
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04
DOI: 10.21917/ijsc.2021.0350

2449

REPLICATION AND MIGRATION COST MINIMIZATION OF CLOUD DATA

CENTER

T. Arunambika and P. Senthil Vadivu
Department of Computer Science, Bharathiar University, India

Abstract

Cloud Storage Providers (CSPs) provide geography features of an area

data stores offering numerous classes for storage accompanied by

various costs. One significant problem faced by cloud consumers is how

to utilize these storage classes to deliver a device with the time-varying

workload on its objects at a minimal price. This price includes the price

of resident (for example, storage, put and get prices) and the possible

migration price (for example, network price). This paper proposes the

Replication and Migration Cost Minimization (RMCM) algorithm in

Green Cloud Computing to tackle this issue. This algorithm is using

VM’s direct migration method, which could decrease data centre prices

and power usage by combining virtual resources. To decrease the price

of data-placement for devices accompanied by varying workloads over

time, developers must make optimal use of the price variation between

storage and network services across multiple CSPs. This paper

proposes an optimal cost-effective technique (OCET) for copying and

migrating data into cloud data centres accompanied by numerous

storage classes to attain this aim. This work goal to achieve price

reduction in the load assign procedures in multiple data centre

environments where virtual machines allocated to a provided data

center taking into account energy price differences and the availability

of local renewable power generation. The simulation outcomes

demonstrate that the RMCM and OCET algorithm could reduce a

replication and migration cost and decrease the power consumption of

data centre in green cloud computing efficiently.

Keywords:

Replication Cost, Migration Cost, Cost Minimization, Virtual Machine

Migration, Cloud Data Centre

1. INTRODUCTION

Google Cloud Storage (GCS), Amazon S3 with Microsoft

Azure like most important Cloud Service Providers (CSP) provide

file, block, and blob, and so on for storage accompanied by

various costs. All CSP offers application programming interface

(API) instructions to store recover and erase information via

services of the network that inflicts out- and in-network price in

an appliance. On most important CSPs, price of in-network is

without charge, when out- network price is charge and might be

dissimilar for CSPs. Furthermore, information transmitting across

data centres (DCs) of a provider in various areas might price on a

low fee (hereafter, it described decreased out- network price).

This paper aspires on enhancing price which comprises of resident

price with probable network price (for example, migration price)

The price of storage data managing is affected by the

predictable amount of work of an object. Here is a challenging

statistical technique amid the object load of work and the nature

of an object, as experimental in an online social network (OSN)

[1] with delay responsive multimedia substance used using

mobiles [2] [3]. An object may be a tweet, a photo, a video, or still

incorporation of these objects which distribute the same write

with reading usage rate pattern. An object task load decided

through how frequently it is written (rate of Put access) with

reading (rate of Get access).

The rate of Get access for the object upload to OSNs is

frequently too high in an initial life of an object, along with such

an object supposed to be in hot-spot status and read-intensive. On

the contrary, like time passes, an object rate of Get access is

decreased, in addition to it goes to the cold-spot position wherever

it believed like storage serious. A related fashion occurs for the

object Put workload; namely, the rate of Put access reduces like

time developments. Therefore, OSNs use multiple networks than

storage in an initial life of an object, with like time passes; they

employ storage over the network. So, (i) among the specified time

changeable workloads in objects, with (ii) storage class provided

through various CSPs accompanied by various costs, obtaining a

not expensive network with storage resource at the suitable time

of an object life span acts an essential character in the price

enhancement of a data organization across CSPs.

Cloud consumers are necessary to respond two queries: (i)

which class of storage from which provider must host an object

(for example, placing), (ii) when an object must perhaps migrate

from the storage class to one more possessed through the same or

various providers. Lately, numerous analysis gets the benefit of

cost variations of various possessions in inter- and intra-CSPs,

where price could optimize through dealings off storage vs

calculate [4], cache vs storage [5] [6], and price enhancement of

information dispersal across CSPs [7] [8].

None of these analyses examined a tradeoff among storage

with network price to enhance the price of migration with

replication information across numerous providers. Also, these

methods a lot depend on task load forecast. It is not forever

possible with might guide to incorrect outcomes, particularly in

the subsequent cases: (i) when forecasting approaches used to

forecast long-term task load in the upcoming (for example, one

year), (ii) for establishing industries which contain restricted or

no the past of requiring information, in addition to (iii) when task

loads are extraordinarily changeable and non-stationary.

This paper proposes the Replication and Migration Cost

Minimization (RMCM) algorithm reduce the costs and power

usage of a data centre by combining all virtual resources.

