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Abstract 

Software testing is an essential phase in software design process, 

accounting for more than half of the total cost due to its rigorous and 

time-consuming nature. Path test data generation is the most important 

stage in software testing, and researchers have devised several methods 

to automate it. In this research, a novel approach based on ant colony 

optimization and negative selection algorithm (NSA) is projected to 

automatically create test data for path testing. The most widely used 

benchmark programs such as triangle classification, dayfinder, 

minmax and isprime, has been used to test the proposed approach. 

When compared to random testing, the experimental findings reveal 

that the proposed method is more efficient in terms of coverage, 

execution time and more effective in terms of test data creation. 
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1. INTRODUCTION 

Software testing is a pivotal task in software development life 

cycle. It is an expensive and laborious activity which often 

accounted as a time-consuming process in any software 

development life cycle model [1] [2]. It is being  used to unfold 

the bugs and errors out from the software code [3]. Testing can be 

applied on structural and functional part of the code [4]. Both 

structural and functional aspects have their own significance, 

Structural testing is considered as the strongest one out of the 

two[5]. 

Structured testing focuses on internal structure of the program 

based on the fitness criteria opted for the testing. Structure of the 

program can be tested in different means statement coverage, 

branch coverage, and path coverage are instances of these types 

of coverage. [6]. The strongest coverage criterion in structural 

testing is path coverage, it comprises of all three structural testing 

criteria, sometimes it also named as basis path testing.[6]. 

Test data generation is a central objective in software testing 

[7].  It is an efficient and effective way to generate equitable test 

data. The non-linear pattern of test data makes it more complex to 

generate optimal test data. The difficulty of generating test data is 

in tight loop with the level of problem, it increases or decrease 

with the involvedness of problem. Test data can be generated by 

adopting either manual procedure or through automated 

procedure, manually generation of test data required more efforts 

in comparison towards the generation of test data automatically 

for execution of test cases. Automatic, test cases (data) generation 

is key to find the adequate solution of problem of any size [8] [9].  

The generation of test data is classified as an undecidability 

problem since it can be non-deterministic, making it an NP-hard 

problem, or there may be the possibility of infeasibility of existing 

outcome [10]. The program’s exceptionally non-linear design 

makes it difficult for search algorithms to generate efficient and 

optimal test data from a non-linear, complex, and discontinuous 

input in the search space. 

Path testing is a structural testing approach that ensures the 

execution of individual path at least once. The main issue with 

path testing is that how do we produce the effective test records 

that covers entire structure of the program in limited time period 

[1]. As it is not feasible to cover entire structure of the program, 

the path test method involves adopting subset of paths and 

searching of test data to unfold it. Many researchers have 

proposed number of methods for automatic generation of test data 

set for path testing [11] such as random testing approach , 

symbolic testing , dynamic testing and search based testing. All 

three approaches, to test data generation are inadequate to sustain 

enough appropriate test data. As a result, search-based testing is 

the trend of the day for generating test data [12].  

 With the gaining popularity for search-based testing many 

researchers start working on it, meta-heuristics search-based 

algorithms were considered stronger in this field because of its 

fault revealing capability. Genetic algorithm(GA), ant colony 

optimization (ACO) and simulated annealing (SA)  are the 

popular meta-heuristic search-based algorithm [13]. But search-

based algorithms still have some issues such as they may stuck in 

local optima, complete coverage, number of generations and 

execution time. 

Despite search-based algorithm, artificial immune algorithms 

are also used for test data generation which shows significant 

improvement on searched based algorithm [14] [15]. Negative 

Selection algorithm [16] [17] , Colonel Selection algorithm [18] 

has applied in the field of test data generation. A hybrid approach 

based on artificial immune algorithm NSA and meta-heuristic 

algorithm PSO is also proposed for test data generation [19], 

which shows considerable advancement on meta-heuristic and 

artificial immune algorithms. Most of the work in the field of test 

data generation is proposed and implemented on 

modular/structural programming, only few researchers’ works on 

object-oriented concepts.  

This research proposed a new hybrid approach cantered on ant 

colony optimization and negative selection algorithm 

applications, to generate test data automatically on object-

oriented system which have not been applied earlier and the 

results gives an effective test data that could traverse all program 

paths timely, when compared with the other techniques. The key 

aspects are summarised as follows: 

• Applications of Negative Selection Algorithm such as 

(hamming distance) has been combined with in the 

functionality of ACO algorithm to achieve complete path 

coverage for test data generation. 

