
ASHISH GAVANDE AND SUSHIL KULKARNI: GRAPH NEURAL NETWORK LEARNING IN LARGE GRAPHS - A CRITICAL REVIEW
DOI: 10.21917/ijsc.2021.0344

2416

GRAPH NEURAL NETWORK LEARNING IN LARGE GRAPHS - A CRITICAL

REVIEW

Ashish Gavande and Sushil Kulkarni
Department of Computer Science, University of Mumbai, India

Abstract

Graph Neural Networks have been extensively used to learn non-

Euclidian structures like graphs. There have been several attempts to

improve the training efficiency and to reduce the learning complexity

in modelling of large graph datasets. In this paper we have reviewed

the approaches which perform convolutions to model large graphs for

classification and prediction. We have critically analysed each of these

approaches and veracity of their claims of reduced complexity and have

reported their shortcomings. We have further analysed the approaches

from graph-dataset perspective.

Keywords:

Graph Neural Networks, Graph Convolutional Networks, Graph

Representation Learning, Large Graph Dataset

1. INTRODUCTION

Graph-based associations are widely experienced in everyday

life. From gene expression to animal-skeletal motions, from

chemical bonding of compounds to stellar planetary compositions

of universe, and from social networks to physical networks of the

real world; all containing interacting and possibly mutually

dependent nodes.

A graph element may influence its associated elements. In

technical terms, the features’ value of one graph element could be

dependent on features’ value of another graphical element. Any

effort to model graph structure and its elements will require

learning of these dependencies. It is essential to learn these

dependencies to accurately model any graph and its elements.

Further, modelling complex graphs will require inductive learning

against time-consuming transductive reasoning.

The traditional deep-learning approaches such as

convolutional neural network (CNNs) or recurrent neural

networks (RNN) model problem using low-dimensional

structures. An image, for example, is convoluted multiple times

to extract features which are then used to classify other images.

The approaches assume uniformity in associations between

neighbouring nodes (pixels in case of images) while convoluting

matrix-like data. However, not all problems have uniformly

associated nodes, and certainly not graphs. These problems can

be more effectively solved using Graph Neural Networks (GNN).

A GNN represents problem domain in terms of a graph where

node represent entities and edges represent relationships between

the entities. A series of convolutions are performed to extract

features of nodes and the degree of influence of their

neighbouring nodes on the same. GNNs perform contextual

transduction in graph structures to obtain high-level

representation of its nodes. Further certain GNNs perform

inductive learning for classification or prediction. The differences

in the different models of GNNs lie in the approaches they

implement to learn and predict these dependencies.

GNNs are primarily classified as Recurrent Graph Neural

Networks (RecGNNs) or Convolutional Graph Neural Networks

(ConvGNNs). RecGNNs have recurrent learning architectures

where neighbouring nodes continuously share information till the

network is stabilised. ConvGNNs, on the other hand, involve

convolutions over neighbouring nodes of a node for learning

latter’s representation. ConvGNNs are further classified into

spectral-based approaches - based on spectral graph theory and

the spatial-based approaches - based on spatial convolution of

neighbourhood nodes. As spectral computation required eigen

decomposition of adjacency matrices which then affects learning

complexity, the later approaches have mostly used spatial based

learning. The latter is also extensively used in spatio-temporal

GNN models which aim to learn dynamic graphs.

Although GNNs have been well developed to processed

unstructured data, the challenge is to efficiently model complex

graphs which include large or dense graphs. In fact, the real-world

datasets are humungous, sometimes consisting of millions of

nodes. There have been some attempts to process such

challenging graphs based on approaches of sampling, clustering,

etc. and this work is an effort to critical analyse all such

implementations.

2. RELATED WORKS

The earliest effort to review GNNs was by [1] which gave

overviews of then existing graph convolutional neural networks.

[2] work was on studying network embedding models while [3]

focused only on attention networks. [4] was the first attempt to

consider GNNs in their entirety but only analysed the models

from the perspective of relational reasoning and combinatorial

generalization. [5] and [6] works presented a comprehensive

picture of GNNs with their categorization based on underlying

learning principle of their algorithms. Another comprehensive

work was produced by [7] which additionally surveyed

reinforcement learning and adversarial GNNs.

Although these surveys explained and compared several

GNNs, none provided a detailed critical analysis of GNNs dealing

with large datasets. Their emphasis rather was on GNNs’

categorization to provide hierarchical streamlined view of all

GNN models. This paper analyses the working of each model

designed to analyse large graph datasets and critically reviews the

veracity of the claims made.

2.1 CRITICAL REVIEW

 This work not merely discusses working and results of

existing models for learning large datasets, but does a thorough

critical analysis of the same to learn their effectiveness and

shortcomings in learning and reducing its complexity.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2417

2.2 DATASET-WISE ANALYSIS

 This work further analysis the datasets that are used in the

existing works and their suitability with respect to the complex

graphs. We have provided dataset statistics and argued the

performances of different approaches with respect to true real-

world datasets.

