
S ZOUAIRI AND MK ABDI: INFORMATION RETRIEVAL BUG LOCALIZATION WITH WAVELETS ANALYSIS

DOI: 10.21917/ijsc.2021.0342

2402

INFORMATION RETRIEVAL BUG LOCALIZATION WITH WAVELETS ANALYSIS

S. Zouairi and M.K. Abdi

Department of Information and Technology, University Oran 1, Algeria

Abstract

Nowadays, maintaining an oversized and evolving computer code

involves longer and value for the project team. In software

maintenance, a bug report is employed to seek out a fault location.

Once a bug report is received, it is suiTable.to automatically denote out

the files that developers should change to repair the bug. This work

develops a brand-new information retrieval (IR) system that allows

representing textual data by signals. This new way of implementing

gives us the chance to use various mathematical tools from the signal

theory like Wavelets Transforms, unused nowadays within the field of

IR. This paper proposes Wavelets Transforms for Bug Localization

(WTBugLoc), a mathematical approach of IR-based bug localization

using wavelet techniques. The results of the conducted experiments on

the SWT (Standard Widget Toolkit) Eclipse project confirm the

effectiveness of the proposed approach. The experiments also show that

WTBugLoc outperforms method using the Vector Space Model (VSM).

Keywords:

Bug Fixing, Information Retrieval, Bug Report, Haar Transform,

Software Maintenance

1. INTRODUCTION

During the 1960s and 1970s, the event of huge software

systems leaded to several difficulties and since the term “software

crisis” dates from that point. The crisis manifests in several ways

including projects exceeding the estimated costs for development,

the late delivery of software, and the poor quality of the delivered

software. Currently, software continues to be a critical element in

most large-scale systems and many companies must deal with a

software crisis.

During the life cycle of software processing, the engineering

team is overwhelmed with bugs reported. The major goal of the

engineering team is to deliver a high-quality product, while

keeping bugs down. Engineering teams often feel they are in an

epic struggle to build the perfect product while dealing with ever-

changing requirements, software complexity, framework

changes, and evolving infrastructure. But, with the expanding size

of programming and the restricted advancement assets, it is

frequently unavoidable to deliver programming frameworks

without bugs. A bug is an anomaly in the software product that

causes the software to perform incorrectly or to behave in an

unexpected way [1].

When a bug occur in a software, the engineering team reports

it in a document called a bug report and logs it in a bug tracking

system, such as Bugzilla [2]. Before validating a bug report, a

various stages of quality checks are passed. This include,

checking for duplicity, validity, and completeness. After that, the

bug is addressed to a developer, who refers to the information in

the bug report to identify the source files, which need to be altered,

in order to solve the issue in the bug report. Bug reports typically

consist of various fields which contain description of the bug,

screen shots or snapshots of an error message, version, stack

traces, etc., an example is shown in Table.2.

The developer, who is responsible for this bug, has to find the

root cause of the bug in the source code and then fix the root

cause. Doing this process manually can take 30%-40% of the total

time needed to fix a problem [3]. This is a painful process,

especially for big software projects with hundreds of thousands of

source files. As a result, the bug fixing is time increasing, along

with maintenance cost of the project. Although the bug fixing task

constitutes sub-tasks such as understanding the bug, validating the

bug, locating the cause of the bug, and finally fixing the bug, it is

the process of finding the cause of the bug (bug localization) that

consumes most of the time of the developer [4]. The need for

automated tools or approaches, which perform bug localization,

has become a requirement.

Recent bug localization techniques are often classified into

two broad families–spectra based and information retrieval (IR)

based [5]. While spectra-based techniques depend upon on

execution traces of a package, IR-based techniques analyze shared

vocabulary between a bug report (i.e., query) and therefore the

project source for bug localization [5].

The basic idea in these IR approaches is that a bug report is

treated as a query, and the source files to be scanned in a software

product are the set of documents. IR techniques then rank

documents by expected relevance and return a ranked list of

candidate source files that would cause the bug.

Many of the existing IR-based bug localization methods are

proposed to automatically look for relevant files with regard a bug

report [6] - [16].

These IR methods are built around a similarity function. This

function takes a query and a document as its arguments and

generates a single score which represents the relevance of the

query to the document [17].