• Path coverage is calculated using a fitness function that 

considers the reachability of each path. 
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• To validate the effectiveness of the proposed algorithm, 

some well-known programmes were used, as well as a 

comparison with random testing. 

2. TEST DATA GENERATION 

Generation of test data is a complex problem when used as 

automated. In earlier work search-based test data has widely been 

studied and most of the study was based on procedure-oriented 

system in structural testing. Various methods have been deployed 

in the literature for automatic generation of test data to enhance 

the coverage ratio and to bring the size of data down for different 

coverage criteria [20]. The mostly adopted test data generation 

techniques in which the researchers have the keen interest are 

random testing, symbolic testing, dynamic test data generation 

and search-based test data generation technique [6]. In random 

testing procedure, the test information has been chosen self-

assertively from a search space, data generated through random 

technique shows high redundancy ratio, symbolic technique 

generated test data in static form and assign static values to 

variable instead of the real values and Dynamic techniques, 

necessitate the actual execution of source code for a limited input 

area [6]. 

 

Fig.1. Control flow graph for Minmax 

All the above three techniques are not so competent, they 

mostly generate the test data with high redundancy and the size of 

data always surge in this technique for slightly complex data 

structures and the size of input data is also inadequate. Search 

based test data generation is the most powerful searching 

techniques to locate the test data in the search space [21] [22]. 

SBST techniques uses search-based optimization algorithm 

alongside fitness function gets popularity in the research areas 

[23]. The general structure of SBST is presented in Fig.1 in a form 

of control flow grap [24]. To use the meta-heuristic approach to 

identify data in search space, we must first convert the source 

code into a control flow graph (CFG), that is a diagrammatic 

display of the source code [25]. 

Control flow graph (CFG) is a directed graph with the 

following definition: 

F(G) = (N, E, s, e) 

where, N = N is a set of nodes in which each node corresponds to 

a statement; E = E is a set of edges, each of which represents a 

control flow between nodes and is labelled with a predicate; S =    

Entry node; E = Exit node. 

The control flow graph serves as a reference for locating an 

input that directs the software through various paths. CFG can be 

thought of as an optimization problem with the goal of increasing 

coverage criteria. Control flow graph for Minmax is given in 

Fig.1. 

3. RELATED WORK ON TEST DATA 

GENERATION 

Some studies on meta-heuristic algorithms like ACO, PSO, 

ABC, GA, FA, and artificial immune algorithms like NSA and 

clonal selection for the development of test data/cases have been 

published in recent years. The authors in [26] projected a new 

approach bases on PSO, in which the weight of inertia is modified 

based on fitness value. It uses branch Coverage as fitness criteria. 

Sanjay Singhal, [27] projected a hybrid approach by combining 

GA and PSO (GPSCA). It uses data flow coverage by applying 

dominance concept between two nodes and multi-objective 

coverage criteria. The authors in [28] projected an approach IGA 

based on Genetic Algorithm (GA) for automatic test case 

generation. They have done comparison of IGA with traditional 

GA for triangle classification problem using branch fitness 

criterion. The authors in [29] projected a GA based test data 

generator using multi path fitness. The approach can synthesize 

multiple test data to cover multiple target paths. Soma [30] 

projected an approach by combining the functionalities of scouts, 

employed and onlooker bees in ABC algorithm. The authors in 

[31] proposed a static based symbolic execution approach using 

ABC algorithm with branch distance as objective function.  

The authors in [32] proposed a regression augmentation 

testing approach based on ABC algorithm with branch distance as 

objective function. Yang [33] proposed an approach based on ant 

colony optimization in which they have improved local 

pheromone strategy, pheromone volatilization co-efficient and 

global path pheromone with statement coverage, branch coverage 

and condition coverage as fitness value. Mao [34] proposed an 

approach in which they reformed ACO into discrete version by 

redefining local transfer, global transfer and pheromone update 

rule with customize branch fitness function. Sharma [35] has 

proposed an approach for automated software testing using meta 

heuristic technique based on improved ant algorithm in which she 

used statement, branch and modified decision/coverage as an 

objective function. Srivatsava [36] proposed a meta-heuristic 

technique based on ACO for state transition testing. Sayyari [37] 

has proposed an ACO and model-based testing approach. They 

have used Markov model for the re-formation of ACO. Aldeen 

[38] have proposed a new approach based on artificial immune 

system in which they have use the application of negative 

selection algorithm. Aldeen et.al. [19] projected a new approach 

based on NSA and GA for automated test data generation, the 

experimentation of the projected approach has been done on 11 

real world programs, the projected approach is also compared 

with random testing approach and negative selection algorithm. 