Furthermore, this paper presented an Optimal Cost-Effective

Technique (OCET) performed by cloud service providers mainly

focuses on minimizing the cost to maintain all physical machines.

The cost minimization typically achieved by reducing electricity

consumption. A proposed approach involves dynamically halting

physical machines and virtual machine migration. Conversely, for

cost optimization executed by cloud consumers is to choose the

correct cost-efficient CSP selection.

The remaining section of the work prepared as follows: the

related work about replication and migration cost minimization

reviewed in Section 2. The process of Replication and Migration

Cost Minimization (RMCM) algorithm described in Section 3.

T ARUNAMBIKA AND P SENTHIL VADIVU: REPLICATION AND MIGRATION COST MINIMIZATION OF CLOUD DATA CENTER

2450

The process of Optimal Cost-Effective Technique (OCET)

algorithm explained in Section 4. The outcomes of experiments

are conversed in Section 5, after that Section 6, which completes

the paper.

2. RELATED WORK

Fahrenheit et al. [9] suggested an approach of dynamic

incorporation of virtual resources using an ant colony system

(ACS), also known as the ACS-VMC approach. This algorithm

turned the virtual resource incorporation issue within a

multipurpose enhancement issue. Objective purposes of the

multipurpose enhancement issue include reducing power usage,

reducing the quantity of VM displacements, and keep away from

SLA violations. Furthermore, by the PM load, the authors

separated the PMs within four groups: Punder, Pover, Pover, Pnormal.

Sohrabi et al. [10] presented the Bayesian Migration Heuristic

(BMH) system. Furthermore, the BMH system is a heuristic

resource incorporation system using Bayesian network. The BMH

system developed the Migrant VM suite using estimates of

Bayesian. Their outcomes demonstrated that BMH could

successfully decrease the power usage of a data centre.

Wen et al. [11] suggested a Virtual Resource Dynamic

Integration (VRDI) technique for reducing energy consumption

in cloud computing. This method proposed minimum migration

policy for VM selection and genetic algorithm for VM placement

and migration. They concluded that the VRDI method reduces

energy consumption efficiency in cloud computing.

Jiayin Li et al. [12] presented an adaptive resource allocation

mechanism for the cloud technique and controllable functions to

adapt resource allocation using updated real work execution.

Fixed task planning for resource allocation uses the adaptive list

scheduling (ALS) and adaptive Min-Min scheduling (AMMS)

algorithms for task planning. An online adaptation process

utilized often to re-evaluate sustainable resource allocation and a

prior event. At each reassessment process, planners recalculate

the power usage of their accurately submitted works.

Yazir et al. [13] present twice, in which the earliest scattered

architecture modified. Resource management separated into

autonomous tasks, all of which is expert by autonomous Node

Agents (NAs) in a rotation of three processes: (1) VM Placement,

VM by finding the suitable PM, which is capable of executing

provided VM; (2) the total resources that the hosted VM monitors;

(3) If local shelter is impossible, one VM will transfer to another

PM should be relocated to, and hired during VM selection [20].

Sahar et al. [14] presented a genetic algorithm for assigning

works efficiently to VMs, which allot resources using existing

resources and power usage of all VM. Experimental outcomes

demonstrate that the presented algorithm provides the best

outcomes than the better-fit reduction and initial fit reduction

algorithms. This technique should be enhanced with other

techniques, besides consider the QoS parameters in cloud

surroundings.

Quan et al. [15] presented an efficient power-proficient

resource allocation mechanism named T-Alloc. The T-Alloc

mechanism is focused on conventional data centres and is a multi-

core processor with a single-core processor. Furthermore, along

with the VM load, the T-Alloc mechanism adjusts the processor

number energetically to decrease power usage.

Anton et al. [16] proposed the modified best Fit decreasing

(MBFD) mechanism for placement of VM. Initially, the MBFD

algorithm organized VMs in declining order of CPU usage.

Furthermore, the MBFD mechanism moved VMs by merging the

power usage of PMs and QoS of VMs.

Bobroff et al. [17] utilized a gateway to CPU usage. Once the

CPU utility reaches the threshold, the resource incorporation plan

induced. The method demonstrated a 30%reduction in data centre

resource usage.