Other techniques use vectors to represent documents and

queries, where the vector space contains one dimension for each

of the terms found in the document set. The contribution of each

dimension in the document vector is generated by counting the

appearances of the associated term in the document. The

similarity function simply applies weights to the query and

document vectors and compares them to generate a score based

on their likelihood of relevance [17]. The process of converting

the documents into vectors, take only into account the number of

times each term appears in the documents and disregard the

positional information.

Yet in many applications, there is a necessity to process data

that’s inherently of vector form. As an example, Speech and audio

processing, Image and video processing, Biomedical imaging are

usually represented as 2D or 3D vector fields in 2D or 3D space,

while images with multiple spectral components may be

considered to be 2D fields of multidimensional vectors.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2403

Wavelets transform are functions providing certain

mathematical purposes and representing data or other functions

by vector (ie. signal). A Haar wavelet is the simplest sort of

wavelet. In discrete form, Haar wavelets are associated with a

mathematical process called the Haar transform [18]. Due to its

low computing requirements, the Haar transform has been mainly

used for pattern recognition and image processing [19]. In IR bug

localization, wavelet techniques haven’t been thoroughly puzzled

out. Wavelet analysis has been found to be extremely useful for

software code clone detection [20], clone detection in image

processing [21], data reduction methods to handle potentially

large and sophisticated nonstationary data curves [22] and in

integral text information search [23], and in documents

information retrieval [24].

Many reasons justify the usefulness of wavelets techniques.

For the Computational Complexity viewpoint wavelet transform

only needs O(N) multiplications [25]. Applying wavelet

transform to the source code project reduces the quantity of

information to be treated by an element of two with each

transform allowing us to use fewer resources.

• To the authors knowledge, wavelets transform have not been

used for IR-based bug localization.

• The main aim of this study is to fill this research gap. To

attain this objective, this study will try to answer the

subsequent main research question:

RQ: what is the effectiveness of using wavelets transform for

bug localization?

In this paper, we present the evaluation of the usefulness of

wavelet transformations in bug localization. For this, we

implement a tool called WTBugLoc a brand-new IR system that

ranks buggy files and allows representing textual data by signals

using Haar Transform. The remainder of the paper is organized as

follows. Section 2 presents background and therefore the most

relevant related works, section 3 includes an overview of wavelets

and describes the proposed approach and also the followed

methodology to hold out the study, results and discussions are

presented in sections 4, Finally, section 5 concludes this work.

2. STATE OF THE ART

In general, automated bug localization approaches can be

divided narrowly into two categories: dynamic and static

approaches. In the dynamic approach, the semantics of the

program and its execution information with test cases, i.e.,

pass/fail execution traces are used. These approaches are divided

into Spectrum based fault localization and Model-based fault

localization. Saha et al.[10] have proposed a model that uses this

approach by using a tool named BLUiR (Bug Localization Using

information Retrieval) which explores source code’s structural

information such as comments, names of classes, methods, and

variables, to improve localization accuracy.

The static approach focuses only on the source code and the

bug reports information. These static approaches can be further

classified into two groups: program analysis based and IR-based.

To localize bugs the program analysis-based approach uses

predefined bug patterns. A model called FindBugs used this

approach was proposed by Hovemeyer et al. [26].

IR or Machine Learning techniques like TF-IDF, LSA, LDA,

VSM, rVSM, and Naive Bayes [27], can be categorized in the

second type of static approach. These approaches perform

Learning-To-Rank IR problem for the bug localization problem.

Rao et al. [6] use the VSM methods for bug localization which

explore the cosine similarity technique between document’s

terms. Youm et al. [14] propose a tool called BLIA (Bug

Localization with Integrated Analysis), they utilize the content

and stack traces in bug reports, structured information of source

files, and source code change histories. In their work, they

combined a method to integrate all analyzed data to increase

localization accuracy. Zhou et al. [16] proposed BugLocator, a

tool that can automatically search for relevant buggy files based

on initial bug reports. This tool uses the revised Vector Space

Model (rVSM) to rank all source code files based on an initial bug

report.

This article proposes a tool called WTBugLoc a new IR

system that ranks buggy files and allows representing textual data

by signals. This new way of presentation will allow later, applying

numerous mathematical tools from the theory of the signal such

as Wavelets Transforms, rarely used nowadays in the field of IR.