Pachauri[18] has projected test data generation approach based on 

Clonal selection algorithm. They have used AI and NBD 

Approximation level with normalized branch distance as 

objective function to validate the test data.  
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Saini [39] has also projected an approach based on Clonal 

Selection algorithm. They have used Korel Distance function for 

branch predicate as objective function to validate the test data. 

The central objective of the above sited research is to explore the 

search capabilities of Meta–heuristic procedures such as ACO, 

PSO, ABC and GA and Artificial Immune algorithm NSA and 

Clonal selection algorithm on benchmark problems in software 

test data creation, comprising of classification of triangle, prime 

number generation, quadratic equation, largest number, telephone 

system, max-min etc. Meta-heuristic methods such as ACO, PSO, 

ABC and GA has excellent search capabilities, but all these 

algorithms have somehow lag in complete coverage and somehow 

stuck in local optima [40]. The Artificial Immune algorithm NSA 

and clonal selection are new approach in generation of test data. 

An immune algorithm has significant impact on the quality and 

coverage capabilities of test data generation and overcome the 

issues related with local optima [41].  

4. BRIEF EXPLANATION OF ANT COLONY 

OPTIMIZATION AND NEGATIVE 

SELECTION ALGORITHM  

4.1 ANT COLONY OPTIMIZATION 

Marco Dorigo introduces the ACO algorithm by studying the 

foraging behaviour of the ant colony[10], [42]–[44]. Ant secretes 

pheromone on its way to share information with other ants during 

the foraging period. As every ant can perceive the trail of the 

pheromone, the forward direction can be regulated according to 

the pheromone’s intensity on the route. Eventually, through many 

revisions, it can approach the food destination, with rapid speed 

and positive feedback process, ACO algorithm can identify the 

optimal solution. ACO has already been applied to solve the 

complex problems of optimization in different areas. However, 

ACO-based software testing has not been thoroughly investigated 

and remains a challenging subject [10] [45].  

In an ant colony system (ACS), searching of optimal path is a 

process of generating solutions that can be referred to as a path on 

the construction graph G = (V,E). The set of solutions can be 

linked to either the graph G node set V or the graph G edge set E 

[10] . The quantity of pheromone trail associated with edge (i,j) is 

supposed to indicate the learnt desirability of selecting node j 

when the ant is on node i and m ants are utilised to build a tour in 

the network given a graph with n nodes. If the kth ant is still on 

node i the current position (i.e., the node i set of neighbourhood 

nodes for such an ant) can be written as Nk(i)Nk(i). This contains 

the nodes that ant i may visit in the next phase. In general, the 

selection of a node from Nk(i) is done probabilistically at each step. 
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Once all ants have finished their tour, the pheromone on all 

edges is updated using the equation below. The goal of 

pheromone updating is to raise pheromone values associated with 

good or promising solutions while lowering those associated with 

negative ones. 

 τ(i,j) ← (1-α).τ(i,j) + ∆τ(i,j) (2) 

The pheromone decay parameter α ∈ (0,1) is used in Eq.(2): 
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Ant k has deposited a certain amount of pheromone on edge 

(i,j) [34]. It is commonly defined as: 
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where, Tk denotes the route taken by ant k, while Lk denotes the 

duration of the tour. It is clear from the definition of ∆τk(i,j), that 

its value is greatly dependent on how well the ant has performed; 

the shorter the tour, the more pheromone is deposited.  

 ( )
( )

1
,

,

0

gb

if i j global best tour
Li j

Otherwise




 − −

 = 



 (5) 

In Dorigo’s modified ant colony system (ACS), [46], ∆τ(i,j) is 

based on only the best ant in the tour, where Lgb is the length of 

the best tour from the start of the trial [34].  

4.2  NEGATIVE SELECTION ALGORITHM (NSA)  

In an Artificial Immune System, the Negative Selection 

Algorithm (NSA) is possibly the most important strategy (AIS) 

[47]. The NSA is a self/nonself discrimination computational 

model that was first devised as a change detection tool. It is one 

of the initial AIS algorithms, and it is been employed in a variety 

of real-world applications [48]. The organic behaviour of the 

Natural Immune System (NIS), which is a compound organic 

organisation that uses rapid and dynamic methods to protect the 

body against predefined unfamiliar bodies called antigens, 

triggered AIS.  

