
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04
DOI: 10.21917/ijsc.2022.0381

2669

A NOVEL APPROACH FOR TEST DATA GENERATION

Gagan Kumar1 and Vinay Chopra2
1Department of Computer Science and Engineering, IK Gujral Punjab Technical University, India

2Master of Computer Applications, D.A.V. Institute of Engineering and Technology, India

Abstract

Software testing is an essential phase in software design process,

accounting for more than half of the total cost due to its rigorous and

time-consuming nature. Path test data generation is the most important

stage in software testing, and researchers have devised several methods

to automate it. In this research, a novel approach based on ant colony

optimization and negative selection algorithm (NSA) is projected to

automatically create test data for path testing. The most widely used

benchmark programs such as triangle classification, dayfinder,

minmax and isprime, has been used to test the proposed approach.

When compared to random testing, the experimental findings reveal

that the proposed method is more efficient in terms of coverage,

execution time and more effective in terms of test data creation.

Keywords:

Test Data Generation (TDG), Meta-Heuristic, Artificial Immune

Algorithm, ACO, NSA, Path Coverage, Fitness Function

1. INTRODUCTION

Software testing is a pivotal task in software development life

cycle. It is an expensive and laborious activity which often

accounted as a time-consuming process in any software

development life cycle model [1] [2]. It is being used to unfold

the bugs and errors out from the software code [3]. Testing can be

applied on structural and functional part of the code [4]. Both

structural and functional aspects have their own significance,

Structural testing is considered as the strongest one out of the

two[5].

Structured testing focuses on internal structure of the program

based on the fitness criteria opted for the testing. Structure of the

program can be tested in different means statement coverage,

branch coverage, and path coverage are instances of these types

of coverage. [6]. The strongest coverage criterion in structural

testing is path coverage, it comprises of all three structural testing

criteria, sometimes it also named as basis path testing.[6].

Test data generation is a central objective in software testing

[7]. It is an efficient and effective way to generate equitable test

data. The non-linear pattern of test data makes it more complex to

generate optimal test data. The difficulty of generating test data is

in tight loop with the level of problem, it increases or decrease

with the involvedness of problem. Test data can be generated by

adopting either manual procedure or through automated

procedure, manually generation of test data required more efforts

in comparison towards the generation of test data automatically

for execution of test cases. Automatic, test cases (data) generation

is key to find the adequate solution of problem of any size [8] [9].

The generation of test data is classified as an undecidability

problem since it can be non-deterministic, making it an NP-hard

problem, or there may be the possibility of infeasibility of existing

outcome [10]. The program’s exceptionally non-linear design

makes it difficult for search algorithms to generate efficient and

optimal test data from a non-linear, complex, and discontinuous

input in the search space.

Path testing is a structural testing approach that ensures the

execution of individual path at least once. The main issue with

path testing is that how do we produce the effective test records

that covers entire structure of the program in limited time period

[1]. As it is not feasible to cover entire structure of the program,

the path test method involves adopting subset of paths and

searching of test data to unfold it. Many researchers have

proposed number of methods for automatic generation of test data

set for path testing [11] such as random testing approach ,

symbolic testing , dynamic testing and search based testing. All

three approaches, to test data generation are inadequate to sustain

enough appropriate test data. As a result, search-based testing is

the trend of the day for generating test data [12].

 With the gaining popularity for search-based testing many

researchers start working on it, meta-heuristics search-based

algorithms were considered stronger in this field because of its

fault revealing capability. Genetic algorithm(GA), ant colony

optimization (ACO) and simulated annealing (SA) are the

popular meta-heuristic search-based algorithm [13]. But search-

based algorithms still have some issues such as they may stuck in

local optima, complete coverage, number of generations and

execution time.

Despite search-based algorithm, artificial immune algorithms

are also used for test data generation which shows significant

improvement on searched based algorithm [14] [15]. Negative

Selection algorithm [16] [17] , Colonel Selection algorithm [18]

has applied in the field of test data generation. A hybrid approach

based on artificial immune algorithm NSA and meta-heuristic

algorithm PSO is also proposed for test data generation [19],

which shows considerable advancement on meta-heuristic and

artificial immune algorithms. Most of the work in the field of test

data generation is proposed and implemented on

modular/structural programming, only few researchers’ works on

object-oriented concepts.

This research proposed a new hybrid approach cantered on ant

colony optimization and negative selection algorithm

applications, to generate test data automatically on object-

oriented system which have not been applied earlier and the

results gives an effective test data that could traverse all program

paths timely, when compared with the other techniques. The key

aspects are summarised as follows:

• Applications of Negative Selection Algorithm such as

(hamming distance) has been combined with in the

functionality of ACO algorithm to achieve complete path

coverage for test data generation.

• Path coverage is calculated using a fitness function that

considers the reachability of each path.

GAGAN KUMAR AND VINAY CHOPRA: A NOVEL APPROACH FOR TEST DATA GENERATION

2670

• To validate the effectiveness of the proposed algorithm,

some well-known programmes were used, as well as a

comparison with random testing.

2. TEST DATA GENERATION

Generation of test data is a complex problem when used as

automated. In earlier work search-based test data has widely been

studied and most of the study was based on procedure-oriented

system in structural testing. Various methods have been deployed

in the literature for automatic generation of test data to enhance

the coverage ratio and to bring the size of data down for different

coverage criteria [20]. The mostly adopted test data generation

techniques in which the researchers have the keen interest are

random testing, symbolic testing, dynamic test data generation

and search-based test data generation technique [6]. In random

testing procedure, the test information has been chosen self-

assertively from a search space, data generated through random

technique shows high redundancy ratio, symbolic technique

generated test data in static form and assign static values to

variable instead of the real values and Dynamic techniques,

necessitate the actual execution of source code for a limited input

area [6].

