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Abstract 

Graph Neural Networks have been extensively used to learn non-

Euclidian structures like graphs. There have been several attempts to 

improve the training efficiency and to reduce the learning complexity 

in modelling of large graph datasets. In this paper we have reviewed 

the approaches which perform convolutions to model large graphs for 

classification and prediction. We have critically analysed each of these 

approaches and veracity of their claims of reduced complexity and have 

reported their shortcomings. We have further analysed the approaches 

from graph-dataset perspective. 
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1. INTRODUCTION 

Graph-based associations are widely experienced in everyday 

life. From gene expression to animal-skeletal motions, from 

chemical bonding of compounds to stellar planetary compositions 

of universe, and from social networks to physical networks of the 

real world; all containing interacting and possibly mutually 

dependent nodes.  

A graph element may influence its associated elements. In 

technical terms, the features’ value of one graph element could be 

dependent on features’ value of another graphical element. Any 

effort to model graph structure and its elements will require 

learning of these dependencies. It is essential to learn these 

dependencies to accurately model any graph and its elements. 

Further, modelling complex graphs will require inductive learning 

against time-consuming transductive reasoning. 

The traditional deep-learning approaches such as 

convolutional neural network (CNNs) or recurrent neural 

networks (RNN) model problem using low-dimensional 

structures. An image, for example, is convoluted multiple times 

to extract features which are then used to classify other images. 

The approaches assume uniformity in associations between 

neighbouring nodes (pixels in case of images) while convoluting 

matrix-like data. However, not all problems have uniformly 

associated nodes, and certainly not graphs. These problems can 

be more effectively solved using Graph Neural Networks (GNN). 

A GNN represents problem domain in terms of a graph where 

node represent entities and edges represent relationships between 

the entities. A series of convolutions are performed to extract 

features of nodes and the degree of influence of their 

neighbouring nodes on the same. GNNs perform contextual 

transduction in graph structures to obtain high-level 

representation of its nodes. Further certain GNNs perform 

inductive learning for classification or prediction. The differences 

in the different models of GNNs lie in the approaches they 

implement to learn and predict these dependencies.  

GNNs are primarily classified as Recurrent Graph Neural 

Networks (RecGNNs) or Convolutional Graph Neural Networks 

(ConvGNNs). RecGNNs have recurrent learning architectures 

where neighbouring nodes continuously share information till the 

network is stabilised. ConvGNNs, on the other hand, involve 

convolutions over neighbouring nodes of a node for learning 

latter’s representation. ConvGNNs are further classified into 

spectral-based approaches - based on spectral graph theory and 

the spatial-based approaches - based on spatial convolution of 

neighbourhood nodes. As spectral computation required eigen 

decomposition of adjacency matrices which then affects learning 

complexity, the later approaches have mostly used spatial based 

learning. The latter is also extensively used in spatio-temporal 

GNN models which aim to learn dynamic graphs. 

Although GNNs have been well developed to processed 

unstructured data, the challenge is to efficiently model complex 

graphs which include large or dense graphs. In fact, the real-world 

datasets are humungous, sometimes consisting of millions of 

nodes. There have been some attempts to process such 

challenging graphs based on approaches of sampling, clustering, 

etc. and this work is an effort to critical analyse all such 

implementations. 

2. RELATED WORKS 

The earliest effort to review GNNs was by [1] which gave 

overviews of then existing graph convolutional neural networks. 

[2] work was on studying network embedding models while [3] 

focused only on attention networks. [4] was the first attempt to 

consider GNNs in their entirety but only analysed the models 

from the perspective of relational reasoning and combinatorial 

generalization. [5] and [6] works presented a comprehensive 

picture of GNNs with their categorization based on underlying 

learning principle of their algorithms. Another comprehensive 

work was produced by [7] which additionally surveyed 

reinforcement learning and adversarial GNNs.  

Although these surveys explained and compared several 

GNNs, none provided a detailed critical analysis of GNNs dealing 

with large datasets. Their emphasis rather was on GNNs’ 

categorization to provide hierarchical streamlined view of all 

GNN models. This paper analyses the working of each model 

designed to analyse large graph datasets and critically reviews the 

veracity of the claims made.  