3. BACKGROUND

We begin by giving the context of the study by presenting all

concepts related to it (wavelet transform, file preprocessing and

bug localization with Haar transform)

3.1 HAAR WAVELETS TRANSFORM

Haar functions are used from 1910 after the mathematician

Alfred Haar introduced them. The Haar wavelets is one amongst

the earliest samples of what’s is known now as a compact, dyadic,

orthonormal wavelet transform [28] A Haar wavelet is the

simplest type of wavelet, for more detail on wavelets transform

see [29]-[31]. In discrete form, Haar wavelets are associated with

a mathematical process called the Haar transform. The Haar

transform is a prototype for all other wavelet transforms.

This section shows how the Haar transform are often used for

bug localization, and introduces the essential notions related with

the Haar transform, which is developed in section 3.3.

Throughout this work, a vector is mapped as a discrete signal.

A discrete signal is a function of time with values occurring at

discrete instants. Generally, a discrete signal is expressed in the

form (f=f1,f2,…,fN), where N is a positive even integer which is the

length of F. Intuitively, f1, f2,…,fN the values of F are real

numbers. These values are typically measured values of an analog

signal g, measured at the time values t=t1,t2,…,tN,. That is, the

values of F are:

 f1=g(t1), f2=g(t2),…, fN=g(tN) (1)

Like all wavelet transforms, the Haar transform decomposes a

discrete signal into two subsignals of half its length. One

subsignal is a running average or trend; the other subsignal is a

running difference or fluctuation.

First of all, we begin by examining the trend subsignal. The

first trend subsignal a1=(a1,a2,…,a0.5N), for the signal F is

computed by taking a running average in the following way:

S ZOUAIRI AND MK ABDI: INFORMATION RETRIEVAL BUG LOCALIZATION WITH WAVELETS ANALYSIS

2404

Its first value a1, is computed by taking the average of the first

pair of values of
1 20.5(),F f f= + and then multiplying it by 2

that is
()1 2

1
2

f f
a

+
= . Similarly, its next value

()3 4

2
2

f f
a

+
= .

Continuing in this way, all of the values of a1 are produced by

taking averages of successive pairs of values of F, and then

multiplying these averages by 2 .

A precise formula for the values of a1 is

()2 1 2

2

m m

m

f f
a

− +
= (2)

For 1,2,....,0.5m N=

For example, suppose F is defined by eight values, say F=(4,6,

10,12,8,5,5); then its first trend subsignal is

1 (5 2,11 2,7 2,5 2)a = .

The other subsignal is called the first fluctuation (difference).

The first fluctuation of the signal F, which is denoted by d1=(d1,

d2,…,d0.5N), is computed by taking a running difference in the

following way. Its first value d1 is calculated by taking half the

difference of the first pair of values of ()1 20.5F f f= − and

multiplying it by 2 , that is
()1 2

1
2

f f
d

−
= . Likewise, its next

value
()3 4

2
2

f f
d

−
= . So all of the values of d1 are produced

according to the following formula:

()2 1 2

2

m m

m

f f
d

− −
= (3)

For 1,2,....,0.5m N=

For example, for the signal F=(4,6,10,12,8,5,5) considered

above, its first fluctuation d1 is ()2, 2, 2,0− − .

3.1.1 Haar Transform Multiresolution:

The Haar transform is performed in several decompositions

(stages, or levels). The first decomposition is the mapping H1

defined by:

 ()1 1 1H
F a d⎯⎯→ (4)

From a discrete signal F to its first average a1 and its first

difference d1. Then the Haar transform 1-level for de signal

F=(4,6,10,12,8,5,5) is like showed above:

 (4,6,10,12,8,5,5)
1

(5 2,11 2,7 2,5 2 2, 2, 2,0)
H

→ − −

By applying the Eq.(2) and Eq.(3) to each two successive

values we get the following 2-level for de signal F which is

(16,12 6, 2)F = − . Recursively repeating this process, we get the

full decomposition of F as shown in the Table.1

Table.1. Example of the Haar wavelet decomposition.

Level Averages differences

1 (5 2,11 2,7 2,5 2) (2, 2, 2,0)− −

2 (16,12) (-6,2)

3 (14 2) (2 2)

If the length of F is 2PN = (in the showed example 3P =),

we can continue this process up to level P, at which there is one

average and one detail coefficient. Finally the wavelet transform

of F is ()14 2,2 2, 6,2, 2, 2, 2,0− − − , this process is called

multiresolution analysis.

3.2 PROPOSED METHODOLOGY

To use the SWT Eclipse project for the empirical evaluation,

some data preprocessing is needed for both the source code files

and the bug reports, which consists of five steps: files assembling,

corpus creation, indexing, query construction, and retrieval and

ranking. The Fig.1 shows the overall structure of WTBugLoc for

bug localization.