Fig.1. Control flow graph for Minmax

All the above three techniques are not so competent, they

mostly generate the test data with high redundancy and the size of

data always surge in this technique for slightly complex data

structures and the size of input data is also inadequate. Search

based test data generation is the most powerful searching

techniques to locate the test data in the search space [21] [22].

SBST techniques uses search-based optimization algorithm

alongside fitness function gets popularity in the research areas

[23]. The general structure of SBST is presented in Fig.1 in a form

of control flow grap [24]. To use the meta-heuristic approach to

identify data in search space, we must first convert the source

code into a control flow graph (CFG), that is a diagrammatic

display of the source code [25].

Control flow graph (CFG) is a directed graph with the

following definition:

F(G) = (N, E, s, e)

where, N = N is a set of nodes in which each node corresponds to

a statement; E = E is a set of edges, each of which represents a

control flow between nodes and is labelled with a predicate; S =

Entry node; E = Exit node.

The control flow graph serves as a reference for locating an

input that directs the software through various paths. CFG can be

thought of as an optimization problem with the goal of increasing

coverage criteria. Control flow graph for Minmax is given in

Fig.1.

3. RELATED WORK ON TEST DATA

GENERATION

Some studies on meta-heuristic algorithms like ACO, PSO,

ABC, GA, FA, and artificial immune algorithms like NSA and

clonal selection for the development of test data/cases have been

published in recent years. The authors in [26] projected a new

approach bases on PSO, in which the weight of inertia is modified

based on fitness value. It uses branch Coverage as fitness criteria.

Sanjay Singhal, [27] projected a hybrid approach by combining

GA and PSO (GPSCA). It uses data flow coverage by applying

dominance concept between two nodes and multi-objective

coverage criteria. The authors in [28] projected an approach IGA

based on Genetic Algorithm (GA) for automatic test case

generation. They have done comparison of IGA with traditional

GA for triangle classification problem using branch fitness

criterion. The authors in [29] projected a GA based test data

generator using multi path fitness. The approach can synthesize

multiple test data to cover multiple target paths. Soma [30]

projected an approach by combining the functionalities of scouts,

employed and onlooker bees in ABC algorithm. The authors in

[31] proposed a static based symbolic execution approach using

ABC algorithm with branch distance as objective function.

The authors in [32] proposed a regression augmentation

testing approach based on ABC algorithm with branch distance as

objective function. Yang [33] proposed an approach based on ant

colony optimization in which they have improved local

pheromone strategy, pheromone volatilization co-efficient and

global path pheromone with statement coverage, branch coverage

and condition coverage as fitness value. Mao [34] proposed an

approach in which they reformed ACO into discrete version by

redefining local transfer, global transfer and pheromone update

rule with customize branch fitness function. Sharma [35] has

proposed an approach for automated software testing using meta

heuristic technique based on improved ant algorithm in which she

used statement, branch and modified decision/coverage as an

objective function. Srivatsava [36] proposed a meta-heuristic

technique based on ACO for state transition testing. Sayyari [37]

has proposed an ACO and model-based testing approach. They

have used Markov model for the re-formation of ACO. Aldeen

[38] have proposed a new approach based on artificial immune

system in which they have use the application of negative

selection algorithm. Aldeen et.al. [19] projected a new approach

based on NSA and GA for automated test data generation, the

experimentation of the projected approach has been done on 11

real world programs, the projected approach is also compared

with random testing approach and negative selection algorithm.

Pachauri[18] has projected test data generation approach based on

Clonal selection algorithm. They have used AI and NBD

Approximation level with normalized branch distance as

objective function to validate the test data.

1

2

3

5 4

6 7

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2671

Saini [39] has also projected an approach based on Clonal

Selection algorithm. They have used Korel Distance function for

branch predicate as objective function to validate the test data.

The central objective of the above sited research is to explore the

search capabilities of Meta–heuristic procedures such as ACO,

PSO, ABC and GA and Artificial Immune algorithm NSA and

Clonal selection algorithm on benchmark problems in software

test data creation, comprising of classification of triangle, prime

number generation, quadratic equation, largest number, telephone

system, max-min etc. Meta-heuristic methods such as ACO, PSO,

ABC and GA has excellent search capabilities, but all these

algorithms have somehow lag in complete coverage and somehow

stuck in local optima [40]. The Artificial Immune algorithm NSA

and clonal selection are new approach in generation of test data.

An immune algorithm has significant impact on the quality and

coverage capabilities of test data generation and overcome the

issues related with local optima [41].

4. BRIEF EXPLANATION OF ANT COLONY

OPTIMIZATION AND NEGATIVE

SELECTION ALGORITHM

4.1 ANT COLONY OPTIMIZATION

Marco Dorigo introduces the ACO algorithm by studying the

foraging behaviour of the ant colony[10], [42]–[44]. Ant secretes

pheromone on its way to share information with other ants during

the foraging period. As every ant can perceive the trail of the

pheromone, the forward direction can be regulated according to

the pheromone’s intensity on the route. Eventually, through many

revisions, it can approach the food destination, with rapid speed

and positive feedback process, ACO algorithm can identify the

optimal solution. ACO has already been applied to solve the

complex problems of optimization in different areas. However,

ACO-based software testing has not been thoroughly investigated

and remains a challenging subject [10] [45].