3. REPLICATION AND MIGRATION COST

MINIMIZATION ALGORITHM

This algorithm classified into three sub-algorithms. The first

sub-algorithm is RMCM-PM Selection algorithm. This algorithm

discovers a group of PMs, which must be incorporated, using the

load patterns and the equivalent thresholds of PMs. The second

sub-algorithm is RMCM-VM Selection algorithm. This algorithm

discovers a set of VMs that organized on the chosen PMs using

the pattern of load and the connection among the PM load and the

VM load. The last sub-algorithm is RMCM-VM Placement and

Migration Algorithm. For all VM in a chosen set of VM, this

algorithm discovers the novel PM, which could fulfil its resource

necessities.

A Replication and Migration Cost Minimization algorithm

minimizes the power usage of a data centre using reduces direct

relocation of Virtual Machines and increases the number of

closing PMs. Direct migration could move a VM from one PM to

a new not affecting a standard service. Based on the VM direct

relocation, this algorithm integrates virtual resources with shut the

inactive PMs to decrease power utilization. Algorithm 1 explains

the proposed RUFES algorithm.

Algorithm 1: Replication and Migration Cost Minimization

(RMCM) algorithm

Input: Datacenter (DC), Virtual Machine Monitor (VMM), PM

Set (pmList), VM Set (vmList)

Output: Energy saving based on resource integration

Step 1: VMM collect data from the DC

pmList = {PM1, PM2,…, PMn}

PM1 has Physical Machine 1’s CPU and Memory Utilization.

Here,

PM1 = {PM1
cpu, PM1

mem}, Similarly PM2, PM3,...

Step 2: CPU and Memory Utilization may be different in each

PM.

a. To ensure the accuracy of the RMCM, first normalize

it using Normalization.

b. Normalization means CPU and Memory values could

be transmitted to a data with no physical dimension

within [0, 1]

Step 3: RMCM-PM Selection Algorithm: Along with the PM’s

resource usage and PM’s predefined thresholds

associated with it, a group of PMs should be integrated

resources to reduce power usage

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2451

Step 4: RMCM-VM Selection Algorithm: Along with the

resource usage of PMs in the prior phase, two migration

schemas are regarded. In the initial schema, each VMs

organized on the PM must be moved. In the second

schema, only a portion of the VMs need to be moved.

Step 5: RMCM-VM Placement and Migration Algorithm: Along

with the outcomes of the RMCM-VM selection

algorithm, for the VM that require to be moved, the RUF

based VM placement algorithm selects another PM to

migrate the VMs.

Step 6: The PM which has inferior threshold resource usage (≤

Loweri) could be shut down.

First, the virtual machine monitor (VMM) element utilized to

detect and gather information from a data centre (Step 1). This

data contains PM Set. Furthermore, this set has each PMs CPU

and Memory Utilization values. Finally, these values have

different dimensions. So, first, normalize it into dimensionless

data in the interval 0 to 1 (Step 2). After normalization, this

algorithm applies RMCM-PM Selection (Step 3) which explained

in section 1. It selects suitable PMs, which has the resource

utilization less than a threshold value or greater than the threshold

value. Followed by, this algorithm applies RMCM-VM Selection

(Step 4) which explained in section 2. It selects suitable VMs from

selected PMs Set. Furthermore, this algorithm applies RMCM-

VM placement and Migration (Step 5), which explained in section

3. After VM migration which PM has less resource utilization, it

should power off to reduce power usage and cost in a datacenter.

3.1 RMCM-PM SELECTION ALGORITHMS

 Along with the resource usage of PMs with the equivalent

predefined thresholds of a PMs, this algorithm generates a group

of PMs which must be incorporated resources to decrease power

usage. Algorithm 2 presents an RMCM-PM Selection algorithm.

For PMi, the load model is indicated based on Ui = {Ui
cpu, Ui

mem}.

This algorithm denotes the low threshold of resource usage based

on Loweri = {Loweri
cpu, Loweri

mem} and a higher threshold of

resource usage based on Upperi = {Upperi
cpu,Upperi

mem}. If the

connection between resource usage and an inferior threshold of

the PM satisfy,

 (Ui
cpu < Loweri

cpu) && (Ui
mem < Loweri

mem) (1)

It is essential to combine the virtual resource of a PM. This

algorithm suggests every VMs organized on a PM to a new PM

should be migrated, with a PM should group to an inactive or

power-off condition. This algorithm denotes a combination

executed in this situation based on allList. Furthermore, when a

PM resource usage is near to a full load, it might disturb the VM

performance. If a connection among resource usage and an upper

threshold of a PM satisfy,

 (Ui
cpu ≥ Upperi

cpu) && (Ui
mem ≥ Upperi

mem) (2)

Algorithm 2: RMCM-PM Selection

Input: PM List (pmList), Lower Threshold Resource Utilization

(Loweri), Upper Threshold Resource Utilization (Upperi)