2.1 CRITICAL REVIEW 

 This work not merely discusses working and results of 

existing models for learning large datasets, but does a thorough 

critical analysis of the same to learn their effectiveness and 

shortcomings in learning and reducing its complexity.  
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2.2 DATASET-WISE ANALYSIS 

 This work further analysis the datasets that are used in the 

existing works and their suitability with respect to the complex 

graphs. We have provided dataset statistics and argued the 

performances of different approaches with respect to true real-

world datasets. 

The main sections which follow are as following: Section 2 

Defines graph and dataset related concepts, details evolution of 

GNNs and lists its commonly used notations. Section 3 details the 

working, algorithm and solutions to issues in previous models of 

the existing works which are primarily focused to reduce learning 

complexity. Their advantages, complexity readings and 

drawbacks are also been stated. Section 3 discusses models which 

provide improvised technique for learning but not with intent to 

reduce complexity. The techniques discussed could be used for 

learning in large graphs. Section 4 discusses the common 

shortcomings of existing approaches and uses dataset statistics to 

analyses their effectiveness in learning real-world datasets. 

Section 5 provides conclusion of the review. 

3. DEFINITIONS 

• Graph: A graph G = (V, E) is consists of vertex set V = {v1, 

v2, …}, with each element identified as a vertex, and edge 

set E = {e1, e2, …}, with each element identified as an edge; 

and where any edge of G links or connects one or two 

vertices.  

• Receptive Field: In GNN, the receptive field of a node is the 

set of nodes that contribute to the determination of its final 

node representation. 

• Seed-Node: The root node from which sampling begins and 

whose representation has to be learned. 

3.1 EVOLUTION OF GRAPH NEURAL 

NETWORKS 

The very first work to learn graphs was [8] to study directed 

acyclic graphs. However, the concept of graph neural network 

was introduced first in [9] and later extended in [10]. Both of these 

were recurrent type Graph Neural Networks.  

The first ConvGNN type model was [11] and it was a spectral 

based approach. This was followed by [12] which proved that not 

only the dimensionality of a graph but also the cost of its Fourier 

transformation can be reduced by performing simple mean/max 

pooling at the beginning. [13] later optimised the max/min 

pooling strategy. This was followed by [14] which created model 

which performed semi-supervised learning for classification of 

nodes while [15] used complex spectral filters, the Cayley 

polynomials, for improvised learning. The most significant 

foundations of GNNs were laid by [16] which introduced message 

passing concept in ConvGNNs. Other models were subsequently 

created which combined convolution with techniques like 

diffusion, attention, etc., to improve learning. 

3.2 NOTATIONS 

The commonly used GNN notations are produced in Table.1. 

 

Table.1. GNN notations 

Notation Description 

G A graph 

V The vertex set of G 

v, u Nodes belonging to V 

n The number of nodes, n = |V| 

E The edge set of G 

e An edge e ∈ E 

m  The number of edges, m = |E| 

N(v) The neighbourhood set of v 

d The dimension of a node feature vector. 

b The dimension of a hidden node feature vector.  

K Number of layers in GNN 

c The dimension of an edge feature vector. 

k, l The layer index 

t The time step/iteration index  

s The batch size 

r The number of neighbors sampled for each node 

σ(·) The sigmoid activation function 

σh(·) The tangent hyperbolic activation function 

A The graph adjacency matrix.  

AT The transpose of the matrix A.  

An, n ∈Z The nth power of A 

D The degree matrix of A 

X ∈Rn×d  The feature matrix of a graph. 

x ∈Rn The feature vector of a graph in the case of d = 1.  

xv ∈Rd The feature vector of the node v. 

Xe ∈Rn×c The edge feature matrix of a graph. 

xe
(v,u) ∈Rc The edge feature vector of the edge (v, u). 

X(t) ∈Rn×d  The feature matrix of a graph at time step t 

H ∈Rn×b The node hidden feature matrix 

hv ∈Rb The hidden feature vector of node v 

W, Θ, w, θ Learnable model parameters. 

4. INDUCTIVE REPRESENTATION 

LEARNING ON LARGE GRAPHS 

(GRAPHSAGE) 

The Graph Convolutional Network (GCN) [14] performs full-

batch gradient to convolute graphs and which requires all nodes 

to be present in the memory. As the approach was unscalable to 

large graphs, GraphSAGE [17] was introduced which performed 

mini-batch gradient learning to reduce memory requirements and 

also allowed multiple parameter-updates per epoch leading to 

faster convergence.  