In an ant colony system (ACS), searching of optimal path is a

process of generating solutions that can be referred to as a path on

the construction graph G = (V,E). The set of solutions can be

linked to either the graph G node set V or the graph G edge set E

[10] . The quantity of pheromone trail associated with edge (i,j) is

supposed to indicate the learnt desirability of selecting node j

when the ant is on node i and m ants are utilised to build a tour in

the network given a graph with n nodes. If the kth ant is still on

node i the current position (i.e., the node i set of neighbourhood

nodes for such an ant) can be written as Nk(i)Nk(i). This contains

the nodes that ant i may visit in the next phase. In general, the

selection of a node from Nk(i) is done probabilistically at each step.

 ()
() ()

() ()
()

, ,
,

, ,
k i

k

u N

i j i j
p i j

i u i u

=

 (1)

Once all ants have finished their tour, the pheromone on all

edges is updated using the equation below. The goal of

pheromone updating is to raise pheromone values associated with

good or promising solutions while lowering those associated with

negative ones.

 τ(i,j) ← (1-α).τ(i,j) + ∆τ(i,j) (2)

The pheromone decay parameter α ∈ (0,1) is used in Eq.(2):

 ∆ τ(i,j) = ()
1

,
m

k

k

i j
=

 and ∆τk(i,j) (3)

Ant k has deposited a certain amount of pheromone on edge

(i,j) [34]. It is commonly defined as:

 ()
()

1
,

,

0

k

kk

if i j T
Li j

Otherwise

 =

 (4)

where, Tk denotes the route taken by ant k, while Lk denotes the

duration of the tour. It is clear from the definition of ∆τk(i,j), that

its value is greatly dependent on how well the ant has performed;

the shorter the tour, the more pheromone is deposited.

 ()
()

1
,

,

0

gb

if i j global best tour
Li j

Otherwise

 − −

 =

 (5)

In Dorigo’s modified ant colony system (ACS), [46], ∆τ(i,j) is

based on only the best ant in the tour, where Lgb is the length of

the best tour from the start of the trial [34].

4.2 NEGATIVE SELECTION ALGORITHM (NSA)

In an Artificial Immune System, the Negative Selection

Algorithm (NSA) is possibly the most important strategy (AIS)

[47]. The NSA is a self/nonself discrimination computational

model that was first devised as a change detection tool. It is one

of the initial AIS algorithms, and it is been employed in a variety

of real-world applications [48]. The organic behaviour of the

Natural Immune System (NIS), which is a compound organic

organisation that uses rapid and dynamic methods to protect the

body against predefined unfamiliar bodies called antigens,

triggered AIS.

Fig.2. Negative Selection Algorithm

AIS’s are a few of algorithms inspired by biologic systems,

such as evolutionary algorithms, swarm intelligence, and neural

networks that have sparked the interest of many researchers [49].

Its aim is to design immune-based algorithms for solving complex

computations. One of the immune system’s jobs is to recognise

and classify all cells in the body as self or non-self. Negative

selection is used to ensure that self-cells are accepted [50]. The

primary idea underlying NSA is to create as many detectors as

possible in the search area, and then utilise these detectors to

Self

Match
Random

Data

Add to

detector

Discard
Yes

No

Detector

Match
Data

Item

Self

Non-Self
Yes

No

GAGAN KUMAR AND VINAY CHOPRA: A NOVEL APPROACH FOR TEST DATA GENERATION

2672

determine whether new data is self or non-self [51]. The NSA is

divided into two stages: generation (also known as training) and

detection (also called testing stage). In the generation stage, a

random method is utilised to generate the detectors, and the

process is monitored. After the matched candidates are rejected,

the leftovers are kept as detectors [17] [38]. The generation stage

is accomplished when there are enough detectors (detector sets)

formed [52]-[55]. In the detection stage, the detector sets

generated in the previous stage are utilised to identify whether the

input samples are self or non-self-samples. [56]-[59]. The Fig.2

describes the working of negative selection algorithm.

5. FRAMEWORK OF PROPOSED

METHODOLOGY

In the proposed methodology, test procedures and both

techniques must work in aligned manner to produce optimal

outcome. The Fig.3 shows the process of test data generation. The

following steps are required to generate the test data.

Step 1: Convert Program under test to control flow graph (CFG)

Step 2: Apply ACO to CFG for tracing the optimal path

Step 3: Local search is performed to update the pheromone trial

alongside global best solution i.e., global search (if

required)

Step 4: The application of negative selection is applied to reduce

the redundancy and to minimize the size of the data.

Step 5: Path based fitness is computed to find the best solution.

Step 6: The fitness function’s value can be utilised to guide

technique in the next iteration.

Step 7: Identify traces and used them to count the information

about coverage.

6. PROPOSED APPROACH

The primary objective of the ACO and NSA algorithm is to

solve computational problems. We propose a hybrid strategy

based on Ant Colony Optimization (ACO) and the application of

the Negative Selection Algorithm (NSA) in this work. So that it

can produce a high-coverage test data set with significant

efficacy. The following is a formal definition of the test data

creation problem, by combining the applications of both ACO and

NSA technologies. Let a programme under test P to have a test

data set as input i.e., X=(x1, x2,… xn), In the proposed approach,

this can be treated as an ant’s position vector. Assume that each

input variable xi, takes its values in the search space Di ∈ (1≤i≤n).

As a result, the entire program’s corresponding input domain can

be represented as D = D1, D2….Dn. It should create a test data set

that traverses all elements in connection to a defined coverage

criterion C. We use path coverage as a coverage criterion in our

work. As a result, the objective of test data generation is to prepare

a test input set TIS ={X} that meets the highest possible path

coverage criterion.