The main sections which follow are as following: Section 2

Defines graph and dataset related concepts, details evolution of

GNNs and lists its commonly used notations. Section 3 details the

working, algorithm and solutions to issues in previous models of

the existing works which are primarily focused to reduce learning

complexity. Their advantages, complexity readings and

drawbacks are also been stated. Section 3 discusses models which

provide improvised technique for learning but not with intent to

reduce complexity. The techniques discussed could be used for

learning in large graphs. Section 4 discusses the common

shortcomings of existing approaches and uses dataset statistics to

analyses their effectiveness in learning real-world datasets.

Section 5 provides conclusion of the review.

3. DEFINITIONS

• Graph: A graph G = (V, E) is consists of vertex set V = {v1,

v2, …}, with each element identified as a vertex, and edge

set E = {e1, e2, …}, with each element identified as an edge;

and where any edge of G links or connects one or two

vertices.

• Receptive Field: In GNN, the receptive field of a node is the

set of nodes that contribute to the determination of its final

node representation.

• Seed-Node: The root node from which sampling begins and

whose representation has to be learned.

3.1 EVOLUTION OF GRAPH NEURAL

NETWORKS

The very first work to learn graphs was [8] to study directed

acyclic graphs. However, the concept of graph neural network

was introduced first in [9] and later extended in [10]. Both of these

were recurrent type Graph Neural Networks.

The first ConvGNN type model was [11] and it was a spectral

based approach. This was followed by [12] which proved that not

only the dimensionality of a graph but also the cost of its Fourier

transformation can be reduced by performing simple mean/max

pooling at the beginning. [13] later optimised the max/min

pooling strategy. This was followed by [14] which created model

which performed semi-supervised learning for classification of

nodes while [15] used complex spectral filters, the Cayley

polynomials, for improvised learning. The most significant

foundations of GNNs were laid by [16] which introduced message

passing concept in ConvGNNs. Other models were subsequently

created which combined convolution with techniques like

diffusion, attention, etc., to improve learning.

3.2 NOTATIONS

The commonly used GNN notations are produced in Table.1.

Table.1. GNN notations

Notation Description

G A graph

V The vertex set of G

v, u Nodes belonging to V

n The number of nodes, n = |V|

E The edge set of G

e An edge e ∈ E

m The number of edges, m = |E|

N(v) The neighbourhood set of v

d The dimension of a node feature vector.

b The dimension of a hidden node feature vector.

K Number of layers in GNN

c The dimension of an edge feature vector.

k, l The layer index

t The time step/iteration index

s The batch size

r The number of neighbors sampled for each node

σ(·) The sigmoid activation function

σh(·) The tangent hyperbolic activation function

A The graph adjacency matrix.

AT The transpose of the matrix A.

An, n ∈Z The nth power of A

D The degree matrix of A

X ∈Rn×d The feature matrix of a graph.

x ∈Rn The feature vector of a graph in the case of d = 1.

xv ∈Rd The feature vector of the node v.

Xe ∈Rn×c The edge feature matrix of a graph.

xe
(v,u) ∈Rc The edge feature vector of the edge (v, u).

X(t) ∈Rn×d The feature matrix of a graph at time step t

H ∈Rn×b The node hidden feature matrix

hv ∈Rb The hidden feature vector of node v

W, Θ, w, θ Learnable model parameters.

4. INDUCTIVE REPRESENTATION

LEARNING ON LARGE GRAPHS

(GRAPHSAGE)

The Graph Convolutional Network (GCN) [14] performs full-

batch gradient to convolute graphs and which requires all nodes

to be present in the memory. As the approach was unscalable to

large graphs, GraphSAGE [17] was introduced which performed

mini-batch gradient learning to reduce memory requirements and

also allowed multiple parameter-updates per epoch leading to

faster convergence.

GraphSAGE is an inductive spatial based convolutional GNN

that uniformly samples seed-node's neighbourhood nodes for

learning. Its works by first performing uniform sampling from the

entire node-neighbourhood at each iteration. Then for each of

ASHISH GAVANDE AND SUSHIL KULKARNI: GRAPH NEURAL NETWORK LEARNING IN LARGE GRAPHS - A CRITICAL REVIEW

2418

these minibatch-nodes as seed, the algorithm expands outward in

the neighbourhood for a certain pre-determined level of nodes

from the seed node. At each expansion it randomly selects certain

nodes for learning which are then used for further expansion.

After reaching the peripheral nodes, it learns their representation

which is then recursively passed back to their sampled parent

nodes. The representation is then learnt at these parent nodes and

aggregated with the previously learnt representation and again

passed higher up in the hierarchy towards the seed node. Its

convolution is represented as in Eq.(1)

 hv
(k) = σ(W(k)·fk(hv

(k-1), {hu
(k-1), ∀u∈SN(v)})) (1)

where hv
(0) = xv,fk(·) is an aggregation function, SN(v) is a random

sample of the node v’s neighbours [6].

The work considers four variations of GraphSAGE, viz.,

GraphSAGE-GCN, GraphSAGE-mean, GraphSAGE-LSTM, and

GraphSAGE-pool; these vary on the aggregator functions used.

Here GraphSAGE-GCN is the base version modelled on GCN;

GraphSAGE-mean uses element-wise mean of representations;

GraphSAGE-LSTM is based on the LSTM architecture [18]; and

GraphSAGE-pool where element-wise max-pooling is applied for

aggregation.