 

Fig.2. Negative Selection Algorithm 

AIS’s are a few of algorithms inspired by biologic systems, 

such as evolutionary algorithms, swarm intelligence, and neural 

networks that have sparked the interest of many researchers [49]. 

Its aim is to design immune-based algorithms for solving complex 

computations. One of the immune system’s jobs is to recognise 

and classify all cells in the body as self or non-self. Negative 

selection is used to ensure that self-cells are accepted [50]. The 

primary idea underlying NSA is to create as many detectors as 

possible in the search area, and then utilise these detectors to 
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determine whether new data is self or non-self [51]. The NSA is 

divided into two stages: generation (also known as training) and 

detection (also called testing stage). In the generation stage, a 

random method is utilised to generate the detectors, and the 

process is monitored. After the matched candidates are rejected, 

the leftovers are kept as detectors [17] [38]. The generation stage 

is accomplished when there are enough detectors (detector sets) 

formed [52]-[55]. In the detection stage, the detector sets 

generated in the previous stage are utilised to identify whether the 

input samples are self or non-self-samples. [56]-[59]. The Fig.2 

describes the working of negative selection algorithm. 

5. FRAMEWORK OF PROPOSED 

METHODOLOGY 

In the proposed methodology, test procedures and both 

techniques must work in aligned manner to produce optimal 

outcome. The Fig.3 shows the process of test data generation. The 

following steps are required to generate the test data.  

Step 1: Convert Program under test to control flow graph (CFG) 

Step 2: Apply ACO to CFG for tracing the optimal path 

Step 3: Local search is performed to update the pheromone trial 

alongside global best solution i.e., global search (if 

required) 

Step 4: The application of negative selection is applied to reduce 

the redundancy and to minimize the size of the data. 

Step 5: Path based fitness is computed to find the best solution.  

Step 6: The fitness function’s value can be utilised to guide 

technique in the next iteration. 

Step 7: Identify traces and used them to count the information 

about coverage. 

6. PROPOSED APPROACH 

The primary objective of the ACO and NSA algorithm is to 

solve computational problems. We propose a hybrid strategy 

based on Ant Colony Optimization (ACO) and the application of 

the Negative Selection Algorithm (NSA) in this work. So that it 

can produce a high-coverage test data set with significant 

efficacy. The following is a formal definition of the test data 

creation problem, by combining the applications of both ACO and 

NSA technologies. Let a programme under test P to have a test 

data set as input i.e., X=(x1, x2,… xn), In the proposed approach, 

this can be treated as an ant’s position vector. Assume that each 

input variable xi, takes its values in the search space Di ∈ (1≤i≤n). 

As a result, the entire program’s corresponding input domain can 

be represented as D = D1, D2….Dn. It should create a test data set 

that traverses all elements in connection to a defined coverage 

criterion C. We use path coverage as a coverage criterion in our 

work. As a result, the objective of test data generation is to prepare 

a test input set TIS ={X} that meets the highest possible path 

coverage criterion.  

The search domain in traditional algorithm was a topology 

structure graph. An ant’s neighbour region is a set of nodes that 

are adjacent to its current location in a graph. The position of each 

ant can be considered of as a test case in the test data generation 

process, and it is usually represented as a vector in the input 

domain. In this case, the domain is continuous  

Euclidean space. Initially, m ants are placed randomly over the 

search domain. For every ant k(1≤k≤m), Its position can be stated 

as Xk=(xk1, xk2,…xkn), The neighbour area can then be defined as a 

continuous region in which the distance between any point and 

ant k is less than or equal to a given constant r, where X=(y1, 

y2,…yn). In our algorithm, we use the Triangle classifier type 

example to represent the structure of an ant and its neighbours, 

The Triangle Type program has three input variables, if each input 

has a range of 0 to 9, the associated test case might be like: (1,1,1) 

that is the equilateral triangle and test suite may be TS = 

{{2,3,4,”Scalene triangle”}, {4,4,3,“Isosceles triangle”}, {3, 3, 

3,“Equilateral triangle”}, { 1, 2, 3,“It is not a triangle”}, {2,1,0,”It 

is not a triangle”}, {1,2,0,”It is not a triangle”}, {5,3,5,”Isosceles 

triangle”}, {4,6,6,” Isosceles triangle”}} .  