Output: allList, partList (PM Set to be integrated), otherPMList

allList={}, partList={},otherPMList={};

For each PMi in pmList do

{

Case 1: PMi Load Pattern → Ui = {Ui
cpu, Ui

mem}

Lower Threshold Resource Utilization → Loweri = {Loweri
cpu,

Loweri
mem}

IF Ui
cpu < Loweri

cpu) && (Ui
mem < Loweri

mem)

{

// PMi Selected

// move around entire VMs positioned on a PMi to a new PM

// PMi should be put to the inactive or power off status

allList = allList PMi

}

Case 2: PMi Load Pattern → Ui = {Ui
cpu, Ui

mem}

Upper Threshold Resource Utilization → Upperi =

{Upperi
cpu,Upperi

mem}

IF (Ui
cpu ≥ Upperi

cpu) && (Ui
mem ≥ Upperi

mem)

(Uicpu ≥ Uppericpu) andand (Uimem ≥ Upperimem)

{

// PMi Selected

// migrate only a part of the VMs positioned on the PMi to a

new PM

// (If memory is filled to capacity, it would disturb the QoS of

a VMs positioned on a PMi)

// (It means, should be migrate overloaded VMs positioned on

a PMi to a new PM)

partList = partList PMi

}

Else if PMi is not satisfied in both cases, it should be added in

otherPMList.

{

otherPMList = otherPMList PMi

}

}

End FOR

Return allList and partList to RMCM-VM Selection Algorithm

It is essential to incorporate a virtual resource of a PM.

Because of one of the Ui
cpu or Ui

mem is upper than a higher

threshold, it means memory-filled; it would disturb a QoS of a

VMs positioned in a PM. This algorithm suggests merely the

fraction of a VMs to new PMs should be migrated in a data centre

to decrease a resource usage of a PM. This algorithm denotes the

incorporation executed in this situation based on partList. If PM is

not satisfied in both cases, it should add in otherPMList.

3.2 RMCM-VM SELECTION ALGORITHM

Along with a result obtained by a previous algorithm, two

migration situations considered. Followed by, in an initial

situation, entire VMs positioned in a PM must be moved. In the

second situation, merely a fraction of VMs must migrate.

Algorithm 3 explains the RMCM-VM Selection. For an allList

case, all of VMs require to move out of a PM. A PM requires

adjusting on an inactive condition. It all VMs are added in

selectedVMList (Step 5). For a partList situation, it is essential to

choose a VMs set to move. This algorithm first calculates the

T ARUNAMBIKA AND P SENTHIL VADIVU: REPLICATION AND MIGRATION COST MINIMIZATION OF CLOUD DATA CENTER

2452

Euclidean distance among the PM’s load pattern with VM’s load

pattern.

Euclidean distance (dij) = 1/√((Uicpu-Ujcpu)2) + 1/√ ((Uimem-

Ujmem)2) (3)

Keep in mind that over large distances, the PM’s effect

dominates. Step 16-30 shows how to select the VMs which

consume more resources. Through merely transmitting VMs that

use numerous resources, the RUFES-VM chosen algorithm could

efficiently decrease the quantity of VMs to migrate.

Algorithm 3: RMCM-VM Selection

Input: allList, partList, Upper Threshold Resource Utilization

(Upperi)

Output: selectedVMList (VM Set to be migrated)

Upper Threshold Resource Utilization → Upperi = {Upperi
cpu,

Upperi
mem}

selectedVMList={};

For each PMj in allList do

X = get All VM’s List deployed in PMj

selectedVMList = selectedVMList X

End For

For each PMj in partList do

PMj Load Pattern → Uj = {Uj
cpu,Uj

mem}

X = get All VM’s List deployed in PMj

D={};

For each VMi in X do

VMi Load Pattern → Ui = {Ui
cpu,Ui

mem}

Find Euclidean distance

dij =

() ()
2 2

1 1

cpu cpu mem mem
i j i jU U U U

+

− −

D = D dij

End For

newVMList = Sort D using ascending order

For each VMi in newVMList do

Remove VMi from PMj

selectedVMList = selectedVMList VMi

Calculate current Load Pattern of PMj → Uj = {Uj
cpu,Uj

mem}

If(Uj
cpu ≥ Upperi

cpu) && (Uj
mem ≥ Upperi

mem)

{

continue;

}

else

{

break;

}

End if

End For

End For

Return selectedVMList to RUF based VM Placement and

Migration Algorithm

3.3 RMCM-VM PLACEMENT AND MIGRATION

Along with results of an RMCM-VM selection algorithm, for

VMs which require migrating, an RMCM-VM placement

algorithm selects another PM to migrate the VMs. Algorithm 4

presents RMCM-VM placement and migration algorithm. This

algorithm calculates the Resource Utilization Factor (RUF)

among the VM’s load model (from selectedVMList) and PM’s

load model (from otherPMList).