GraphSAGE variants comparisons was with four baselines,

viz., a random classifier, a logistic regression feature-based

classifier, the DeepWalk algorithm [19], and model with

concatenation of the raw features and DeepWalk embeddings.

The comparisons found that GraphSAGE learns larger and denser

graphs substantially better than the baselines but is slower when

on learning on smaller graphs. The time complexity of

GraphSAGE is O(rKnd2) and memory complexity is O(srKd +Kd2)

[20]. Accuracy-wise, GraphSAGE logged superior micro-

averaged F1 scores then the baselines and in some cases the gain

was of more than of 50%.

Although GraphSAGE uses nodes' features in learning

algorithm to learn topological structures as well as its distribution

in the neighbourhood, it can be applied even to graphs without

rich node features. Its major contribution is inductive learning

which can extend learning to unseen nodes and generalize the

learned-node’s feature-embeddings to newer or evolving

(dynamic) graphs. Further, instead of leaning embedding of each

node distinctly, it aggregates the learning over the node's

neighbourhood to generate the embeddings. It can be operated in

both supervised as well as unsupervised mode.

GraphSAGE performs just random sampling of

neighbourhood nodes and does not sample “important” nodes for

the seed nodes which affects learning. The prediction algorithm

of GraphSAGE and gradient descent function is not unbiased and

therefore there is no guarantee of convergence and which

therefore mandates a large sample size [21]. And as the sampling

size increases the training requires more resources which

increases complexity. It also suffers from high time complexity

due to recursive (layer-wise) node-embedding processing which

increases with increase in depth. Further, except for recursive-

learning, neither any graph theoretic approach is used nor any

local mutual information is learnt to captured global structural

information to improve learning or reduce complexity.

4.1 FAST LEARNING WITH GRAPH

CONVOLUTIONAL NETWORK VIA

IMPORTANCE SAMPLING (FASTGCN)

FastGCN [22] is graph convolution approach that learns

features representations on graph's vertices and interpret

convolutions as integral transformation of vertex embedding

functions. FastGCN samples using importance-based sampling,

unlike in GraphSAGE, a fixed number of vertices and not

neighbours for each graph convolutional layer; it samples layer-

wise. As the sampling is importance-based, the nodes which

influence the seed node majorly, are selected. The model can be

represented as in Eq.(2):

 H(l+1) = σ(ÂH(l)W(l)) (2)

where Â is normalized graph adjacency matrix, H(l) contains the

embedding (row-wise) of the graph vertices in the lth layer, W(l)

is a parameter matrix, and σ is nonlinearity [22].

FastGCN is significantly faster compare to GCN [14] and

GraphSAGE although is at par with respect to classification

accuracy in terms of micro-F1 scores. It also has smaller sampling

variance than GraphSAGE. The time complexity of FastGCN is

O(Krnd2) and its memory complexity is O(Ksrd +Kd2) [20].

FastGCN compromises on structural integrity in the sense that

the nodes sampled at each layer are independent of nodes sampled

in the previous layer. This may lead to filtering of connection

information in between layers of graph and affects stability and

accuracy of the model. As in GraphSAGE, its convergence is only

guaranteed if the sample size goes to infinity [21] which of course

will make training very expensive. Further, FastGCN cannot

classify entire graphs or sub-graphs.

4.2 ADAPTIVE SAMPLING TOWARDS FAST

GRAPH REPRESENTATION LEARNING

(ADAPT)

A variant of FastGCN, this general framework is an inductive

top-down layer-wise sampling-based convolution framework that

approximates optimal sampling by conditionally selecting lower

layer nodes based on upper layer nodes [23]. The approach is

based on the premises of common neighbourhood for nodes

across a layer, i.e., all parent nodes have same sampled

neighbours. The effect is of having similar sampling flow for

neighbourhood of nodes of a layer which intends to reduce

learning complexity.

As Adapt follows a top-down approach, a node in a layer is

selected using a self-dependent importance learning function that

tells its “importance” for lower layer nodes. The function is

computed on the node’s features. The process is recursively

repeated up to the bottom-most (input) layer. After having

sampled the nodes, hidden features of these nodes are learned and

passed through activation functions. The sampling is also

controlled by keeping an upper limit of sample nodes at each

layer. The layer-wise sampling at each layer can be described as

in Eq.(3):

h(l+1)(vi)=σW
(l)(N(vi)Eq(uj|v1,…,vn)[(p(uj|vi)/q(uj|v1,…,vn))h(l)(uj)]) (3)

where q(uj|v1,…,vn) is defined as the probability of sampling uj

given all the nodes of the current layer [23].

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2419

 The advantage in Adapt is in not re-embedding nodes which

may have been already learnt for previous seed-nodes. And where

FastGCN ignores structural relationships between nodes of

different layers, Adapt’s sampling is actually based on lower layer

nodes and therefore maintains the relational integrity and captures

between-layer correlations. Further, to reduce variance to improve

learning as high variance in sampling impedes learning, the

sampling is adaptable and can be parameterized, unlike in

GraphSAGE and FastGCN. In fact, these both can be represented

as node-wise sampler and special layer-wise method variants of

Adapt respectively [23].

Adapt also employs attention mechanism [24] for improvised

learning. Its variations involve skip-connection technique of

message passing across distant nodes and 2-hop neighbourhood

sampling which are slightly more accurate than the basic Adapt.