Fig.1. Structure of WTBugLoc

In this section, an example is given to illustrate the IR bug

localization approach. The Table.2 shows a real bug report (ID:

102756) for SWT version 3.1. Once this report is received, the

developer needs to locate relevant files among more than 2000

SWT source files to fix this bug. This bug report (including bug

summary and description) contains many words such as

GtkComboBox, GtkCombo and Combo. However, SWT source

files contain a file called ‘GTK.java’ with a good match between

the bug report and it source code.

Table.2. A bug report for bug id 102756

Bug Details Report

Bug ID 102756

Summary Use GtkComboBox instead of GtkCombo

Status RESOLVED FIXED

Reported 2005-07-05 13:38 EDT, David Graham

Product Platform

Source Code

Files (Document
Collection)

File

Assembling
Indexing

Index

Corpus

Creation

All Corpus

Wavelets Multi-

resolution

decomposition

Compute

source for
each file

Score
Ranked

Files

Wavelets

Coefficient for all
corpus

Query Ranked

Files

Query

Construction

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2405

Component SWT

Version 3.1

Description
Incorrect combo rendering Native combo

rendering

Fixed 2006-06-29 13:48:22 EDT

Fixed files

Eclipse\git\eclipse.platform.swt\bundles\org.ec

lipse.swt\Eclipse SWT

PI\gtk\org\eclipse\swt\internal\gtk\GTK.java

3.2.1 Module Description:

Files Assembling: to optimize the approach, the we looked for all

files with extension java in tree source code and we copied them

in a single directory (location), next step proceed for deleting all

comments from each source code file, doing so will accelerate the

bug finding approach.

• Corpus Creation: by performing word tokenization which is

a helpful tool from Natural Language Processing- for further

detail see [32], a lexical analysis is done for each source code

file and create a vector of lexical tokens. Some tokens, such

as keywords (e.g., int, double, char, etc.), separators,

operators are common to all programs and are removed.

English “stop words” (e.g., ‘a’, ‘the’, etc.), punctuations,

whitespaces, tabulations and newline characters are also

removed, which reduces the amount of converted data

considerably.

• Indexing: After the corpus is created, all the files in the

corpus are indexed by assigning to each file its length

(number of tokens), then a Top-Down index ordering is

applied to the whole collection of SWT source code files.

• Query Construction: Specific tokens are chosen from the

bug report to construct the query vector, for using it to search

for relevant files in the indexed source code corpus. The

vector query is obtained by performing word tokenization

from the bug title and description as same as in the corpus

creation step.

• Retrieval and Ranking: Retrieval and ranking of relevant

buggy files is based on wavelet transform of the query and

each of the files in the corpus, then computing the score for

each file in the corpus. A file in document collection, is

viewed as the bag of words model [33], ordering of the terms

in a document is ignored but the number of occurrences of

each term is material. Applying Haar transform to a file lead

to a vector with components corresponding to each term in

the query. In this work, the step of computing the score is

inspired from section 6.3.3 of [33]. The score of a file is the

sum, over all vector components resulted from the Haar

transform divided by the length of the vector.

3.3 BUG LOCALIZATION WITH HAAR WAVELET

TRANSFORM

This section describes the algorithm to find the most relevant

files according to the query generated by a bug report.

Pseudo Algorithm

Step 1: Create token vector for each file

For j=1, m compute vect_Filej[w1, w2,..., wi,..., wn], where wi is a

token in Filej

Step 2: Create pertinence vector for vector query’s tokens for

each file

For j=1,m

compute vect_ReqFilej[Tfwq1, Tfwq2,..,Tfwqi,..,Tfwqn], where:

0i

i
wq

Tf if w query tokensvector
Tf

else

=

where Tf - Term frequency of query token wqi in Filej

Step 3: Apply multi-resolution Haar wavelet transform

For j=1, m

Compute Haar_Transform(vect_ReqFilej) using Eq.(2) and

Eq.(3)

Step 4: Compute the score for each file

For j=1, m

 Score_Filej= |Haar_Transform(Vect_ReqFilej)Components|

In this paper, Python 3.6 is employed to create WTBugLoc.