The search domain in traditional algorithm was a topology

structure graph. An ant’s neighbour region is a set of nodes that

are adjacent to its current location in a graph. The position of each

ant can be considered of as a test case in the test data generation

process, and it is usually represented as a vector in the input

domain. In this case, the domain is continuous

Euclidean space. Initially, m ants are placed randomly over the

search domain. For every ant k(1≤k≤m), Its position can be stated

as Xk=(xk1, xk2,…xkn), The neighbour area can then be defined as a

continuous region in which the distance between any point and

ant k is less than or equal to a given constant r, where X=(y1,

y2,…yn). In our algorithm, we use the Triangle classifier type

example to represent the structure of an ant and its neighbours,

The Triangle Type program has three input variables, if each input

has a range of 0 to 9, the associated test case might be like: (1,1,1)

that is the equilateral triangle and test suite may be TS =

{{2,3,4,”Scalene triangle”}, {4,4,3,“Isosceles triangle”}, {3, 3,

3,“Equilateral triangle”}, { 1, 2, 3,“It is not a triangle”}, {2,1,0,”It

is not a triangle”}, {1,2,0,”It is not a triangle”}, {5,3,5,”Isosceles

triangle”}, {4,6,6,” Isosceles triangle”}} .

The proposed hybrid approach slightly modified the

pheromone update rule for test data generation. There is no

specified linkage between the adjacent ants is described in the

search space, for the same pheromone of individual ant is

specified as k(1≤k≤m), its pheromone can be represented as τ(k),

Meanwhile, we have set 1 as a default value of (τ0).

Fig.3. Hybrid Test Data Generation Framework

6.1 LOCAL SEARCH AND GLOBAL SEARCH

During the scan, each ant seeks for a better solution in its

immediate area. The local search is aligned with the shifting of

ant positions. Its purpose is for each ant to randomly travel the

Source code

of Program

Output

Generate CFG

Control flow graph for

Minmax

CFG to Position

Vector

ACO

Transfer and Ants and

Pheromone updating

Calculate Hamming

Distance/Fitness

Test

Coverage

Criterion

Input Data/

Parameters

Test Data

Generation

Process

Program Paths

Test Data

Coverage %

Execution Time

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2673

solution in the proximity of the maximum radius rmax. Generally,

we set the initial value of parameter rmax to a constant based on

the characteristics of the problem. However, as the number of

iteration times in searching increases, it will eventually decrease

the value of rmax. Local shifting of ant can be well-defined, when

ant k walks to a new neighbour position Xk and if Xk>f(Xk), then

ant can be transferred to new position. Otherwise, it will have to

remain in its existing place. Here f(Xk) is the fitness value of

solution Xk.. Global search is applied when fitness of any node has

higher value than the average fitness. i.e f(Xk)>favg(Xk) in that

case hamming distance is computed among the nodes to attain the

global best solution

6.2 HAMMING DISTANCE

The application of Negative Selection Algorithm is used in the

next step of the proposed strategy. After finding the new test data

sets through Ant Colony Optimization, NSA is applied on those

data sets, NSA not only identify the replication of test data

generated through ACO but also support for complete path

coverage and reduces the size of the test suites to elevate the

performance and speed of the algorithm. Let’s consider test data

Td, if it already exists in the newly generated test data set, discard

it, from the set Td, Otherwise, determine the hamming distance

between the new detector Td1 from test data set Td and all detectors

Tdi in the set and the smallest distance obtain will be compared

with a threshold value. If the distance is lesser than the threshold

value, then the test data will be removed from the test data set Td,

or else it is included to the refined set of test data, this approach

aids in the coverage of the search area as far as possible., and it

could cover more paths with a smaller amount of test data for the

program under test. Subsequently go for the nearest test data from

the set i.e., Td2 and calculate the fitness value of the new detector

Td1 and Td2, if the fitness value of Td1>Td2, interchange the test data

Td2 with the test data Td1. Following method is used to find the

distance between test data.

1. Generate a new test data x, where x∈S;

2. Calculate the similarity of x with every test data di in D∀

di ∈ D which is represent the hamming distance and could

be calculating:

 () ()

0

,
n

aff i i

i

f d x d x
=

= (6)

6.3 FITNESS FUNCTION

The fitness function has significant impact on the validity of

test data. Fitness function preferably applies for the refinement of

test cases. In this study we have used path-based coverage

criterion to validate the fitness of the code. Path based fitness can

be calculated as:

 PBFitness = 1-|α∧β|/|α∪β| (7)

where α and β are set of nodes in the targeted and executed paths,

respectively |α∧β| presents the number of paired nodes in

appropriate sequence between α and β. The path-based fitness for

Minmax CFG of Fig.2 is 1-(3/6) = 0.5 because the node in target

path set (α) contain nodes {1,2,3,4,5,6,7} and executed path set

(β) contain nodes {1,2,3,5,6,7}, the fitness value is the ration

between matched nodes in the correct order {1,2,3} and the

number of nodes in the targeted path {1,2,3,5,6,7}. The Fig.5

depicts the proposed approach’s flow chart, with TDGAN as the

algorithm.

Algorithm: TDGAN

Input: Source code of program under test P, and its input variable

list X=(x1, x2,… xn) where ∀x∈S; path testing coverage criterion

C; The control flow graph CFG of program P; algorithm

parameters α, φ, ρ0, q0, Τ, m and rmax; maximum evolution

generation maxGen.