The accuracy scores comparisons reported in [23] indicate that

Adapt and its variations are the most accurate than other

compared models viz., full-batch gradient GCN, GraphSAGE,

FastGCN, graph kernel method KLED [25] and Diffusion

Convolutional Network (DCN) [26]. The comparisons were also

done with modified GraphSAGE and FastGCN models for fair

comparisons. However, the work does not clarify what type of

accuracy scores are specified for its own model. It is second only

to FastGCN sampling technique in per epoch training for PubMed

and Reddit datasets.

4.3 GATED ATTENTION NETWORKS FOR

LEARNING ON LARGE AND

SPATIOTEMPORAL GRAPHS (GAAN)

GaAN [27] is a gated attention based convolutional GNN,

modelled on [24], performs sampling like GraphSAGE, however,

with two major differences. At each sampling step it samples

minimum of number of neighbouring nodes or, certain maximum

number of nodes determined by a hyperparameter. It also merges

any repeatedly sample node for a different seed node but of the

same mini-batch. The gated attention, which is the main

modification to previous models, can modulate the amount of

attended content via the introduced gates [27]. The model also

involves transforming graph aggregators into Gated Graph

Recurrent Unit (GGRU) which can be used for spatial-temporal

learning.

GaAN is only slightly more accurate than FastGCN and

Adapt. However, there is one inconsistency in the scores reported;

one table reports the accuracy as micro-F1 scores while the same

are reported as F1 scores in another table.

In traffic speed forecasting analysis done with METR-LA

dataset, GaAN performed best on 15- and 30-minutes time

horizons in comparison with eight other models. It can model

spatio-temporal relationships.

The major drawback is that attention mechanism requires

extra computation in terms of pairs of feature vectors, resulting in

excessive memory and computational resource requirements [28]

which increases complexity.

4.4 STOCHASTIC TRAINING OF GRAPH

CONVOLUTIONAL NETWORKS WITH

VARIANCE REDUCTION (STOGCN)

StoGCN [21] is a stochastic approximation based

convolutional GNN which improvises by employing the historical

representation of nodes’ activations to reduce variance in the

sampled nodes in order to reduce the receptive-field size. Instead

of recursively calculating a node’s activation representation every

time using its neighbours’ activations at previous layers, it

maintains an approximated representation for each node which is

updated at every layer with newly learned representations. The

model estimator has a zero variance and is referred to as control

variate. A graph convolution layer in StoGCN is represented as in

Eq.(4):

 Z(l+1) = PH(l)W(l), H(l+1) = σ(Z(l+1)) (4)

where H(l) is the activation matrix in the lth layer, whose each row

is the activation of a graph node [21]. Here, H(0) = X is the input

feature matrix, and W(l) is a trainable weight matrix.

 The theoretical guarantees of the framework allow quality

learning even with two nodes sampling [20]. The time complexity

of StoGCN is O(Kmd +Knd2 + rKnd2) and its memory complexity

is O(Knd +Kd2) [20].

A variation of model is control variate for dropout (CVD), to

work with networks that employ dropout – a node dropping

regularization procedure to avoid overfitting. The dropout is

performed after neighbour averaging.

A drawback of this model is that the selection requires the all

the intermediate embeddings of all the nodes be present in the

memory, making learning in large graphs restrictive. The work

has reported micro-F1 comparisons only for PPI dataset and

accuracy scores for other datasets and no justification is provided

for the same. The reported convergence is obtained in far less time

and in far less epochs but is reported only for Reddit dataset and

not for all the used datasets. Here again the type of accuracy

scores is not clarified.

4.5 GRAPH CONVOLUTIONAL NEURAL

NETWORKS FOR WEB-SCALE

RECOMMENDER SYSTEMS (PINSAGE)

PinSage [29] is GCN based recommender algorithm that

performs low-latency random walks on graphs for importance-

based neighbourhood sampling of nodes. Here, the importance-

based sampling is performed by selecting nodes with highest

normalized count visits of multiple random walks. The model

applies multiple convolutions in a localized set-up of small

neighbourhood nodes to learn embeddings of each node for

multiple features. The information gain in each convolution with

respect to feature-type is stacked to get more comprehensive

embeddings. The algorithm uses max-margin based loss function

with an intent to maximize the inner product of embedding of the

query item and the corresponding related item and minimize the

inner product of the query item and an unrelated item [29].

PinSage is the only model that employs CPU-GPU co-

ordination wherein a CPU-bound producer efficiently samples

node network neighbourhoods and identifies necessary features

for local convolutions which are then used by a GPU-bound

TensorFlow model to efficiently run stochastic gradient decent.

ASHISH GAVANDE AND SUSHIL KULKARNI: GRAPH NEURAL NETWORK LEARNING IN LARGE GRAPHS - A CRITICAL REVIEW

2420

Further, a MapReduce process ensures that the latent vector for

each node is computed only once.

The performance comparisons done are only with other

recommender systems and not with any other GNN-based model.

Also, generally used datasets by other approaches are not used to

evaluate its performance and so comparisons cannot be analysed.