 RUF = [0.5(Uj
cpu + Ui

cpu)] + [0.5(Uj
mem + Ui

mem)] (4)

This algorithm suggests which PM has the highest Resource

Utilization Factor value that is suitable for VM migration. For

Example, Let VM1 = (5 MIPS, 6 MB) is waiting at the queue for

the position. Let, there is 3 PMs are available PM1 = (8 MIPS, 9

MB), PM2 = (6 MIPS, 7 MB) and PM3 = (9 MIPS, 10 MB). After

that, this algorithm calculates RUF values,

PM1=(8MIPS,9MB) → (8+5)/2+(9+6)/2 = 14

PM2=(6MIPS,7MB) → (6+5)/2+(7+6)/2 = 12

PM3=(9MIPS,10MB) → (9+5)/2+(10+6)/2 = 15

Here, the RUF value of PM3 is high. Therefore, the suitable

PM is PM3.

Algorithm 4: RMCM-VM Placement and Migration

Input: selectedVMList (group of VMs are waiting at a queue for

position), otherPMList (set of suitable PMs for placement), allList

Output: RUF based VM Placement and Migration

For each VMi in selectedVMList do

VMi Load Pattern → Uj = {Ui
cpu,Ui

mem}

rufList = {}

For each PMj in otherPMList do

PMj Load Pattern → Uj = {Uj
cpu,Uj

mem}

//check PMj is sufficient for VMi placement

If(!((Ui
cpu ≥ Uj

cpu) && (Ui
mem ≥ Uj

mem)))

{//Resource Utilization Factor Calculation

RUF = [0.5(Uj
cpu + Ui

cpu)] + [0.5(Uj
mem + Ui

mem)]

rufList = rufList RUF with PMj

}

End For

if(!(rufList.isEmpty()))

{

Sort RUF using Descending Order in rufList

bestPM = PM has Highest RUF value

Migrate VMi to bestPM

Remove VMi from selectedVMList

}

else

{

For each PMj in allList do

PMj Load Pattern → Uj = {Uj
cpu,Uj

mem}

//check PMj is sufficient for VMi placement

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2453

If(!((Ui
cpu ≥ Uj

cpu) && (Ui
mem ≥ Uj

mem)))

{

Migrate VMi to PMj

Remove VMi from selectedVMList

break;

}

End For

}

End For

4. OPTIMAL COST-EFFECTIVE TECHNIQUE

In this section, we present Optimal Cost-Effective Technique

(OCET) for replication and migration of information at cloud data

centres with multiple storage classes. OCET is performed by

cloud service providers mainly focuses on minimizing the cost to

maintain all physical machines. The cost minimization typically

achieved by reducing electricity consumption. A proposed

approach involves dynamically halting physical machines and

virtual machine migration. Conversely, for cost optimization

executed by cloud consumers is to choose the correct cost-

efficient CSP selection. The Fig.1 shows cost optimization based

on OCET.

Fig.1. Cost Optimization based on OCET

Algorithm 5: Optimal Cost-Effective Technique

Input: Virtual Machine Monitor (VMM), All Available

Datacenters (AADs), Datacenter (DC), PM Set (pmList), VM Set

(vmList), Energy Threshold (ET)

Output: Cost effective data center (bestDCId) for storage

String bestDCId="";

Double minCost=0;

For datacenter DC from AADs

{

VMM collect data from the DC

pmList = {PM1, PM2,…, PMn}

PM1 = {PM1
cpu, PM1

mem}, Similarly PM2, PM3,...

Normalize CPU

Normalize Memory Utilization.

//Normalization alters CPU and Memory to the data without

dimension in the range [0, 1]

}

Based on the resource usage of PMs with an equivalent pre-

defined

Reduce power usage by proper incorporation of PM thresholds,

where a group of PMs selected

Measure the following migration situations based on the resource

usage of a PMs at a previous step,

Move entire VMs positioned in a PM must be moved in an initial

situation

Move merely a fraction of the VMs must be moved in the second

situation

OCET-VM Replication and Migration: Based on the results of the

OCET-VM selection, for VMs which require to be moved, a VM

placement technique selects another PM to

Migrate the VMs

The PM which has Inferior Threshold Resource Usage (≤ Loweri)

could be shut down.