GraphSAGE is an inductive spatial based convolutional GNN 

that uniformly samples seed-node's neighbourhood nodes for 

learning. Its works by first performing uniform sampling from the 

entire node-neighbourhood at each iteration. Then for each of 
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these minibatch-nodes as seed, the algorithm expands outward in 

the neighbourhood for a certain pre-determined level of nodes 

from the seed node. At each expansion it randomly selects certain 

nodes for learning which are then used for further expansion. 

After reaching the peripheral nodes, it learns their representation 

which is then recursively passed back to their sampled parent 

nodes. The representation is then learnt at these parent nodes and 

aggregated with the previously learnt representation and again 

passed higher up in the hierarchy towards the seed node. Its 

convolution is represented as in Eq.(1) 

 hv
(k) = σ(W(k)·fk(hv

(k-1), {hu
(k-1), ∀u∈SN(v)})) (1) 

where hv
(0) = xv,fk(·) is an aggregation function, SN(v) is a random 

sample of the node v’s neighbours [6]. 

The work considers four variations of GraphSAGE, viz., 

GraphSAGE-GCN, GraphSAGE-mean, GraphSAGE-LSTM, and 

GraphSAGE-pool; these vary on the aggregator functions used. 

Here GraphSAGE-GCN is the base version modelled on GCN; 

GraphSAGE-mean uses element-wise mean of representations; 

GraphSAGE-LSTM is based on the LSTM architecture [18]; and 

GraphSAGE-pool where element-wise max-pooling is applied for 

aggregation. 

GraphSAGE variants comparisons was with four baselines, 

viz., a random classifier, a logistic regression feature-based 

classifier, the DeepWalk algorithm [19], and model with 

concatenation of the raw features and DeepWalk embeddings. 

The comparisons found that GraphSAGE learns larger and denser 

graphs substantially better than the baselines but is slower when 

on learning on smaller graphs. The time complexity of 

GraphSAGE is O(rKnd2) and memory complexity is O(srKd +Kd2) 

[20]. Accuracy-wise, GraphSAGE logged superior micro-

averaged F1 scores then the baselines and in some cases the gain 

was of more than of 50%.  

Although GraphSAGE uses nodes' features in learning 

algorithm to learn topological structures as well as its distribution 

in the neighbourhood, it can be applied even to graphs without 

rich node features. Its major contribution is inductive learning 

which can extend learning to unseen nodes and generalize the 

learned-node’s feature-embeddings to newer or evolving 

(dynamic) graphs. Further, instead of leaning embedding of each 

node distinctly, it aggregates the learning over the node's 

neighbourhood to generate the embeddings. It can be operated in 

both supervised as well as unsupervised mode. 

GraphSAGE performs just random sampling of 

neighbourhood nodes and does not sample “important” nodes for 

the seed nodes which affects learning. The prediction algorithm 

of GraphSAGE and gradient descent function is not unbiased and 

therefore there is no guarantee of convergence and which 

therefore mandates a large sample size [21]. And as the sampling 

size increases the training requires more resources which 

increases complexity. It also suffers from high time complexity 

due to recursive (layer-wise) node-embedding processing which 

increases with increase in depth. Further, except for recursive-

learning, neither any graph theoretic approach is used nor any 

local mutual information is learnt to captured global structural 

information to improve learning or reduce complexity.  

4.1 FAST LEARNING WITH GRAPH 

CONVOLUTIONAL NETWORK VIA 

IMPORTANCE SAMPLING (FASTGCN) 

FastGCN [22] is graph convolution approach that learns 

features representations on graph's vertices and interpret 

convolutions as integral transformation of vertex embedding 

functions. FastGCN samples using importance-based sampling, 

unlike in GraphSAGE, a fixed number of vertices and not 

neighbours for each graph convolutional layer; it samples layer-

wise. As the sampling is importance-based, the nodes which 

influence the seed node majorly, are selected. The model can be 

represented as in Eq.(2): 

 H(l+1) = σ(ÂH(l)W(l)) (2) 

where Â is normalized graph adjacency matrix, H(l) contains the 

embedding (row-wise) of the graph vertices in the lth layer, W(l) 

is a parameter matrix, and σ is nonlinearity [22]. 