4.6 LARGE-SCALE LEARNABLE GRAPH

CONVOLUTIONAL NETWORK (LGCN)

LGCN [28] is a spatial based GCN that transforms generic

graphs into grid-structure to apply standard one-dimensional

CNN convolution for feature learning of graph nodes. It learns

representations of neighbourhood nodes for the seed node and

arranges them in matrix with features forming the columns and

rows populated with feature-values for each neighbourhood node.

The rows are then sorted based on the feature-values and top few

rows and correspondingly nodes are selected for defining

representation of the seed node.

LGCN divides an entire graph into sub-graphs to counter

computational bottlenecks and memory constraints that limit

processing of large graphs. Due to sub-graphing and

transformation to lower dimensional structure, deeper learning is

also possible in this arrangement.

The layer-wise propagation rule of LGCN is formulated as in

Eq.(5) and Eq.(6):

 Xl = g(Xl ,A, k) (5)

 Xi+1 = c(Xl) (6)

where A is the adjacency matrix, g(·) is an operation that performs

the k-largest node selection to transform generic graphs to data of

grid-like structures, and c(·) denotes a regular 1-D CNN that

aggregates neighbouring information and outputs a new feature

[28].

The comparison is done only with GraphSAGE on PPI dataset

and reported micro-F1 scores indicate better accuracy compare to

GraphSAGE.

4.7 CLUSTER-GCN - AN EFFICIENT ALGORITHM

FOR TRAINING DEEP AND LARGE GRAPH

CONVOLUTIONAL NETWORKS

Cluster-GCN [20] is a spatial based convolutional GNN which

uses graph clustering algorithm to sample block of nodes from a

graph. Cluster-GCN uses normalized adjacent matrices whose

diagonal values are amplified to reflect higher contribution of

nearby nodes than distant nodes. The normalization is done to

avoid instability due to exponential growth in amplified values

with increase in layers. The embeddings of node’s neighbours can

be described as in Eq.(7) and Eq.(8):

 Â = (D + I)−1(A + I) (7)

 X(l+1) = σ((Â + λdiag(Â))X(l)W(l)) (8)

where Â is the normalized adjacency matrix, X(l) ∈R(n×dl) is the

embedding at the lth layer for all the n nodes.

 The convolution on nodes is restricted to subgraphs only; the

learning does not cross the boundaries of a sub-graph. As only a

subgraph node is required in the memory during convolution,

memory and time complexities are reduced. This allows to handle

larger graphs and also deeper levels learning. Further, sub-

graphing improves embedding utilization as the previously

learned embeddings can and are re-utilized in densely linked

nodes of a subgraph.

Cluster-GCN further incorporates stochastic multiple

partitioning to reduce variance between batches of nodes.

Otherwise, similar nodes within a batch and different nodes across

batches may defer convergence of the model.

Cluster-GCN performs far better than existing approaches in

terms of time and memory complexities. The time complexity of

Cluster-GCN is O(Kmd +Knd2) and its memory complexity is

O(Ksd+Kd2) [20]. The model gives results even in graph with 2

million plus nodes and 61 million plus edges.

The accuracy values which are reported are in terms of F1

score and not micro-F1 score. The clustering has to be done prior

to processing which makes this arrangement unsuitable for

dynamic graphs.

5. GEOMETRIC GRAPH CONVOLUTIONAL

NETWORKS

Geometric Graph Convolutional Networks (Geom-GCN) [30]

was designed to tackle two fundamental problems in Message-

passing neural networks (MPNNs) which are loss of structural

information of graphs in “blindly” aggregating messages for

neighbourhood nodes and inability to learn long-range

dependencies in disassortative graphs. In later, it means that

aggregational representation ignores distant but influential nodes

which consequently affects learning. Geom-GCN’s solution is a

geometric aggregation scheme which maps a graph to a

continuous latent space via node embedding, and then use the

geometric relationships defined in the latent space to build

structural neighbourhoods for aggregation [30]. Additionally, a

bi-level aggregator operates on the structural neighbourhoods to

update the hidden features representations of nodes.

The structural neighbourhood for the next aggregations is

described as in Eq.(9) and Eq.(10):

 N(v) = ({Ng(v), Ns(v)},τ) (9)

 Ns(v) = {u|u∈V, d(zu,zv)<ρ} (10)

where Ng(v) is actual neighbourhood of v, Ns(v) is latent space

neighbourhood, τ is a relational operator on neighbourhoods, and

ρ is a pre-given parameter.

The bi-level aggregations are described as in Eq.(11), Eq.(12)

and Eq.(13):

 e(i,r)
v,l+1 = p({hl

u|u ∈Ni(v), τ(zu,zv) = r}) (11)

 mv
l+1 = q(e(i,r)

v,l+1, (i,r)) (12)

 hv
l+1 = σ(Wl·mv

l+1) (13)

where e(i,r)
v,l+1 is the features of virtual nodes of i neighbourhood

and r relationship with p aggregating function. Here, Eq.(11) is

the low-level aggregation, Eq.(12) is the high-level aggregation

and Eq.(13) is the non-linear transformation.

Geom-GCN has three main variants viz., Geom-GCN-I,

Geom- GCN-P, and Geom-GCN-S which are differ in the type of

embedding they employ. Geom-GCN-I uses Isomap embedding

[31]; Geom- GCN-P uses Poincare embedding [32] and Geom-

GCN-S uses struc2vec embeddings [33].