The proposed hybrid approach slightly modified the 

pheromone update rule for test data generation. There is no 

specified linkage between the adjacent ants is described in the 

search space, for the same pheromone of individual ant is 

specified as k(1≤k≤m),  its pheromone can be represented as τ(k), 

Meanwhile, we have set 1 as a default value of (τ0).  

 

Fig.3. Hybrid Test Data Generation Framework 

6.1 LOCAL SEARCH AND GLOBAL SEARCH 

During the scan, each ant seeks for a better solution in its 

immediate area. The local search is aligned with the shifting of 

ant positions. Its purpose is for each ant to randomly travel the 
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solution in the proximity of the maximum radius rmax. Generally, 

we set the initial value of parameter rmax to a constant based on 

the characteristics of the problem. However, as the number of 

iteration times in searching increases, it will eventually decrease 

the value of rmax. Local shifting of ant can be well-defined, when 

ant k walks to a new neighbour position Xk and if Xk>f(Xk), then 

ant can be transferred to new position. Otherwise, it will have to 

remain in its existing place. Here f(Xk) is the fitness value of 

solution Xk.. Global search is applied when fitness of any node has 

higher value than the average fitness. i.e   f(Xk)>favg(Xk) in that 

case hamming distance is computed among the nodes to attain the 

global best solution  

6.2 HAMMING DISTANCE 

The application of Negative Selection Algorithm is used in the 

next step of the proposed strategy. After finding the new test data 

sets through Ant Colony Optimization, NSA is applied on those 

data sets, NSA not only identify the replication of test data 

generated through ACO but also support for complete path 

coverage and reduces the size of the test suites to elevate the 

performance and speed of the algorithm.  Let’s consider test data 

Td, if it already exists in the newly generated test data set, discard 

it, from the set Td, Otherwise, determine the hamming distance 

between the new detector Td1 from test data set Td and all detectors 

Tdi in the set and the smallest distance obtain will be compared 

with a threshold value. If the distance is lesser than the threshold 

value, then the test data will be removed from the test data set Td, 

or else it is included to the refined set of test data, this approach 

aids in the coverage of the search area as far as possible., and it 

could cover more paths with a smaller amount of test data for the 

program under test. Subsequently go for the nearest test data from 

the set i.e., Td2 and calculate the fitness value of the new detector 

Td1 and Td2, if the fitness value of Td1>Td2, interchange the test data 

Td2 with the test data Td1. Following method is used to find the 

distance between test data. 

1. Generate a new test data x, where x∈S;  

2. Calculate the similarity of x with every test data di in D∀ 

di ∈ D which is represent the hamming distance and could 

be calculating: 

           ( ) ( )
________

0

,
n

aff i i

i

f d x d x
=

=   (6) 

6.3 FITNESS FUNCTION 

The fitness function has significant impact on the validity of 

test data. Fitness function preferably applies for the refinement of 

test cases. In this study we have used path-based coverage 

criterion to validate the fitness of the code. Path based fitness can 

be calculated as: 

 PBFitness = 1-|α∧β|/|α∪β| (7) 

where α and β are set of nodes in the targeted and executed paths, 

respectively |α∧β| presents the number of paired nodes in 

appropriate sequence between α and β. The path-based fitness for 

Minmax CFG of Fig.2 is 1-(3/6) = 0.5 because the node in target 

path set (α) contain nodes {1,2,3,4,5,6,7} and executed path set 

(β) contain nodes {1,2,3,5,6,7}, the fitness value is the ration 

between matched nodes in the correct order {1,2,3} and the 

number of nodes in the targeted path {1,2,3,5,6,7}. The Fig.5 

depicts the proposed approach’s flow chart, with TDGAN as the 

algorithm. 

Algorithm: TDGAN 

Input: Source code of program under test P, and its input variable 

list X=(x1, x2,… xn) where ∀x∈S; path testing coverage criterion 

C; The control flow graph CFG of program P; algorithm 

parameters α, φ, ρ0, q0, Τ, m and rmax; maximum evolution 

generation maxGen. 