FastGCN is significantly faster compare to GCN [14] and 

GraphSAGE although is at par with respect to classification 

accuracy in terms of micro-F1 scores. It also has smaller sampling 

variance than GraphSAGE. The time complexity of FastGCN is 

O(Krnd2) and its memory complexity is O(Ksrd +Kd2) [20]. 

FastGCN compromises on structural integrity in the sense that 

the nodes sampled at each layer are independent of nodes sampled 

in the previous layer. This may lead to filtering of connection 

information in between layers of graph and affects stability and 

accuracy of the model. As in GraphSAGE, its convergence is only 

guaranteed if the sample size goes to infinity [21] which of course 

will make training very expensive. Further, FastGCN cannot 

classify entire graphs or sub-graphs. 

4.2 ADAPTIVE SAMPLING TOWARDS FAST 

GRAPH REPRESENTATION LEARNING 

(ADAPT) 

A variant of FastGCN, this general framework is an inductive 

top-down layer-wise sampling-based convolution framework that 

approximates optimal sampling by conditionally selecting lower 

layer nodes based on upper layer nodes [23]. The approach is 

based on the premises of common neighbourhood for nodes 

across a layer, i.e., all parent nodes have same sampled 

neighbours. The effect is of having similar sampling flow for 

neighbourhood of nodes of a layer which intends to reduce 

learning complexity.  

As Adapt follows a top-down approach, a node in a layer is 

selected using a self-dependent importance learning function that 

tells its “importance” for lower layer nodes. The function is 

computed on the node’s features. The process is recursively 

repeated up to the bottom-most (input) layer. After having 

sampled the nodes, hidden features of these nodes are learned and 

passed through activation functions. The sampling is also 

controlled by keeping an upper limit of sample nodes at each 

layer. The layer-wise sampling at each layer can be described as 

in Eq.(3): 

h(l+1)(vi)=σW
(l)(N(vi)Eq(uj|v1,…,vn)[(p(uj|vi)/q(uj|v1,…,vn))h(l)(uj)]) (3) 

where q(uj|v1,…,vn) is defined as the probability of sampling uj 

given all the nodes of the current layer [23]. 
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 The advantage in Adapt is in not re-embedding nodes which 

may have been already learnt for previous seed-nodes. And where 

FastGCN ignores structural relationships between nodes of 

different layers, Adapt’s sampling is actually based on lower layer 

nodes and therefore maintains the relational integrity and captures 

between-layer correlations. Further, to reduce variance to improve 

learning as high variance in sampling impedes learning, the 

sampling is adaptable and can be parameterized, unlike in 

GraphSAGE and FastGCN. In fact, these both can be represented 

as node-wise sampler and special layer-wise method variants of 

Adapt respectively [23].  

Adapt also employs attention mechanism [24] for improvised 

learning. Its variations involve skip-connection technique of 

message passing across distant nodes and 2-hop neighbourhood 

sampling which are slightly more accurate than the basic Adapt. 

The accuracy scores comparisons reported in [23] indicate that 

Adapt and its variations are the most accurate than other 

compared models viz., full-batch gradient GCN, GraphSAGE, 

FastGCN, graph kernel method KLED [25] and Diffusion 

Convolutional Network (DCN) [26]. The comparisons were also 

done with modified GraphSAGE and FastGCN models for fair 

comparisons. However, the work does not clarify what type of 

accuracy scores are specified for its own model. It is second only 

to FastGCN sampling technique in per epoch training for PubMed 

and Reddit datasets. 

4.3 GATED ATTENTION NETWORKS FOR 

LEARNING ON LARGE AND 

SPATIOTEMPORAL GRAPHS (GAAN) 

GaAN [27] is a gated attention based convolutional GNN, 

modelled on [24], performs sampling like GraphSAGE, however, 

with two major differences. At each sampling step it samples 

minimum of number of neighbouring nodes or, certain maximum 

number of nodes determined by a hyperparameter. It also merges 

any repeatedly sample node for a different seed node but of the 

same mini-batch. The gated attention, which is the main 

modification to previous models, can modulate the amount of 

attended content via the introduced gates [27]. The model also 

involves transforming graph aggregators into Gated Graph 

Recurrent Unit (GGRU) which can be used for spatial-temporal 

learning. 