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2421

The time complexity of Cluster-GCN is O(nm2|R|) where n is

the size of input representations, m is the number of hidden units

in non-linear transform, and 2|R| is the number of virtual nodes

[30]. The run-time comparisons show that GCN is better than

Geom-GCN in learning representations.

Geom-GCN variants are compared only with GCN and GAT

with better mean classification accuracy in most cases. However,

other models such as GraphSAGE, Adapt, StoGCN and Cluster-

GCN are not compared. Further, the datasets used have no more

than 20,000 nodes with some having only few hundred nodes; it

did not used large datasets. And also, micro-f1 accuracy scores

are not mentioned.

The main drawback of Geom-GCN is that it is a transductive

learning model by virtue of which it cannot extend learning on

some nodes to all the nodes; each node has to be learned

independently making it unscalable for large graphs.

5.1 COMMUNITY ENHANCED GRAPH

CONVOLUTIONAL NETWORKS (CE-GCN)

CE-GCN [34] integrated neighbourhood and community

information in learning graph representations. It first does graph

convolution and then uses modularity to measure community

strength of the convolution network. The two are then combine in

the cost function for optimization of the network. CE-GCN uses

[14] for graph convolution.

For measuring community strength between two

communities, it uses the modularity function as described as in

Eq.(14)

 Q = (1/4e)∑ij (Aij – (kikj /2e)) sisj (14)

where si = 1 if node i belongs to the first community, otherwise si

= −1. ki is the degree of node i and (kikj/2e) is the expected number

of edges between nodes i and j if edges are placed at random and

where s=[si] ∈Rn is the community membership indicator [34].

The modularity Q actually measures the difference between the

number of edges falling within communities and the expected

number in an equivalent random network [34].

The time complexity of proposed algorithm can be considered

as O(|E| ∑L
l=0 f1+ |V|∑L

l=1 f1fl−1fl) which is linear [34]. CE-GCN

uses GCN to perform convolution which performs full-batch

gradient to convolute graphs and which requires all nodes to be

present in the memory. As GCN is unscalable to large graphs CE-

GCN itself will be unscalable to large graphs. Further, usage of

any other model for convolution may make the time complexity

non-linear. It, like in Geom-GCN, does not exhibit learning of

large datasets as graphs of less than 20,000 nodes are only used.

Except for GraphSAGE, other models such as, Adapt, StoGCN

and Cluster-GCN are not used in comparison and also micro-f1

accuracy scores are not mentioned.

6. PERFORMANCE EVALUATION

It is evident in the above analysis the existing algorithms

primarily depend on sampling to convolute large graphs with

reduce complexity. The main drawback of standard sampling

approach could be missing of important nodes which could

negatively affect learning. Like-wise, in clustering, with sub-

graphing there could loss of structural information which could

also affect learning. However, sub-graphing allows deeper

learning.

We observed that graph-coarsening techniques which reduces

nodes by “combining” multiple neighbour nodes into a super-

node is not being used in for learning large dataset. The primarily

reason could be that graph coarsening requires eigenvector

computations on graph’s Laplacian matrix after each coarsening

step which increases computation. Further fitting the entire matrix

for large graphs makes memory complexity intractable.

The earlier approaches have reported micro-F1 scores for

accuracy comparisons. However, StoGCN and Cluster-GCN,

which claim superior performances to earlier approaches, have

reported micro-F1 scores for one dataset only; for rest the results

are reported in terms of F1-scores or mere accuracy scores. There

is lack of clarity in the type of scores reported by Adapt and

GaAN.

The F1 scores do not give class-wise weighted comparisons

[35] and therefore the accuracy claims cannot be fully accepted.

Instead, micro-F1 scores should have been reported for correct

accuracy conclusions and comparisons. Consequently, the

reported reduced memory and time complexities for and on the

basis of F1 scores also cannot be fully accepted. A true good

algorithm should reduce complexities along with good micro-F1

scores. We tabulate the reported best accuracy scores of all the

implementations for different datasets in the Table 2 as reported

in original papers. However, some newer works had modified the

original implementations and had obtained slightly different

scores for the same models. It should be noted that the mentioned

accuracy scores are not of same type and contain mixture of

“plain” accuracy, F1 and micro-F1 scores and therefore are not

directly comparable.

Table.2. Accuracy scores with standard deviation (in percentage)