Double Energy = calculateEnergyConsumption (pmList, vmList,

migrationCount);

Double Cost = energy * ET;

if (minCost > cost)

{

minCost = cost;

bestDCId = datacenterId;

}

Fig.2. OCET system architecture

Furthermore, Algorithm 5 shows the optimal cost-effective

technique. First, the virtual machine monitor (VMM) collects all

data centre Metadata. It utilized to watch and gather information

from a data centre (Step 5). This data contains PM Set.

Consumer Side

CSP Side

Cost Efficient CSP

Selection

VM Migration

Turn off unused

PMs
Consumer

CSP 1

CSP 2

CSP 3

Minimum

Cost CSP
Selection

OCET

VMM

VMM

VMM

VMM

VMM

VMM

VMM

VMM

VMM

ON

OFF

T ARUNAMBIKA AND P SENTHIL VADIVU: REPLICATION AND MIGRATION COST MINIMIZATION OF CLOUD DATA CENTER

2454

Furthermore, this set has each PMs CPU and Memory Utilization

values. These values have different dimensions. So, first,

normalize it into dimensionless data in the interval 0 to 1 (Step 6).

After normalization, this algorithm applies OCET-PM Selection

(Step 7). It selects suitable PMs, which has the resource utilization

less than a threshold value or greater than the threshold value.

Followed by, this algorithm applies OCET-VM Selection (Step

8). It selects suitable VMs from selected PMs Set. Furthermore,

this algorithm applies to OCET-VM placement and Migration

(Step 9). After VM migration which PM has less resource

utilization, it should power off to reduce energy consumption and

cost in the datacenter. Now the customer can choose less cost

consumption datacenter as the best datacenter (Step 16). The Fig.2

shows the proposed OCET architecture.

5. RESULTS AND DISCUSSIONS

To confirm the efficiency of the proposed Optimal Cloud

Service Provider Selection Algorithm and execute a vast number

of frequent experiments CloudSim toolkit [18], to simulate the

experimentation used. The CloudSim permits its user to generate

cloud simulation including cloud initialization, datacenter,

physical machine, virtual machine generation, datacenter

selection, VM migration and task scheduling etc. The extended

mechanism could give execution time and statistics of a

simulation. Furthermore, the CloudSim could further simulate the

optimal data centre selection. Based on the CloudSim toolkit, this

work generated a data centre consisting of 100 physical machines.

It contains two kinds of PMs, that is, the IBM X3550 and the HP

ProLiant ML110 G5. There are 5 to 20 VMs which contain

various load modes in every PM. Furthermore, this work set the

Lower and Upper Threshold Resource Utilizations,

Loweri = {Loweri
cpu, Loweri

mem} = {0.30, 0.30}

Upperi = {Upperi
cpu, Upperi

mem} = {0.60, 0.60}

 Followed by, four existing algorithms used for comparison,

namely FFA [19], ACSVMC [9], BMH [10], and VRDI [11].

First, this work compares existing algorithms with the proposed

RMCM algorithm based on the whole power usage of a

datacenter. Under a situation of containing a similar quantity of

VMs, an FFA [19], ACS-VMC [9], BMH [10], and VRDI [11]

algorithms compared with the proposed RMCM algorithm. The

Table.1 shows the comparison of energy consumption between

different VMs.

Table.1. Energy consumption comparison

Algorithm
Number of VMs

200 400 600 800 1000

FFA 36 38 37 36 36.5

ACS-VMC 22 26 27 30.5 30

BMH 22.5 23.5 27.5 31 31

VRDI 20 20.5 23.9 27.8 30.5

RMCM 12.24 172 23.784 28.024 30.096

Compared with existing algorithms, Table.1 shows the

proposed RMCM algorithm consumes less energy. Secondly, this

work compares the three algorithms with the proposed RMCM

algorithm based on a quantity of moved VMs. The procedure of

movement of virtual machines would consume power which

might affect a QoS of cloud appliances. Therefore, it is necessary

to decrease the quantity of VMs to migrate. The Table.1 shows

the results of VM migration count for the three algorithms with

the proposed RMCM algorithm.

Table.2. Comparison of a quantity of VMs to moved

Algorithm
Number of VMs

200 400 600 800 1000

ACS-VMC 160 260 360 370 400

BMH 162 290 350 400 450

VRDI 163 300 390 450 440

RMCM 138 151 310 254 193

Compared with existing algorithms, Table.2 shows the

proposed RMCM algorithm migrate a minimum number of VMs.