GaAN is only slightly more accurate than FastGCN and 

Adapt. However, there is one inconsistency in the scores reported; 

one table reports the accuracy as micro-F1 scores while the same 

are reported as F1 scores in another table.  

In traffic speed forecasting analysis done with METR-LA 

dataset, GaAN performed best on 15- and 30-minutes time 

horizons in comparison with eight other models. It can model 

spatio-temporal relationships.  

The major drawback is that attention mechanism requires 

extra computation in terms of pairs of feature vectors, resulting in 

excessive memory and computational resource requirements [28] 

which increases complexity.  

4.4 STOCHASTIC TRAINING OF GRAPH 

CONVOLUTIONAL NETWORKS WITH 

VARIANCE REDUCTION (STOGCN) 

StoGCN [21] is a stochastic approximation based 

convolutional GNN which improvises by employing the historical 

representation of nodes’ activations to reduce variance in the 

sampled nodes in order to reduce the receptive-field size. Instead 

of recursively calculating a node’s activation representation every 

time using its neighbours’ activations at previous layers, it 

maintains an approximated representation for each node which is 

updated at every layer with newly learned representations. The 

model estimator has a zero variance and is referred to as control 

variate. A graph convolution layer in StoGCN is represented as in 

Eq.(4): 

 Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)) (4) 

where H(l) is the activation matrix in the lth layer, whose each row 

is the activation of a graph node [21]. Here, H(0) = X is the input 

feature matrix, and W(l) is a trainable weight matrix.  

 The theoretical guarantees of the framework allow quality 

learning even with two nodes sampling [20]. The time complexity 

of StoGCN is O(Kmd +Knd2 + rKnd2) and its memory complexity 

is O(Knd +Kd2) [20]. 

A variation of model is control variate for dropout (CVD), to 

work with networks that employ dropout – a node dropping 

regularization procedure to avoid overfitting. The dropout is 

performed after neighbour averaging.  

A drawback of this model is that the selection requires the all 

the intermediate embeddings of all the nodes be present in the 

memory, making learning in large graphs restrictive. The work 

has reported micro-F1 comparisons only for PPI dataset and 

accuracy scores for other datasets and no justification is provided 

for the same. The reported convergence is obtained in far less time 

and in far less epochs but is reported only for Reddit dataset and 

not for all the used datasets. Here again the type of accuracy 

scores is not clarified.  

4.5 GRAPH CONVOLUTIONAL NEURAL 

NETWORKS FOR WEB-SCALE 

RECOMMENDER SYSTEMS (PINSAGE) 

PinSage [29] is GCN based recommender algorithm that 

performs low-latency random walks on graphs for importance-

based neighbourhood sampling of nodes. Here, the importance-

based sampling is performed by selecting nodes with highest 

normalized count visits of multiple random walks. The model 

applies multiple convolutions in a localized set-up of small 

neighbourhood nodes to learn embeddings of each node for 

multiple features. The information gain in each convolution with 

respect to feature-type is stacked to get more comprehensive 

embeddings. The algorithm uses max-margin based loss function 

with an intent to maximize the inner product of embedding of the 

query item and the corresponding related item and minimize the 

inner product of the query item and an unrelated item [29].  

PinSage is the only model that employs CPU-GPU co-

ordination wherein a CPU-bound producer efficiently samples 

node network neighbourhoods and identifies necessary features 

for local convolutions which are then used by a GPU-bound 

TensorFlow model to efficiently run stochastic gradient decent. 
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Further, a MapReduce process ensures that the latent vector for 

each node is computed only once. 

The performance comparisons done are only with other 

recommender systems and not with any other GNN-based model. 

Also, generally used datasets by other approaches are not used to 

evaluate its performance and so comparisons cannot be analysed.  

4.6 LARGE-SCALE LEARNABLE GRAPH 

CONVOLUTIONAL NETWORK (LGCN) 

LGCN [28] is a spatial based GCN that transforms generic 

graphs into grid-structure to apply standard one-dimensional 

CNN convolution for feature learning of graph nodes. It learns 

representations of neighbourhood nodes for the seed node and 

arranges them in matrix with features forming the columns and 

rows populated with feature-values for each neighbourhood node. 

The rows are then sorted based on the feature-values and top few 

rows and correspondingly nodes are selected for defining 

representation of the seed node.  