Algorithm Cora Cite-Seer Pub-Med PPI Reddit

GraphSAGE 83.9 - - 61.2 95.4

FastGCN 85 88 - 93.7

Adapt
87.44

±0.34

79.66

±0.18

90.6

±0.16
-

96.27

±0.32

GaAN - - -
98.71

±0.03

96.83

±0.03

StoGCN 82.0 70.9 78.9 97.8 96.3

LGCN - - -
77.2

±0.002
-

Cluster-GCN - - - 99.36 96.6

6.1 DATASETS REVIEW

It is observed that different data-statistics have been reported

by the existing works for the same datasets. While where

FastGCN, LCGN and StoGCN reported same n of 2,708 and

19,717 for Cora and PubMed datasets respectively; StoGCN

reported higher m for both the datasets. In case of Reddit dataset,

which is used by FastGCN, GaAN, StoGCN and Cluster-GCN,

the same n is reported. However, while for the same dataset where

FastGCN and Cluster-GCN mentioned the same m value of 11.6

million approximately, StoGCN and GaAN reported it to be 23.4

million and 114.6 million respectively. Incidentally, Cluster-GCN

ASHISH GAVANDE AND SUSHIL KULKARNI: GRAPH NEURAL NETWORK LEARNING IN LARGE GRAPHS - A CRITICAL REVIEW

2422

has mentioned reported accuracy scores of StoGCN and GaAN as

it is for accuracy comparison in spite of these algorithms

apparently dealing with more complex Reddit dataset. In case of

PPI dataset, the n and m values reported are – StoGCN: 14,755

and 4,58,973; LCGN: 56,944 (only n reported); GaAN: 56.9K and

806.2K and Cluster-GCN: 56,944 and 818,716. The data of Table

3 from [36] summarizes attributes of commonly used graphs.

Table.3. Dataset Statistics

Dataset Cora CiteSeer Reddit 5K

Type Citation Citation Social

Nodes 2.7K 3.3K 2.5M

Edges 5.4K 4.5K 11.9M

Graph Density 1.4812E-03 8.51796E-04 3.68E-06

Max. degree 169 99 8K

Min. degree 1 1 4

Avg. degree 4 2 9

The computed graph density for PubMed, PPI, Amazon and

Amazon2M datasets for highest reported n and m values are

5.575E-04, 1.699E-07, 7.812E-07 and 1.28E-09 respectively.

It is evident all these datasets have very low average density.

It could be then ascertained none of the existing algorithms have

learned highly dense graph datasets.

7. CONCLUSION

In this review, we have detailed the approaches to model large

graphs. We have critically analysed each of these approaches and

their claims of learning and reducing complexity in large graphs.

It is observed that Adapt gives the best micro-F1 accuracy for

comparatively smaller datasets Cora, CiteSeer and PubMed while

GaAN has the best score in case of larger Reddit dataset. It is to

be noted that Adapt’s Cora and PubMed datasets has lesser edges

then the same datasets used by StoGCN; but StoGCN has reported

only accuracy scores and not micro-F1 scores. Cluster-GCN has

reported the best processing time with best memory and time

complexity. However, they have processed only highly sparse

datasets and not performed learning in dense graphs.

In the final analysis, it cannot be definitely stated that any of

the existing approaches does quality learning along with

substantially reduction of complexity in true real-world graphs.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam and P.

Vandergheynst, “Geometric Deep Learning: Going beyond

Euclidean Data”, IEEE Signal Processing Magazine, Vol.

34, No. 4, pp. 18-42, 2017.

[2] W. L. Hamilton, R. Ying and J. Leskovec, “Representation

Learning on Graphs: Methods and Applications”, IEEE

Data Engineering Bulletin, Vol. 24, No. 2, pp. 1-24, 2017.

[3] J.B. Lee, R.A. Rossi, S. Kim, N.K. Ahmed and E. Koh,

“Attention Models in Graphs: A Survey”, Proceedings of

International Conference on Artificial Intelligence, pp. 1-13,

2018.

[4] P. W. Battaglia, “Relational Inductive Biases, Deep

Learning, and Graph Networks”, Proceedings of

International Conference on Artificial Intelligence and

Machine Learning, pp. 1-14, 2018.

[5] J. Zhou and S. Hu, “Graph Neural Networks: A Review of

Methods and Applications”, Proceedings of International

Conference on Machine Learning, pp. 1-22, 2018.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A

Comprehensive Survey on Graph Neural Networks”,

Proceedings of International Conference on Network

Embedding and Graph Neural Networks, pp. 1-22, 2019.

[7] Z. Zhang, P. Cui and W. Zhu, “Deep Learning on Graphs: A

Survey”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 14, No. 8, pp. 1-24, 2018.

[8] A. Sperduti and A. Starita, “Supervised Neural Networks for

the Classification of Structures”, IEEE Transactions on

Neural Networks, Vol. 8, No. 3, pp. 714-735, 1997.

[9] M. Gori, G. Monfardini and F. Scarselli, “A New Model for

Learning in Graph Domains”, Proceedings of International

Conference on Neural Networks, Vol. 2, No. 2, pp. 729-734,

2005.

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G.

Monfardini, “The Graph Neural Network Model”, IEEE

Transactions on Neural Networks, Vol. 20, No. 1, pp. 61-80,

2009.

[11] J. Bruna, W. Zaremba, A. Szlam and Y. Le Cun, “Spectral

Networks and Locally Connected Networks on Graphs”,

Proceedings of International Conference on Computer

Vision and Pattern Recognition, pp. 1-14, 2013.

[12] M. Henaff, J. Bruna and Y. Le Cun, “Deep Convolutional

Networks on Graph-Structured Data”, Proceedings of

International Conference on Computer Vision and Pattern

Recognition, pp. 1-10, 2015.

[13] M. Defferrard, X. Bresson and P. Vandergheynst,

“Convolutional Neural Networks on Graphs with Fast

Localized Spectral Filtering”, Proceedings of International

Conference on Advances in Neural Information Processing

Systems, pp. 3844-3852, 2016.