Output: Set of test data D = (D1, D2….Dn) this met the path

coverage requirement. The set of paths that has been generated

i.e. U = (u1, u2….un);

Initialization

if x ∃ S

goto initialization;

else

x ∄ in search space;

end if

Initialization:

for k→1:m do

for i→1:n do

Initialize the ith dimension (ant[k].x[i]) of position vector for

the ant k;

End For

Calculate the fitness ant[k]fitness of ant k;

ant[k]τ0=1, ant[k]count=0;

for u→1:m do

ant[k]record[u]=0;

End For

End For

get the best one(gbest)from ant'sfitness;

while gen<maxGen or TS does not reach full coverage of

criterion C do;

for k→1:m do

Generate initial test data set randomly (candidate population);

Test if the initial population reach to full coverage of path U

goto end

Generate a new test data x, where x∈S;

Calculate the similarity of x with every test data di in D∀di∈D

by hamming distance and could be calculating as in Eq.(6).

Check the distance faff(di,x);

if faff(di,x)< τ

then remove the new data set x;

else

add x to D;

end if

Repeat steps 25 to 29 until detector number>max or D reach to

full coverage of paths U;

End

for k→1:m do

Update pheromone

GAGAN KUMAR AND VINAY CHOPRA: A NOVEL APPROACH FOR TEST DATA GENERATION

2674

for u→1∶ant[k]count do

ant[k]record[u]=0;

end for

ant[k]count=0;

end for

for k→1:m do

decode position ant[k].x[1….n] into a test case tck ∈TS;

collect coverage information by executing program with tck

End For

End while

return TS

7. EXPERIMENTAL EVALUATION

A comparison of real-world benchmark programs from the

literature has been made to determine the performance of the

proposed technique. These benchmark programs have been

extensively applied in search-based testing by researchers. The

program codes are being written in object-oriented programming

languages such as Java, all these programs are designed by using

the complex programming structure syntax such as relational

operators, logical operator’s conditional statement, control

statements, modularity, and structure of classes etc. This made

these programs suitable for analysing a variety of test data

generation techniques. These programs often provide a complex

data structure with various data types, such as integers, floats,

characters, and strings. The Table.1 represent a summary of each

program with the different number of arguments such as the

number of variables in each program, the number of instructions,

number of branches, lines in the code and complexity of the

source code. The Table.1 shows different metrics used for

program evaluation and its source.

Table 1. Benchmark Programs

Program Triangle Type DayFinder MinMax Isprime

Arguments 3 3 1:N 1

Instructions 50 168 83 34

Branches 16 24 6 6

Lines 13 24 12 11

Complexity 9 16 4 4

To prove that the ACO-NSA based test data generation

approach is effective or not, followings test metrics are considered

while evaluating the code such as:

• Average Coverage (ACG) i.e., the average of all test input

of path coverage throughout multiple runs.

• Average Time (AT) i.e., the average execution time for all

paths in seconds.

Different number of tests have been done for the above metrics

such as for ACG and AT the value of test has been set to 1000

The experimental findings of two different approaches i.e.

random testing and proposed novel algorithms are presented in

response to four programmes in Table.3 and Table.4. The findings

show that result of novel approach is better than those of Random

testing for maximum number of programs. The novel ACO-NSA

approach shows full coverage in maximum number of

experiments done. The experimental setup of program triangle

type in presented in Table.2. The Control Flow Graph of the

program triangle type is presented in Fig.4 and the data in the table

2 represent the traced paths, complexity, input, and output.

Fig.4. Control Flow Graph of Triangle Type

The Table.2 shows the flow of input data through different

paths in triangle type program

Table 2. Path Covers by different input for Triangle Type

program

Paths Input Output

1→2→3→4→5→12→14→15 2,3,4 Scalene

1→2→3→4→5→6→8→11→-14→15 4,4,3 Isosceles

1→2→3→4→5→6→7→14→15 3,3,3 Equilateral

1→2→13→14→15 1,2,3 Not a triangle

1→2→3→13→14→15 2,1,0 Not a triangle

1→2→3→4→13→14→15 1,2,0 Not a triangle

1→2→3→4→5→6→8→9→11→14→15 5,3,5 Isosceles

1→2→3→4→5→8→9→10→11→14→15 4,6,6 Isosceles

1→2→3→4→5→8→11→14→15 8,8,7 Isosceles

Table.3. Comparison analysis of metric average coverage (AC)

Program/Technique Random Hybrid

TriangleType 65.16 100

DayFinder 74.83 95.55

MinMax 63.7 100

Isprime 67.1 100

1

2

3

5

4

6

7

8

9

10

11

12 14

15

13

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2675

Table.4. Comparison analysis of metric average time (AT)

Program/Technique Random Hybrid

TriangleType 0.097 0.047

DayFinder 0.172 0.095

MinMax 0.108 0.025

Isprime 0.116 0.031

Fig.5. Test data coverage for Triangle Type

The Table.3 shows the comparison of metric average

coverage. The Table.4 shows the comparison of metric average

time. The Fig.5 shows the output of triangle type program for

1000 run.

8. DISCUSSION

This section of the paper presents the results of the

experiments conducted to evaluate the performance of the

proposed method i.e., novel approach based on ACO-NSA test

data generation for path coverage. In the start the source code of

the program is converted into control flow graph, then ACO-NSA

is applied to generated automated test data. The results shows that

the proposed approach generate least amount of test data in

limited generations and have high coverage ratio. The results are

compared with random testing to evaluate the performance of the

projected approach. The performance is measure in terms of

Average Coverage (ACG) and average time (AT). This section of

the paper presents the performance of the proposed approach for

different benchmark programs which have been the pivot point

for the researchers in the field of search-based test data generation

and in immune algorithms.