The language has many programming constructs that help in

building both large scale and small-scale software. It has a broad

range of ordinary library and toolkit which may be used for a

spread of purpose. NLTK (Natural Language Toolkit), this toolkit

is one in every of the foremost powerful NLP (Natural Language

Processing) libraries, which contains packages to make machines

understand human language and reply thereto with an appropriate

response. Tokenization, Stemming, Lemmatization, Punctuation,

Character count, word count is a number of these packages.

PyWavelets is free and Open Source wavelet transform software

for the Python programming language.

4. RESULTS AND DISCUSSION

This section describes the evaluation results of WTBugLoc

while performing bug localization on the 1932 files of SWT

eclipse project, Table.3 shows the percentage of Top N, with both

the Haar Wavelets Transform (WT) and the VSM.

Table.3. Ranking relevant files based on WT and VSM on SWT

eclipse project

Models Top 5 % Top 10 % Top 30 %

WT 16,66 41,66 83,33

VSM 0 0 16,66

As shown in Table.3, with WTBugLoc, top 5 and top 10 are

considerably higher than the VSM technique, therefore, in this

approach a significant number of relevant files are highlighted in

order to help the team project to find the buggy files and next to

eliminate occurred bug.

As described in Table.2, the bug report ID 102756 concerns

the file GTK.java. The latter is ranked in position one in the list

of relevant files (Fig.2).

Moreover, with our tool WTBugLoc as we can see in Fig.3,

the position of the relevant file according to each bug report

treated is less than 50. This ensures a time and cost optimization

in software maintaining project.

S ZOUAIRI AND MK ABDI: INFORMATION RETRIEVAL BUG LOCALIZATION WITH WAVELETS ANALYSIS

2406

Fig.2. Top ranking scored relevant files based on bug report ID

102756

Fig.3. Top ranking scored relevant files beside each bug using

WT and VSM

RQ: what is the effectiveness of using wavelets transform for

bug localization?

The Table.3 shows the results of bug localization using the

VSM and the proposed WT methods. The experimental results

show that the proposed WT method outperforms the VSM

method. For example, for Eclipse 3.1, we find that (16.66%) of

top 5 and (41.66%) of top 10 and (83.33%) of top 30 whose

relevant source file are returned using the proposed WT method.

While in VSM method, those numbers are (0%), (0%) and

(16.66%) respectively.

5. CONCLUSION

During the life cycle of software, many bugs appear which

could be tedious and costly work. Once a new bug report comes,

the team project needs to know which files should be modified to

fix the bug. However, it requires much time to find the files to be

altered manually based on the original bug reports, particularly

for a large software project.

This contribution proposes an Information Retrieval method

named WTBugLoc for locating relevant source code files based

on initial bug reports. The tool uses Wavelets Transforms,

especially the Haar Transform, a technique largely used in signal

processing, well unknown nowadays in the field of the IR. The

evaluation results on the SWT eclipse project shows that

WTBugLoc can perform bug localization effectively and it shows

that this tool outperforms other methods such as those based on

VSM. In the future, further works will explore the usefulness of

other Wavelets Transform in IR, to improve the performance of

this theory in the field of data mining and bug localization.

REFERENCES

[1] E.J. Braude and M.E. Bernstein, “Software Engineering:

Modern Approaches”, Waveland Press, 2016.

[2] Eclipse, Available at https://bugs.eclipse.org/bugs/.

[3] S.S. Murtaza, “An Empirical Study on the use of Mutant

Traces for Diagnosis of Faults in Deployed Systems”,

Journal of Systems and Software, Vol. 90, pp. 29-44, 2014.

[4] K.H. Chang, V. Bertacco and I.L. Markov, “Simulation-

Based Bug Trace Minimization with BMC-based

Refinement”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 26, No. 1,

pp. 152-165, 2006.

[5] M.M. Rahman and C.K. Roy, “Improving IR-based Bug

Localization with Context-Aware Query Reformulation”,

Proceedings of ACM Joint Meeting on European Software

Engineering, pp. 621-632, 2019.

[6] S. Rao and A. Kak, “Retrieval from Software Libraries for

Bug Localization: A Comparative Study of Generic and

Composite Text Models”, Proceedings of 8th International

Conference on Mining Software Repositories, pp. 1-13,

2011.

[7] T.D.B. Le, R.J. Oentaryo and D. Lo, “Information Retrieval

and Spectrum based Bug Localization: Better Together”,

Proceedings of Joint Meeting on Foundations of Software

Engineering, pp. 23-29, 2015.