So, it saves a lot of energy in datacenter. Further, Table.3 shows

the number of PMs which shut down while utilizing the ACS-

VMC [9], BMH [10], and VRDI with proposed RMCM

algorithm.

Table.3. Comparison of an amount of shut downed PMs

Algorithm
Number of VMs

200 400 600 800 1000

ACS-VMC 90 79 62 59 39

BMH 90 70 60 51 42

VRDI 90 84 71 63 52

RMCM 94 90 73 72 59

The Fig.5 shows a number of PMs which shut downed while

based on the ACS-VMC [9], BMH [10], and VRDI with proposed

RMCM algorithm. As stated above, a reason for resource

incorporation of a datacenter is to transmit VMs to shut down a

few PMs that contain low usage to enhance the power competence

of a datacenter. Thus, a lot of shuts downed PMs, a lot of is an

efficiency of the algorithm.

Compared with existing algorithms, Table.3 shows the

proposed RMCM algorithm closed more the number of PMs. So,

it saves a lot of energy in datacenter. To check the efficiency of a

presented optimal cost-effective technique (OCET) algorithm,

and execute the massive amount of repetitive experiments, java

used for simulation. This section shows OCET minimum cost

CSP selection, VM migration and PM turn off results. This

experiment takes three cloud service providers, and each has 100

physical machines and 200 virtual machines. After applied the

OCET algorithm, results noted. The Table.4 shows the total no of

virtual machines migrated results.

Table.4. Total No of VMs migrated results

CSP ID VMs to be migrated

CSP1 125

CSP2 145

CSP3 131

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2021, VOLUME: 11, ISSUE: 04

2455

The Table.4 concludes CSP 1 migrate few numbers of VMs

compared with others. So, it may be consuming less energy.

Further, Table.5 shows total no of hosts powered off results.

Table.5. Total No of Hosts Powered Off results

CSP ID Hosts Powered Off

CSP1 94

CSP2 94

CSP3 90

The Table.5 concludes CSP 1 powered off a lot of Hosts

compared with others. The Table.6 shows energy consumption

results. The Table.6 concludes CSP 1 consumes less energy

compared with others. The Table.7 shows the replication and

migration cost of three CSPs.

Table.6. Energy Consumption results

CSP Id Energy Consumption

CSP1 10.2 kWh

CSP2 10.68 kWh

CSP3 10.344 kWh

Table.7. Replication and Migration Cost of three CSPs

CSP Id
Replication and

Migration Cost

CSP1 5100 Rs

CSP2 5340 Rs

CSP3 5172 Rs

The Table.7 concludes CSP 1 consumes minimum replication

and migration cost compared with others. Therefore, this

experiment results suggest based on these performance metrics,

Cloud Service Provider 1 is the best CSP compared with others.

6. CONCLUSION

To reduce the price of data placement for appliances and time

changeable workloads, developers should optimally use the cost

variation among network with storage services across numerous

providers. This paper proposed two algorithms to achieve this

goal. The First algorithm is Replication and Migration Cost

Minimization (RMCM) algorithm which reduces the costs and

power usage of the datacenter through combining virtual

resources. The second algorithm is the Optimal Cost-Effective

Technique (OCET) algorithm for duplication and movement of

information in cloud data centres with multiple storage classes.

This algorithm objectives at attaining price deduction on a load

allotment procedure on the multi-datacenter situation, where VMs

allocated to the specified datacenter through regard as both power

price differences with the existence of local renewable power

manufacture, to decrease a power receipt.

The experimental outcomes demonstrated which a proposed

RMCM and OCET algorithm contain the significant benefit based

on decreasing the costs and power usage of the datacenter. Thus,

a proposed RMCM and OCET algorithm is helpful on a building

of the green data centre. The results showed which a presented

RMCM and OCET algorithm reduced a replication and migration

cost and decreased an energy usage of a datacenter in green cloud

computing efficiently.

REFERENCES

[1] S. Muralidhar, “F4: Facebook’s Warm Blob Storage

System”, Proceedings of International Symposium on

Operating Systems Design and Implementation, pp. 383-

398, 2014.

[2] G. Skourletopoulos., “An Evaluation of Cloud-Based

Mobile Services with Limited Capacity: A Linear

Approach”, Soft Computing, Vol. 34, No. 2, pp. 1-8, 2016.

[3] A. Bourdena, “Using Socio-Spatial Context in Mobile Cloud

Offload Process for Energy Conservation in Wireless

Devices”, IEEE Transactions on Cloud Computing, Vol. 32,

No. 9, pp. 1-9, 2016.