All the benchmark programs are widely applied by the

researchers for test data generation. These benchmark programs

design flow structure made them suited for testing a variety test

data generation technique. All such programs have different data

structures, line of codes (LOC), arithmetic, relational and logical

operators, loops and nested loops, conditional statements, arrays,

functions and classes and complexity levels. The Table.1 gives a

brief description of each program.

The studies were carried out in a Microsoft Windows 10

environment with an Intel Core TM i7 2.10 GHz 64-bit processor

and 8 GB RAM. The eclipse 20-3 Java platform is used to code

the program, the MATLAB platform is used to code the method’s

implementation and the generated test data is verified using

testing tool TestNG and coverage is recorded through tool ECL

Emma.

This section depicts the outcomes of each program. The

“triangle type classifier (Tritype)” is highly recognized

programming application for testing. It seems to be a simple

application for testing process, but it has all the requirements

suitable for testing such as data structures, conditional and logical

operators, conditional and logical statements, functions, and

arrays. It takes three input variables and uses them to decide the

triangle type (scalene, isosceles, equilateral, and not a triangle).

The size of the search space is proportional to the data type if it is

assumed to be integer of type, it may consume two bytes of

memory for individual variable declared. It will be very difficult

to design test cases corresponding to such large range of data from

the appropriate domain corresponding to the data type of the

variable. The proposed approach guided the method to generate

appropriate test data from the domain to achieve the full path

coverage. Path fitness has been applied along with the proposed

method to achieve the quality data. The probability of finding the

accurate value for all three variables that execute the required path

such as isosceles triangle depends upon the three variables i.e., the

probability of having any type of triangle will be 1/3rd of all. The

analysis reveals that the novel ACO-NSA is more efficient than

random testing for the triangle type classifier program, isprime,

dayfinder and minmax for test data generation. The number of

generations required in novel ACO-NSA is comparatively very

less as compared to random testing. It can be concluded from the

results in (Table.3 and Table.4) that the proposed novel ACO-

NSA approach is suitable for use in programs that have complex

path with loops and nested selection because it can accomplish

comprehensive path coverage.

9. CONCLUSION

This paper proposed a novel approach based on ACO-NSA, a

hybrid approach that incorporates ACO and NSA for the creation

of automated software test data. This technique applied path-

based fitness functions to modify random detector generation, to

produce optimized and minimal quantity of detectors (test data

set) and guide the search of test data to paths with minimal

probability of being executed. The proposed approach increases

the percentage of path coverage while avoiding redundant data

and enhances reliability and effectiveness of test data generation.

The newly generated results show the significant improvement in

path coverage, including in complex paths. The average coverage

(ACG) also improved significantly in the novel ACO-NSA

approach, the approach also has high success rate with low

execution time and get a smaller number of generations to execute

the source code. The proposed approach yields better results by

reducing, the amount of generated test data while reducing the

number of generations.

REFERENCES

[1] S.C. Ntafos, “A Comparison of Some Structural Testing

Strategies”, IEEE Transactions on Software Engineering,

Vol. 14, No. 6, pp. 868-874, 1988.

[2] G.D. Everett and R. McLeod, “Software Testing: Testing

Across the Entire Software Development Life Cycle”, Wiley,

2006.

[3] K. Sneha and G.M. Malle, “Assistant Professor in Computer

Science Department”, Proceedings of International

0

100

200

300

400

500

600

Not a Triangle Equilateral Isosceles Scalene

R
u

n

Output type

Output for Triangle Type for 1000 run Random

Output for Triangle Type for 1000 run Hybrid

GAGAN KUMAR AND VINAY CHOPRA: A NOVEL APPROACH FOR TEST DATA GENERATION

2676

Conference on Energy, Communication Data Analysis, pp.

77-81, 2017.

[4] M.A. Jamil, M. Arif, N. Sham, A. Abubakar and A. Ahmad,

“Software Testing Techniques : A Literature Review”,

Proceedings of International Conference on Information

and Communication Technology, pp. 1-6, 2016.

[5] N. Anwar and S. Kar, “Review Paper on Various Software

Testing Techniques and Strategies”, Global Journal of

Computer Science and Technology: C Software and Data

Engineering, Vol. 19, No. 2, pp. 1-8, 2019.

[6] O. Sahin and B. Akay, “Comparisons of Metaheuristic

Algorithms and Fitness Functions on Software Test Data

Generation”, Applied Soft Computing, Vol. 49, pp. 1202-

1214, 2016.

[7] V. Garousi and M.V. Mantyla, “A Systematic Literature

Review of Literature Reviews in Software Testing”,

Information and Software Technology, Vol. 80, pp. 1339-

1351, 2016.

[8] S. Parnami, “Testing Target Path by Automatic Generation

of Test Data using Genetic Algorithm”, International

Journal of Information and Computation Technology, Vol.

3, No. 8, pp. 825-832, 2013.

[9] K. Lakhotia and P. Mcminn, “Automated Test Data

Generation for Coverage : Haven’t We Solved This Problem

Yet ?”, Proceedings of International Conference on

Practice and Research Techniques, pp. 1-6, 2009.

[10] M. Dorigo, M. Birattari and T. Stützle, “Ant Colony

Optimization Artificial Ants as a Computational Intelligence

Technique”, IEEE Computational Intelligence Magazine,

Vol. 1, No. 4, pp. 28-39, 2006.

[11] S. Anand, “An Orchestrated Survey of Methodologies for

Automated Software Test Case Generation Orchestrators

and Editors”, The Journal of Systems and Software, Vol. 86,

No. 2013, pp. 1978-2001, 2015.