Output: Set of test data D = (D1, D2….Dn) this met the path 

coverage requirement. The set of paths that has been generated 

i.e. U = (u1, u2….un); 

Initialization 

if x ∃ S 

goto initialization; 

else 

x ∄ in search space; 

end if 

Initialization: 

for k→1:m do 

for i→1:n do 

Initialize the ith dimension (ant[k].x[i]) of position vector for 

the ant k; 

End For 

Calculate the fitness ant[k]fitness of ant k; 

ant[k]τ0=1, ant[k]count=0; 

for u→1:m do 

ant[k]record[u]=0; 

End For 

End For 

get the best one(gbest)from ant'sfitness; 

while gen<maxGen or TS does not reach full coverage of 

criterion C do; 

for k→1:m do 

Generate initial test data set randomly (candidate population); 

Test if the initial population reach to full coverage of path U 

goto end 

Generate a new test data x, where x∈S; 

Calculate the similarity of x with every test data di in D∀di∈D 

by hamming distance and could be calculating as in Eq.(6). 

Check the distance faff(di,x); 

if faff(di,x)< τ  

then remove the new data set x; 

else  

add x to D; 

end if 

Repeat steps 25 to 29 until detector number>max or D reach to 

full coverage of paths U; 

End 

for k→1:m do 

Update pheromone 
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for u→1∶ant[k]count do 

ant[k]record[u]=0; 

end for 

ant[k]count=0; 

end for  

for k→1:m do 

decode position ant[k].x[1….n] into a test case tck ∈TS; 

collect coverage information by executing program with tck 

End For 

End while 

return TS 

7. EXPERIMENTAL EVALUATION 

A comparison of real-world benchmark programs from the 

literature has been made to determine the performance of the 

proposed technique. These benchmark programs have been 

extensively applied in search-based testing by researchers. The 

program codes are being written in object-oriented programming 

languages such as Java, all these programs are designed by using 

the complex programming structure syntax such as relational 

operators, logical operator’s conditional statement, control 

statements, modularity, and structure of classes etc. This made 

these programs suitable for analysing a variety of test data 

generation techniques. These programs often provide a complex 

data structure with various data types, such as integers, floats, 

characters, and strings. The Table.1 represent a summary of each 

program with the different number of arguments such as the 

number of variables in each program, the number of instructions, 

number of branches, lines in the code and complexity of the 

source code. The Table.1 shows different metrics used for 

program evaluation and its source. 

Table 1. Benchmark Programs 

Program Triangle Type DayFinder MinMax Isprime 

Arguments 3 3 1:N 1 

Instructions 50 168 83 34 

Branches 16 24 6 6 

Lines 13 24 12 11 

Complexity 9 16 4 4 

To prove that the ACO-NSA based test data generation 

approach is effective or not, followings test metrics are considered 

while evaluating the code such as: 

• Average Coverage (ACG) i.e., the average of all test input 

of path coverage throughout multiple runs. 

• Average Time (AT) i.e., the average execution time for all 

paths in seconds. 

Different number of tests have been done for the above metrics 

such as for ACG and AT the value of test has been set to 1000 

The experimental findings of two different approaches i.e. 

random testing and proposed novel algorithms are presented in 

response to four programmes in Table.3 and Table.4. The findings 

show that result of novel approach is better than those of Random 

testing for maximum number of programs. The novel ACO-NSA 

approach shows full coverage in maximum number of 

experiments done. The experimental setup of program triangle 

type in presented in Table.2. The Control Flow Graph of the 

program triangle type is presented in Fig.4 and the data in the table 

2 represent the traced paths, complexity, input, and output. 

 

Fig.4. Control Flow Graph of Triangle Type 

The Table.2 shows the flow of input data through different 

paths in triangle type program 

Table 2. Path Covers by different input for Triangle Type 

program 

Paths Input Output 

1→2→3→4→5→12→14→15 2,3,4 Scalene 

1→2→3→4→5→6→8→11→-14→15 4,4,3 Isosceles 

1→2→3→4→5→6→7→14→15 3,3,3 Equilateral 

1→2→13→14→15 1,2,3 Not a triangle 

1→2→3→13→14→15 2,1,0 Not a triangle 

1→2→3→4→13→14→15 1,2,0 Not a triangle 

1→2→3→4→5→6→8→9→11→14→15 5,3,5 Isosceles 

1→2→3→4→5→8→9→10→11→14→15 4,6,6 Isosceles 

1→2→3→4→5→8→11→14→15 8,8,7 Isosceles 

Table.3. Comparison analysis of metric average coverage (AC) 

Program/Technique Random Hybrid 

TriangleType 65.16 100 

DayFinder 74.83 95.55 

MinMax 63.7 100 

Isprime 67.1 100 
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Table.4. Comparison analysis of metric average time (AT) 

Program/Technique Random Hybrid 

TriangleType 0.097 0.047 

DayFinder 0.172 0.095 

MinMax 0.108 0.025 

Isprime 0.116 0.031 

 

Fig.5. Test data coverage for Triangle Type 

The Table.3 shows the comparison of metric average 

coverage. The Table.4 shows the comparison of metric average 

time. The Fig.5 shows the output of triangle type program for 

1000 run. 