LGCN divides an entire graph into sub-graphs to counter 

computational bottlenecks and memory constraints that limit 

processing of large graphs. Due to sub-graphing and 

transformation to lower dimensional structure, deeper learning is 

also possible in this arrangement. 

The layer-wise propagation rule of LGCN is formulated as in 

Eq.(5) and Eq.(6): 

 Xl = g(Xl ,A, k) (5) 

 Xi+1 = c(Xl) (6) 

where A is the adjacency matrix, g(·) is an operation that performs 

the k-largest node selection to transform generic graphs to data of 

grid-like structures, and c(·) denotes a regular 1-D CNN that 

aggregates neighbouring information and outputs a new feature 

[28]. 

The comparison is done only with GraphSAGE on PPI dataset 

and reported micro-F1 scores indicate better accuracy compare to 

GraphSAGE. 

4.7 CLUSTER-GCN - AN EFFICIENT ALGORITHM 

FOR TRAINING DEEP AND LARGE GRAPH 

CONVOLUTIONAL NETWORKS 

Cluster-GCN [20] is a spatial based convolutional GNN which 

uses graph clustering algorithm to sample block of nodes from a 

graph. Cluster-GCN uses normalized adjacent matrices whose 

diagonal values are amplified to reflect higher contribution of 

nearby nodes than distant nodes. The normalization is done to 

avoid instability due to exponential growth in amplified values 

with increase in layers. The embeddings of node’s neighbours can 

be described as in Eq.(7) and Eq.(8): 

 Â = (D + I)−1(A + I) (7) 

 X(l+1) = σ((Â + λdiag(Â))X(l)W(l)) (8) 

where Â is the normalized adjacency matrix, X(l) ∈R(n×dl) is the 

embedding at the lth layer for all the n nodes. 

 The convolution on nodes is restricted to subgraphs only; the 

learning does not cross the boundaries of a sub-graph. As only a 

subgraph node is required in the memory during convolution, 

memory and time complexities are reduced. This allows to handle 

larger graphs and also deeper levels learning. Further, sub-

graphing improves embedding utilization as the previously 

learned embeddings can and are re-utilized in densely linked 

nodes of a subgraph. 

Cluster-GCN further incorporates stochastic multiple 

partitioning to reduce variance between batches of nodes. 

Otherwise, similar nodes within a batch and different nodes across 

batches may defer convergence of the model.  

Cluster-GCN performs far better than existing approaches in 

terms of time and memory complexities. The time complexity of 

Cluster-GCN is O(Kmd +Knd2) and its memory complexity is 

O(Ksd+Kd2) [20]. The model gives results even in graph with 2 

million plus nodes and 61 million plus edges.  

The accuracy values which are reported are in terms of F1 

score and not micro-F1 score. The clustering has to be done prior 

to processing which makes this arrangement unsuitable for 

dynamic graphs. 

5. GEOMETRIC GRAPH CONVOLUTIONAL 

NETWORKS 

Geometric Graph Convolutional Networks (Geom-GCN) [30] 

was designed to tackle two fundamental problems in Message-

passing neural networks (MPNNs) which are loss of structural 

information of graphs in “blindly” aggregating messages for 

neighbourhood nodes and inability to learn long-range 

dependencies in disassortative graphs. In later, it means that 

aggregational representation ignores distant but influential nodes 

which consequently affects learning. Geom-GCN’s solution is a 

geometric aggregation scheme which maps a graph to a 

continuous latent space via node embedding, and then use the 

geometric relationships defined in the latent space to build 

structural neighbourhoods for aggregation [30]. Additionally, a 

bi-level aggregator operates on the structural neighbourhoods to 

update the hidden features representations of nodes. 

The structural neighbourhood for the next aggregations is 

described as in Eq.(9) and Eq.(10): 

 N(v) = ({Ng(v), Ns(v)},τ) (9) 

 Ns(v) = {u|u∈V, d(zu,zv)<ρ} (10) 

where Ng(v) is actual neighbourhood of v, Ns(v) is latent space 

neighbourhood, τ is a relational operator on neighbourhoods, and 

ρ is a pre-given parameter. 