[4] A. Kathpal, “Analyzing Compute vs Storage Tradeoff for

Video-Aware Storage Efficiency”, Proceedings of 4th

USENIX Conference on Hot Topics in Storage and File

Systems, pp. 1-13, 2012.

[5] D. Bermbach, “Meta Storage: A Federated Cloud Storage

System to Manage Consistency-Latency Tradeoffs”,

Proceedings of International Conference on Cloud, pp. 452-

459, 2011.

[6] K. P. Puttaswamy, “Frugal Storage for Cloud File Systems”,

Proceedings of ACM European Conference on Computer

Systems, pp. 71-84, 2012.

[7] Z. Wu, “Spanstore: Cost-Effective Geo-Replicated Storage

Spanning Multiple Cloud Services”, Proceedings of 24th

ACM Symposium on Operating Systems Principles, pp. 292-

308, 2013.

[8] Y. Wu, “Scaling Social Media Applications into Geo-

Distributed Clouds”, IEEE/ACM Transactions on

Networking, Vol. 23, No. 3, pp. 689-702, 2017.

[9] F. Farahnakian and H. Tenhunen, “Using Ant Colony

System to Consolidate VMs for Green Cloud Computing”,

IEEE Transactions on Services Computing, Vol. 8, No. 2,

pp. 187-198, 2015.

[10] S. Sohrabi, A. Tang, I. Moser and A. Aleti, “Adaptive

Virtual Machine Migration Mechanism for Energy

Efficiency”, Proceedings of International Conference on

Green Sustainable Software, pp. 8-14, 2016.

[11] Yingyou Wen, Zhi Li, Shuyuan Jin, Chuan Lin and Zheng

Liu, “Energy-Efficient Virtual Resource Dynamic

Integration Method in Cloud Computing”, IEEE Access,

Vol. 5, pp. 1-18, 2017.

[12] J. Li, M. Qiu, J. W. Niu, Y. Chen and Z. Ming, “Adaptive

Resource Allocation for Pre-Emptable Jobs in Cloud

Systems”, Proceedings of International Conference on

Intelligent System Design and Application, pp. 31-36, 2011.

[13] Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A.

Guitouni, S. Ganti and Y. Coady, “Dynamic Resource

Allocation based on Distributed Multiple Criteria Decisions

in Computing Cloud”, Proceedings of International

Conference on Cloud Computing, pp. 91-98, 2010.

[14] Sahar Hosseinzadeh and M.S. Shirvani, “Optimizing Energy

Consumption in Clouds by using Genetic Algorithm”,

Journal of Multidisciplinary Engineering Science and

Technology, Vol. 2, No. 6, pp. 1431-1434, 2015.

T ARUNAMBIKA AND P SENTHIL VADIVU: REPLICATION AND MIGRATION COST MINIMIZATION OF CLOUD DATA CENTER

2456

[15] D.M. Quan, F. Mezza, D. Sannenli and R. Giafreda, “T-

Alloc: A Practical Energy-Efficient Resource Allocation

Algorithm for Traditional Data Centres”, Future Generation

Computer Systems, Vol. 28, No. 5, pp. 791-800, 2012.

[16] B. Anton, J. Abawajy and R. Buyya, “Energy-Aware

Resource Allocation Heuristics for Efficient Management of

Data Centres for Cloud Computing”, Future Generation

Computer Systems, Vol. 28, No. 5, pp. 755-768, 2012.

[17] N. Bobroff, A. Kochut and K. Beaty, “Dynamic Placement

of Virtual Machines for Managing SLA Violations”,

Proceedings of International Conference on Integrated

Network Management, pp. 119-128, 2007.

[18] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose

and R. Buyya, “CloudSim: A Toolkit for Modelling and

Simulation of cloud Computing Environments and

Evaluation of Resource Provisioning Algorithms”,

Software: Practice and Experience, Vol. 41, No. 1, pp. 23-

50, 2011.

[19] K.M. Baalamurugan and S.V. Bhanu, “Analysis of Cloud

Storage Issues in Distributed Cloud Data Centres by

Parameter Improved Particle Swarm Optimization (PIPSO)

Algorithm”, International Journal on Future Revolution in

Computer Science and Communication Engineering, Vol. 4,

pp. 303-307, 2018.

[20] Y. Mansouri, A.N. Toosi and R. Buyya, “Cost Optimization

for Dynamic Replication and Migration of Data in Cloud

Data Centres”, IEEE Transactions on Cloud Computing,

Vol. 7, No. 3, pp. 705-718, 2016.