8. DISCUSSION 

This section of the paper presents the results of the 

experiments conducted to evaluate the performance of the 

proposed method i.e., novel approach based on ACO-NSA test 

data generation for path coverage. In the start the source code of 

the program is converted into control flow graph, then ACO-NSA 

is applied to generated automated test data. The results shows that 

the proposed approach generate least amount of test data in 

limited generations and have high coverage ratio. The results are 

compared with random testing to evaluate the performance of the 

projected approach. The performance is measure in terms of 

Average Coverage (ACG) and average time (AT). This section of 

the paper presents the performance of the proposed approach for 

different benchmark programs which have been the pivot point 

for the researchers in the field of search-based test data generation 

and in immune algorithms. 

All the benchmark programs are widely applied by the 

researchers for test data generation. These benchmark programs 

design flow structure made them suited for testing a variety test 

data generation technique. All such programs have different data 

structures, line of codes (LOC), arithmetic, relational and logical 

operators, loops and nested loops, conditional statements, arrays, 

functions and classes and complexity levels. The Table.1 gives a 

brief description of each program. 

The studies were carried out in a Microsoft Windows 10 

environment with an Intel Core TM i7 2.10 GHz 64-bit processor 

and 8 GB RAM. The eclipse 20-3 Java platform is used to code 

the program, the MATLAB platform is used to code the method’s 

implementation and the generated test data is verified using 

testing tool TestNG and coverage is recorded through tool ECL 

Emma. 

This section depicts the outcomes of each program. The 

“triangle type classifier (Tritype)” is highly recognized 

programming application for testing. It seems to be a simple 

application for testing process, but it has all the requirements 

suitable for testing such as data structures, conditional and logical 

operators, conditional and logical statements, functions, and 

arrays. It takes three input variables and uses them to decide the 

triangle type (scalene, isosceles, equilateral, and not a triangle). 

The size of the search space is proportional to the data type if it is 

assumed to be integer of type, it may consume two bytes of 

memory for individual variable declared. It will be very difficult 

to design test cases corresponding to such large range of data from 

the appropriate domain corresponding to the data type of the 

variable. The proposed approach guided the method to generate 

appropriate test data from the domain to achieve the full path 

coverage. Path fitness has been applied along with the proposed 

method to achieve the quality data. The probability of finding the 

accurate value for all three variables that execute the required path 

such as isosceles triangle depends upon the three variables i.e., the 

probability of having any type of triangle will be 1/3rd of all. The 

analysis reveals that the novel ACO-NSA is more efficient than 

random testing for the triangle type classifier program, isprime, 

dayfinder and minmax for test data generation. The number of 

generations required in novel ACO-NSA is comparatively very 

less as compared to random testing. It can be concluded from the 

results in (Table.3 and Table.4) that the proposed novel ACO-

NSA approach is suitable for use in programs that have complex 

path with loops and nested selection because it can accomplish 

comprehensive path coverage. 

9. CONCLUSION 

This paper proposed a novel approach based on ACO-NSA, a 

hybrid approach that incorporates ACO and NSA for the creation 

of automated software test data. This technique applied path-

based fitness functions to modify random detector generation, to 

produce optimized and minimal quantity of detectors (test data 

set) and guide the search of test data to paths with minimal 

probability of being executed. The proposed approach increases 

the percentage of path coverage while avoiding redundant data 

and enhances reliability and effectiveness of test data generation. 

The newly generated results show the significant improvement in 

path coverage, including in complex paths. The average coverage 

(ACG) also improved significantly in the novel ACO-NSA 

approach, the approach also has high success rate with low 

execution time and get a smaller number of generations to execute 

the source code. The proposed approach yields better results by 

reducing, the amount of generated test data while reducing the 

number of generations. 
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