The bi-level aggregations are described as in Eq.(11), Eq.(12) 

and Eq.(13): 

 e(i,r)
v,l+1 = p({hl

u|u ∈Ni(v), τ(zu,zv) = r}) (11) 

 mv
l+1 = q(e(i,r)

v,l+1, (i,r)) (12) 

 hv
l+1 = σ(Wl·mv

l+1) (13) 

where e(i,r)
v,l+1 is the features of virtual nodes of i neighbourhood 

and r relationship with p aggregating function. Here, Eq.(11) is 

the low-level aggregation, Eq.(12) is the high-level aggregation 

and Eq.(13) is the non-linear transformation. 

Geom-GCN has three main variants viz., Geom-GCN-I, 

Geom- GCN-P, and Geom-GCN-S which are differ in the type of 

embedding they employ. Geom-GCN-I uses Isomap embedding 

[31]; Geom- GCN-P uses Poincare embedding [32] and Geom-

GCN-S uses struc2vec embeddings [33]. 
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The time complexity of Cluster-GCN is O(nm2|R|) where n is 

the size of input representations, m is the number of hidden units 

in non-linear transform, and 2|R| is the number of virtual nodes 

[30]. The run-time comparisons show that GCN is better than 

Geom-GCN in learning representations. 

Geom-GCN variants are compared only with GCN and GAT 

with better mean classification accuracy in most cases. However, 

other models such as GraphSAGE, Adapt, StoGCN and Cluster-

GCN are not compared. Further, the datasets used have no more 

than 20,000 nodes with some having only few hundred nodes; it 

did not used large datasets. And also, micro-f1 accuracy scores 

are not mentioned. 

The main drawback of Geom-GCN is that it is a transductive 

learning model by virtue of which it cannot extend learning on 

some nodes to all the nodes; each node has to be learned 

independently making it unscalable for large graphs. 

5.1 COMMUNITY ENHANCED GRAPH 

CONVOLUTIONAL NETWORKS (CE-GCN) 

CE-GCN [34] integrated neighbourhood and community 

information in learning graph representations. It first does graph 

convolution and then uses modularity to measure community 

strength of the convolution network. The two are then combine in 

the cost function for optimization of the network. CE-GCN uses 

[14] for graph convolution. 

For measuring community strength between two 

communities, it uses the modularity function as described as in 

Eq.(14) 

 Q = (1/4e)∑ij (Aij – (kikj /2e)) sisj (14) 

where si = 1 if node i belongs to the first community, otherwise si 

= −1. ki is the degree of node i and (kikj/2e) is the expected number 

of edges between nodes i and j if edges are placed at random and 

where s=[si] ∈Rn is the community membership indicator [34]. 

The modularity Q actually measures the difference between the 

number of edges falling within communities and the expected 

number in an equivalent random network [34]. 

The time complexity of proposed algorithm can be considered 

as O(|E| ∑L
l=0 f1+ |V|∑L

l=1 f1fl−1fl) which is linear [34]. CE-GCN 

uses GCN to perform convolution which performs full-batch 

gradient to convolute graphs and which requires all nodes to be 

present in the memory. As GCN is unscalable to large graphs CE-

GCN itself will be unscalable to large graphs. Further, usage of 

any other model for convolution may make the time complexity 

non-linear. It, like in Geom-GCN, does not exhibit learning of 

large datasets as graphs of less than 20,000 nodes are only used. 

Except for GraphSAGE, other models such as, Adapt, StoGCN 

and Cluster-GCN are not used in comparison and also micro-f1 

accuracy scores are not mentioned. 

6. PERFORMANCE EVALUATION 

It is evident in the above analysis the existing algorithms 

primarily depend on sampling to convolute large graphs with 

reduce complexity. The main drawback of standard sampling 

approach could be missing of important nodes which could 

negatively affect learning. Like-wise, in clustering, with sub-

graphing there could loss of structural information which could 

also affect learning. However, sub-graphing allows deeper 

learning. 

We observed that graph-coarsening techniques which reduces 

nodes by “combining” multiple neighbour nodes into a super-

node is not being used in for learning large dataset. The primarily 

reason could be that graph coarsening requires eigenvector 

computations on graph’s Laplacian matrix after each coarsening 

step which increases computation. Further fitting the entire matrix 

for large graphs makes memory complexity intractable.  

The earlier approaches have reported micro-F1 scores for 

accuracy comparisons. However, StoGCN and Cluster-GCN, 

which claim superior performances to earlier approaches, have 

reported micro-F1 scores for one dataset only; for rest the results 

are reported in terms of F1-scores or mere accuracy scores. There 

is lack of clarity in the type of scores reported by Adapt and 

GaAN. 