[14] T.N. Kipf and M. Welling, “Semi-Supervised Classification

with Graph Convolutional Networks”, Proceedings of

International Conference on Machine Learning, pp. 1-14,

2016.

[15] R. Levie, F. Monti, X. Bresson and M.M. Bronstein,

“CayleyNets: Graph Convolutional Neural Networks with

Complex Rational Spectral Filters”, IEEE Transactions on

Signal Processing, Vol. 67, No. 1, pp. 97-109, 2019.

[16] A. Micheli, “Neural Network for Graphs: A Contextual

Constructive Approach”, IEEE Transactions on Neural

Networks, Vol. 20, No. 3, pp. 498-511, 2009.

[17] W.L. Hamilton, R. Ying and J. Leskovec, “Inductive

Representation Learning on Large Graphs”, Proceedings of

International Conference on Advances in Neural

Information Processing Systems, pp. 1025-1035, 2017.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory”, Neural Computing, Vol. 9, No. 8, pp. 1735-1780,

1997.

[19] B. Perozzi, R. Al-Rfou and S. Skiena, “Deep Walk: Online

Learning of Social Representations”, Proceedings of

International Conference on Knowledge Discovery and

Data Mining, pp. 701-710, 2014.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2423

[20] W.L. Chiang, Y. Li, X. Liu, S. Bengio, S. Si and C. J. Hsieh,

“Cluster-GCN: An Efficient Algorithm for Training Deep

and Large Graph Convolutional Networks”, Proceedings of

International Conference on Knowledge Discovery and

Data Mining, pp. 257-266, 2019.

[21] J. Chen, J. Zhu and L. Song, “Stochastic Training of Graph

Convolutional Networks with Variance Reduction”,

Proceedings of International Conference on Machine

Learning, pp. 1503-1532, 2018.

[22] M. T. Chen Jie and X. Cao, “FASTGCN : Fast Learning

With GCN vis Importance Sampling”, Proceedings of

International Conference on Machine Learning, pp. 1-15,

2018.

[23] W. Huang, T. Zhang, Y. Rong and J. Huang, “Adaptive

Sampling Towards Fast Graph Representation Learning”,

Proceedings of International Conference on Advances in

Neural Information Processing Systems, pp. 4558-4567,

2018.

[24] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio

and Y. Bengio, “Graph Attention Networks”, Proceedings

of International Conference on Artificial Intelligence, pp. 1-

12, 2017.

[25] F. Fouss, K. Francoisse, L. Yen, A. Pirotte and M. Saerens,

“An Experimental Investigation of Kernels on Graphs for

Collaborative Recommendation and Semisupervised

Classification”, Neural Networks, Vol. 31, pp. 53-72, 2012.

[26] J. Atwood and D. Towsley, “Diffusion-Convolutional

Neural Networks”, Proceedings of International Conference

on Advances in Neural Information Processing Systems, pp.

1-15, 2016.

[27] J. Zhang, X. Shi, J. Xie, H. Ma, I. King and D.Y. Yeung,

“GaAN: Gated Attention Networks for Learning on Large

and Spatiotemporal Graphs”, Proceedings of International

Conference on Artificial Intelligence, pp. 339-349, 2018.

[28] H. Gao, Z. Wang and S. Ji, “Large-Scale Learnable Graph

Convolutional Networks”, Proceedings of International

Conference on Knowledge Discovery and Data Mining, pp.

1416-1424, 2018.

[29] R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton

and J. Leskovec, “Graph Convolutional Neural Networks for

Web-Scale Recommender Systems”, Proceedings of

International Conference on Knowledge Discovery and

Data Mining, pp. 974-983, 2018.

[30] H. Pei, B. Wei, K. C.C. Chang, Y. Lei and B. Yang, “Geom-

GCN: Geometric Graph Convolutional Networks”,

Proceedings of International Conference on Artificial

Intelligence and Machine Learning, pp. 1-12, 2020.

[31] V. De, L.J. Tenenbaum and S. Joshua, “A Global Geometric

Framework for Nonlinear Dimensionality Reduction”,

Proceedings of International Conference on Geometric

Structure of High-Dimensional Data and Dimensionality

Reduction, pp. 151-180, 2012.

[32] M. Nickel and D. Kiela, “Poincare Embeddings for Learning

Hierarchical Representations”, Proceedings of International

Conference on Advances in Neural Information Processing

Systems, pp. 6339-6348, 2017.

[33] L.F.R. Ribeiro, P.H.P. Saverese and D.R. Figueiredo,

“Struc2vec: Learning Node Representations from Structural

Identity”, Proceedings of International Conference on

Knowledge Discovery and Data Mining, pp. 385-394, 2017.

[34] Y. Liu, “Community Enhanced Graph Convolutional

Networks”, Pattern Recognitions Letters, Vol. 138, pp. 462-

468, 2020.

[35] B. Shmueli, “Multi-Class Metrics Made Simple, Part II: the

F1-Score”, Available at

https://towardsdatascience.com/multi-class-metrics-made-

simple-part-ii-the-f1-score-ebe8b2c2ca1, Accessed at 2019.

[36] Ryan Rossi and Nesreen Ahmed, “Network Statistics”,

Available at http://networkrepository.com/.