[8] B. Sisman and A.C. Kak, “Incorporating Version Histories

in Information Retrieval based Bug Localization”,

Proceedings of 9th IEEE Working Conference on Mining

Software Repositories, pp. 1-12, 2012.

[9] S. Wang and D. Lo, “Version History, Similar Report, and

Structure: Putting them Together for Improved Bug

Localization”, Proceedings of International Conference on

Program Comprehension, pp. 1-5, 2014.

[10] R.K. Saha, “Improving Bug Localization using Structured

Information Retrieval”, Proceedings of IEEE/ACM

International Conference on Automated Software

Engineering, pp. 1-12, 2013.

[11] Z. Shi, “Comparing Learning to Rank Techniques in Hybrid

Bug Localization”, Applied Soft Computing, Vol. 62, pp.

636-648, 2018.

[12] C.P. Wong, “Boosting Bug-Report-Oriented Fault

Localization with Segmentation and Stack-Trace Analysis”,

Proceedings of IEEE International Conference on Software

Maintenance and Evolution, pp. 1-12, 2014.

[13] Y. Yang, “An Empirical Study on Dependence Clusters for

Effort-Aware Fault-Proneness Prediction”, Proceedings of

IEEE/ACM International Conference on Automated

Software Engineering, pp. 1-8, 2016.

[14] K.C. Youm, “Bug Localization based on Code Change

Histories and Bug Reports”, Proceedings of Asia-Pacific

Conference on Software Engineering, pp. 1-13, 2015.

[15] S. Zhang and C. Zhang, “Software Bug Localization with

Markov Logic”, Proceedings of International Conference

on Software Engineering, pp. 321-334, 2014.

[16] J. Zhou, H. Zhang and D. Lo, “Where Should the Bugs be

Fixed? more Accurate Information Retrieval-based Bug

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2407

Localization based on Bug Reports”, Proceedings of

International Conference on Software Engineering, pp. 225-

229, 2012.

[17] K. Ramamohanarao and M. Palaniswami, “A Novel

Document Retrieval method using the Discrete Wavelet

Transform”, ACM Transactions on Information Systems,

Vol. 23, No. 3, pp. 267-298, 2005.

[18] J.S. Walker, “A Primer on Wavelets and Their Scientific

Applications”, CRC Press, 2008.

[19] S.F. Stankovic Radomir and J. Bogdan, “The Haar Wavelet

Transform: its Status and Achievements”, Computers and

Electrical Engineering, Vol. 29, pp. 25-44, 2003.

[20] S. Karus and K. Kilgi, “Code Clone Detection using

Wavelets”, Proceedings of International Conference on

Software Clones, pp. 1-14, 2015.

[21] A. Krishnan, K.B. Li and P. Issac, “Rapid Detection of

Conserved Regions in Protein Sequences using Wavelets”,

In Silico Biology, Vol. 4, No. 2, pp. 133-148, 2004.

[22] M.K. Jeong, “Wavelet-Based Data Reduction Techniques

for Process Fault Detection”, Technometrics, Vol. 48, pp.

26-48, 2006.

[23] M.Y. Dahab, M. Kamel and S. Alnofaie, “An Empirical

Study of Documents Information Retrieval using DWT”,

Proceedings of International Conference on Intelligent

Natural Language Processing: Trends and Applications, pp.

251-264, 2018.

[24] O. Maimon and L. Rokach, “Data Mining and Knowledge

Discovery”, Springer, 2005.

[25] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy”, ACM

SIGPLAN Notices, Vol. 39, No. 12, pp. 92-106, 2004.

[26] R. Khoury and C. Drummond, “Advances in Artificial

Intelligence”, Springer, 2016.

[27] D.F Walnut, “An Introduction to Wavelet Analysis”,

Springer, 2013.

[28] Z. Abba and P. Rain, “A Study on Applications of Wavelets

to Data Mining”, International Journal of Applied

Engineering Research, Vol. 13, No. 12, pp. 10886-10896,

2018.

[29] A. Graps, “An Introduction to Wavelets”, IEEE Computing

in Science and Engineering, Vol. 2, No. 2, pp. 50-61, 1995.

[30] C.D. Manning and H. Schutze, “Foundations of Statistical

Natural Language Processing”, MIT Press, 1999.

[31] C. Manning, P. Raghavan and H. Schutze, “Introduction to

Information Retrieval”, Cambridge University Press, 2008.

