzing the algorithm rigorously, let us see 

what happened in the proposed algorithm. Primarily, we checked 

for vertices having the highest degree and if found, we assigned it 

a respective color and deleted that vertex from the corresponding 

graph and the assigned color is also deleted from the color set. 

Checking for the degree can be done in linear-time by just 

maintaining an extra array while creating the adjacency list for the 

input graph. Now, creating the meta-graph can also be done in 

linear time as while taking the input, we already store the Core 

and G.E. vertices and so creating the array of vertices can be done 

in linear time. Since the meta-graph will always be bipartite 

according to Claim 5.3, so detecting it and obtaining the 

independent sets can be done by a single breadth-first search loop 

which again can be easily implemented in linear time. If the 

number of Core meta-vertices (i.e. the number of departments) 

formed from the graph is k and the number of vertices in ith meta-

vertex be mi, then the number of vertices representing the Core 

courses, |Vcore|=
1

k

i

i

m
=

 , which is the number of times the iterations 

from line 16-21 is executed in the proposed algorithm. Next the 

coloring of Core and G.E. vertices is just assigning colors to the 

vertices which again can be implemented in linear time, because 

while doing so, the vertices are traversed at most once. After 

coloring all the vertices we get the chromatic partitions from the 

graph G and perform the scheduling. Therefore, as each vertex is 

visited once and each edge is traversed, both are done in O(1) 

time, thus the proposed algorithm runs in θ(n+m) time. 

7. RESULTS AND FINDINGS 

7.1 CASE STUDY 

Most undergraduate colleges in India offer a variety of subject 

combinations to its students under the CBCS curriculum. In 

streams like B.A or B.Sc. students can take one subject as 

Honours (Core) and two subjects as General Elective (G.E.) 

papers. In the following subsection, we have presented a typical 

case of the scheduling problem and its conflict free solution 

timetable, maintaining equity. 

Table.1. Core-G.E. Subject Combination 

List of Core Papers G.E. Subject Combination 

Computer Science (CS) M, P 

Mathematics (M) CS, P 

Physics (P) M, CS 

Considering each course as a vertex, edge between two 

vertices is drawn only if there is common student between two 

courses. The following graph G, as seen in Fig.2 has been created. 

 

Fig.2. Graph of the case study 

In Fig.3, the adjacency list representation of G is shown.  

 

Fig.3. Adjacency List of the Graph of Fig.3 

The graph G has been considered for semester 3 examinations, 

where we have the following representations of the vertices: 

• CS1, CS2, CS3 - Core papers offered by the Department of 

Computer Science 

• M1, M2, M3 - Core papers offered by the Department of 

Mathematics 

• P1, P2, P3 - Core papers offered by the Department of 

Physics 

• CSg - G.E. paper offered by the Department of Computer 

Science 

• Mg - G.E. paper offered by the Department of Mathematics 

• Pg - G.E. paper offered by the Department of Physics 

In Fig.4, the corresponding meta-graph M(G) is shown. 
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Fig.4. After Meta-Graph Construction 

7.2 RESULTS 

The coloring of the graph G in Fig.6 has been plotted in the 

table shown in Table.3. The chromatic partitions of G have been 

done based on the proposed algorithm where the set of colors = 

{pink, blue, yellow, green}. Now, each of these colors represents 

the day on which the exams need to be scheduled.  

 

Fig.5. After bipartite construction 

 

Fig.6. Final graph after applying the proposed algorithm 

After applying the proposed graph coloring algorithm, the 

resultant graph is seen in Fig.6 is properly colored with chromatic 

number 4. This is the minimum number of non-conflicting 

timeslots required for scheduling for all given courses. 

Table 2: The chromatic partitions of G 

Pink Blue Yellow Green 

Mg M1 M2 M3 

Pg P1 P2 P3 

CSg CS1 CS2 CS3 

The Table.2 shows the chromatic partitions for the given 

graph, G and the final complete schedule is obtained and shown 

in Table.3.  

Table.3. Examination Schedule 

Day 1 Day 2 Day 3 Day 4 

Mg M1 M2 M3 

Pg P1 P2 P3 

CSg CS1 CS2 CS3 

8. CONCLUSION AND FUTURE SCOPE 

The proposed research work tried to give the solution for the 

graph coloring problem by adopting a completely new approach 

with the help of traditional data structures available. Although the 

coloring of a graph is an NP-complete problem, using the greedy 

algorithm does not always give the correct output, i.e., the 

minimum number of required colors. Blind search and brute force 

algorithm using backtracking is used as a hybrid approach for the 

starting point. But the proposed algorithm in this paper is 

specifically designed keeping in mind the symmetry of the CBCS 

curriculum followed in India. Considering a few assumptions and 

constraints, the pro-posed algorithm gives a blazing fast solution 

running in linear time. These two algorithms have been applied to 

the same data sets and different results are interpreted. The results 

have been examined depending on the process speed and 

efficiency. We have tried to address the graph coloring problem 

and proposed a solution that will work efficiently in the case of 

any kind of graph either a dense graph or a sparse graph as long 

as the symmetry and assumptions in the examination structure is 

maintained. Using the basic idea of graph coloring, at first, we 

applied the backtracking algorithm to find an initial solution to 

this problem restricted to a particular case involving certain 

constraints. Then we move on to use the bipartite property of 

graphs to implement our proposed methodology into an 

algorithm. The correctness and the running-time of this algorithm 

have been analyzed along with a case study to explain its working. 

Later the proposed algorithm is found to be more efficient than 

the algorithm using backtracking that has been used initially. The 

model can be useful for scheduling examinations in colleges as 

well, which can decrease their employees’ workload significantly. 

Universities can schedule their mid-semester as well as semester 

examinations easily in a short span of time using the same. The 

students will be able to give their examinations for their respective 

chosen subjects easily and without clash timings, making it 

feasible for them.  

 

CS1 CS2 

CS3 

 

M1 M2 

M3 

 

P1 P2 

P3 
CS2 

CS2 

CS2 
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With the vast growth and spread of knowledge leading to 

introduction of newer subjects now and then it seems that 

scheduling examinations will be more complex, and this research 

work has a wide scope ahead. We are currently investigating a 

modification of the proposed algorithm, which will achieve the 

minimum for a certain graph. Loosely speaking, later more 

generalized algorithms may be developed, that can schedule 

examinations for every college and university under the CBCS 

curriculum in India, using Artificial Intelligence and Machine 

Learning methodologies. 
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