[12] M. Harman, S.A. Mansouri and Y. Zhang, “A

Comprehensive Analysis and Review of Trends Techniques

and Applications”, Search Based Software Engineering,

Vol. 12, pp. 1-18, 2009.

[13] M. Harman and P. Mcminn, “A Multi - Objective Approach

To Search - Based Test Data Generation”, Proceedings of 9th

Annual Conference on Genetic and Evolutionary

Computation, pp. 1098-1105, 2007.

[14] W. Rhmann, “Dynamic Test Data Generation using

Negative Selection Algorithm and Equivalence Class

Partitioning”, International Journal of Advanced Research

in Computer Science, Vol. 8, No. 3, pp. 189-192, 2017.

[15] J. Al-Enezi, M. Abbod and S. Alsharhan, “Artificial Immune

Systems-Models, Algorithms and Applications”,

International Journal of Research and Reviews in Applied

Sciences, Vol. 3, No. 3, pp. 118-131, 2010.

[16] R. Rahnamoun, “Distributed Black-Box Software Testing

Using Negative Selection”, International Journal of Smart

Electrical Engineering, Vol. 2, No. 3, pp. 151-157, 2013.

[17] I. Journal, C. Vision, S. Mustafa, R. Mohamad and U.

Teknologi, “Automated Path Testing using the Negative

Selection Algorithm”, International Journal of

Computational Vision and Robotics, Vol. 7, No. 1-2, pp. 1-

15, 2017.

[18] A. Pachauri, “Use of Clonal Selection Algorithm as

Software Test Data Generation Technique”, Proceedings of

International Conference on Advanced Computing and

Communication Technologies, Vol. 2, No. 2, pp. 1-5, 2012.

[19] S.M.M. Id, R. Mohamad and S. Deris, “Optimal Path Test

Data Generation based on Hybrid Negative Selection

Algorithm and Genetic Algorithm”, PLOS One, Vol. 34, No.

3, pp. 1-21, 2020.

[20] S.M. Mohi-Aldeen, S. Deris and R. Mohamad, “Systematic

Mapping Study in Automatic Test Case Generation”,

Frontiers in Artificial Intelligence, Vol. 265, pp. 703-720,

2014.

[21] M. Harman and B.F. Jones, “Search-based Software

Engineering”, Information and Software Technology, Vol.

43, pp. 833-839, 2001.

[22] G.I. Latiu, O.A. Cret and L. Vacariu, “Automatic Test Data

Generation for Software Path Testing using Evolutionary

Algorithms”, Proceedings of 3rd International Conference

on Emerging Intelligence Data Web Technology, pp. 1-8,

2012.

[23] M. Harman, P. Mcminn and R. Court, “A Theoretical and

Empirical Analysis of Evolutionary Testing and Hill

Climbing for Structural Test Data Generation”, Proceedings

of International Symposium on Software Testing and

Analysis, pp. 73-83, 2007.

[24] Y. Chen, Y. Zhong, T. Shi and J. Liu, “Comparison of Two

Fitness Functions for GA-based Path-Oriented Test Data

Generation”, Proceedings of International Conference on

Natural Computation, pp. 1-15, 2009.

[25] H. Tahbildar and B. Kalita, “Automated Software Test Data

Generation: Direction of Research”, International Journal

of Computer Science and Engineering Survey, Vol. 2, No. 1,

pp. 1-12, 2011.

[26] X. Zhu, “Software Test Data Generation Automatically

Based on Improved Adaptive Particle Swarm Optimizer”,

Proceedings of International Conference on Computational

and Information Sciences, pp. 1300-1303, 2010.

[27] S. Singla, D. Kumar, H.M. Rai and P. Singla, “A Hybrid

PSO Approach to Automate Test Data Generation for Data

Flow Coverage with Dominance Concepts”, International

Journal of Advanced Science and Technology, Vol. 37, pp.

15-26, 2011.

[28] D.A.N. Liu, X. Wang and J. Wang, “Automatic Test Case

Generation based on Genetic Algorithm”, Proceedings of

International Conference on Control Systems, Computing

and Engineering, Vol. 48, No. 1, pp. 411-416, 2013.

[29] M.A. Ahmed and I. Hermadi, “GA-based Multiple Paths

Test Data Generator”, Computer and Operation Research,

Vol. 35, pp. 3107-3124, 2008.

[30] S. Sekhara, B. Lam, M.L.H. Prasad and S. Ch, “Automated

Generation of Independent Paths and Test Suite

Optimization using Artificial Bee Colony”, Procedia

Engineering, Vol.12, No. 1, pp. 1-5, 2021.

[31] S.S. Dahiya, J.K. Chhabra and S. Kumar, “Application of

Artificial Bee Colony Algorithm to Software Testing”,

Proceedings of International Conference on Software

Engineering, pp. 149-154, 2010.

[32] B. Suri, P. Kaur, D.B. Suri and P. Kaur, “Path Based Test

Suite Augmentation using Artificial Bee Colony

Algorithm”, International Journal for Research in Applied

Science and Engineering Technology, Vol. 2, No. 9, pp. 156-

164, 2014.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2022, VOLUME: 12, ISSUE: 04

2677

[33] S. Yang, T. Man and J. Xu, “Improved Ant Algorithms for

Software Testing Cases Generation”, The Scientific World

Journal, Vol. 2014, pp. 1-13, 2014.

[34] C. Mao, L. Xiao, X. Yu and J. Chen, “Adapting Ant Colony

Optimization to Generate Test Data for Software Structural

Testing”, Swarm Evolutionary Computing, Vol. 20, pp. 23-

36, 2015.