The F1 scores do not give class-wise weighted comparisons 

[35] and therefore the accuracy claims cannot be fully accepted. 

Instead, micro-F1 scores should have been reported for correct 

accuracy conclusions and comparisons. Consequently, the 

reported reduced memory and time complexities for and on the 

basis of F1 scores also cannot be fully accepted. A true good 

algorithm should reduce complexities along with good micro-F1 

scores. We tabulate the reported best accuracy scores of all the 

implementations for different datasets in the Table 2 as reported 

in original papers. However, some newer works had modified the 

original implementations and had obtained slightly different 

scores for the same models. It should be noted that the mentioned 

accuracy scores are not of same type and contain mixture of 

“plain” accuracy, F1 and micro-F1 scores and therefore are not 

directly comparable. 

Table.2. Accuracy scores with standard deviation (in percentage) 

Algorithm Cora Cite-Seer Pub-Med PPI Reddit  

GraphSAGE 83.9 - - 61.2 95.4 

FastGCN 85  88 - 93.7 

Adapt 
87.44 

±0.34 

79.66 

±0.18 

90.6 

±0.16 
- 

96.27 

±0.32 

GaAN - - - 
98.71 

±0.03 

96.83 

±0.03 

StoGCN 82.0 70.9 78.9 97.8 96.3 

LGCN - - - 
77.2 

±0.002 
- 

Cluster-GCN - - - 99.36 96.6 

6.1 DATASETS REVIEW 

It is observed that different data-statistics have been reported 

by the existing works for the same datasets. While where 

FastGCN, LCGN and StoGCN reported same n of 2,708 and 

19,717 for Cora and PubMed datasets respectively; StoGCN 

reported higher m for both the datasets. In case of Reddit dataset, 

which is used by FastGCN, GaAN, StoGCN and Cluster-GCN, 

the same n is reported. However, while for the same dataset where 

FastGCN and Cluster-GCN mentioned the same m value of 11.6 

million approximately, StoGCN and GaAN reported it to be 23.4 

million and 114.6 million respectively. Incidentally, Cluster-GCN 
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has mentioned reported accuracy scores of StoGCN and GaAN as 

it is for accuracy comparison in spite of these algorithms 

apparently dealing with more complex Reddit dataset. In case of 

PPI dataset, the n and m values reported are – StoGCN: 14,755 

and 4,58,973; LCGN: 56,944 (only n reported); GaAN: 56.9K and 

806.2K and Cluster-GCN: 56,944 and 818,716. The data of Table 

3 from [36] summarizes attributes of commonly used graphs. 

Table.3. Dataset Statistics 

Dataset Cora CiteSeer Reddit 5K 

Type Citation Citation Social 

Nodes 2.7K 3.3K 2.5M 

Edges 5.4K 4.5K 11.9M 

Graph Density 1.4812E-03 8.51796E-04 3.68E-06 

Max. degree 169 99 8K 

Min. degree 1 1 4 

Avg. degree 4 2 9 

The computed graph density for PubMed, PPI, Amazon and 

Amazon2M datasets for highest reported n and m values are 

5.575E-04, 1.699E-07, 7.812E-07 and 1.28E-09 respectively.  

It is evident all these datasets have very low average density. 

It could be then ascertained none of the existing algorithms have 

learned highly dense graph datasets.  

7. CONCLUSION 

In this review, we have detailed the approaches to model large 

graphs. We have critically analysed each of these approaches and 

their claims of learning and reducing complexity in large graphs. 

It is observed that Adapt gives the best micro-F1 accuracy for 

comparatively smaller datasets Cora, CiteSeer and PubMed while 

GaAN has the best score in case of larger Reddit dataset. It is to 

be noted that Adapt’s Cora and PubMed datasets has lesser edges 

then the same datasets used by StoGCN; but StoGCN has reported 

only accuracy scores and not micro-F1 scores. Cluster-GCN has 

reported the best processing time with best memory and time 

complexity. However, they have processed only highly sparse 

datasets and not performed learning in dense graphs. 

In the final analysis, it cannot be definitely stated that any of 

the existing approaches does quality learning along with 

substantially reduction of complexity in true real-world graphs. 
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