[35] P. Sharma, “Automated Software Testing using

Metahurestic Technique Based on Improved Ant Algorithms

for Software Testing”, Proceedings of International

Symposium on Electronic System Design, pp. 3505-3510,

2010.

[36] P.R. Srivastava, “Automated Software Testing using

Metahurestic Technique Based on An Ant Colony

Optimization”, Proceedings of International Conference on

Advanced Computing, pp. 1-13, 2010.

[37] F. Sayyari and S. Emadi, “Automated Generation of

Software Testing Path based on Ant Colony”, Proceedings

of International Conference on Technology, Communication

and Knowledge, pp. 11-12, 2015.

[38] S.M. Mohi-Aldeen, R. Mohamad and S. Deris, “Application

of Negative Selection Algorithm (NSA) for Test Data

Generation of Path Testing”, Applied Soft Computing, Vol.

49, pp. 1118-1128, 2016.

[39] P. Saini and S. Tyagi, “Test Data Generation for Basis Path

Testing using Genetic Algorithm and Clonal Selection

Algorithm”, International Journal of Science and Research,

Vol. 3, No. 6, pp. 2012-2015, 2014.

[40] C. Mao, X. Yu, J. Chen and J. Chen, “Generating Test Data

for Structural Testing Based on Ant Colony Optimization”,

Proceedings of International Conference on Quality

Software, pp. 98-101, 2012.

[41] S.M. Mohialdeen, R. Mohamad and S. Deris, “Automatic

Test Case Generation for Structural Testing using Negative

Selection Algorithm”, Proceedings of International

Conference on Recent Trends in Information and

Communication Technologies, pp. 1-12, 2014.

[42] A.E. Rizzoli, “Ant Colony Optimization for Real-World

Vehicle Routing Problems”, Swarm Intelligence, Vol. 133,

No. 1, pp. 87-151, 2007.

[43] M. Dorigo, V. Maniezzo and A. Colorni, “The Ant System:

Optimization by a Colony of Cooperating Agents”, IEEE

Transactions on Systems, Man and Cybernetics-Part B, Vol.

26, No. 1, pp. 1-26, 1999.

[44] K. Socha and M. Dorigo, “Ant Colony Optimization for

Continuous Domains”, European Journal of Operational

Research, Vol. 185, No. 3, pp. 1155-1173, 2008.

[45] S. Nallaperuma, M. Wagner and F. Neumann, “Ant Colony

Optimisation and the Traveling Salesperson Problem -

Hardness, Features and Parameter Settings Categories and

Subject Descriptors”, Proceedings of International

Conference on Companion on Genetic and Evolutionary

Computation, 2013.

[46] C.S.G Dhas and T.D. Geleto, “D-PPSOK Clustering

Algorithm with Data Sampling for Clustering Big Data

Analysis”, Academic Press, 2022.

[47] J. Timmis, A. Hone, T. Stibor and E. Clark, “Theoretical

Advances in Artificial Immune Systems”, Theoretical

Computer Science, Vol. 403, No. 1, pp. 11-32, 2008.

[48] S. Stepney, “Conceptual Frameworks for Artificial Immune

System”, International Journal of Unconventional

Computing, Vol. 1, No. 3, pp. 315-338, 2005.

[49] D. Dasgupta, “Advances in Artificial Immune Systems”,

IEEE Computational Intelligence Magazine, Vol. 1, No. 4,

pp. 40-43, 2006.

[50] M. Ponnusamy, P. Bedi and T. Suresh, “Design and Analysis

of Text Document Clustering using SALP Swarm

Algorithm”, The Journal of Supercomputing, Vol. 12, pp. 1-

17, 2022.

[51] Z. Liu, T.A.O. Li, J.I.N. Yang and T.A.O. Yang, “An

Improved Negative Selection Algorithm Based on Subspace

Density Seeking”, IEEE Access, Vol. 5, pp. 12189-12198,

2017.

[52] H. Hou and G. Dozier, “An Evaluation of Negative Selection

Algorithm with Constraint-Based Detectors”, Proceedings

of 44th International Conference on Recent Trends in

Information Technology, pp. 134-139, 2006.

[53] P. Agarwal, “Nature-Inspired Algorithms: State-of-Art,

Problems and Prospects”, International Journal of

Computer Applications, Vol. 100, No. 14, pp. 14-21, 2014.

[54] E. Alba and J.F. Chicano, “Software Testing with

Evolutionary Strategies”, Lecture Notes in Computer

Science, pp. 50-65, 2006.

[55] I. Hermadi, C. Lokan and R. Sarker, “Dynamic Stopping

Criteria for Search-Based Test Data Generation for Path

Testing”, Information and Software Technology, Vol. 56,

No. 4, pp. 395-407, 2014.

[56] S. Kumar, D.K. Yadav and D.A. Khan, “Artificial Bee

Colony based Test Data Generation for Data-Flow Testing”,

Indian Journal on Science and Technology, Vol. 9, No. 39,

pp. 1-13, 2016.

[57] C.C. Michael, G. McGraw and M.A. Schatz, “Generating

Software Test Data by Evolution”, IEEE Transactions on

Software Engineering, Vol. 27, No. 12, pp. 1085-1110,

2001.

[58] A.S. Ghiduk, “Automatic Generation of Basis Test Paths

using Variable Length Genetic Algorithm”, Information

Processing Letters, Vol. 114, No. 6, pp. 304-316, 2014.

[59] R. Malhotra, “Comparison of Search based Techniques for

Automated Test Data Generation”, International Journal of

Computer Applications, Vol. 95, No. 23, pp. 4-8, 2014.

