
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2021, VOLUME: 11, ISSUE: 03

DOI: 10.21917/ijsc.2021.0334

2337

CODE PRESENCE USING CODE SENSE

M.A. Krishna Priya1 and Justus Selwyn2
1Department of Computer Science, Bharathiar University, India

2School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, India

Abstract

Programmers are tightly occupied with the development workflow.

Conscious contemplation of the right code solution and proactive

presence of the solution lists is presented in this paper. Refining and

sensing the optimum solution lists and the proactive presence of code

solutions is incorporated in this code sense algorithm. This architecture

allows developers to generate and integrate best code solutions directly

in to solution bases. Code Sense Interface can support collaboratively

with various platforms which can be plugged in with any development

interface. Using Code sense, proactive presence of code is implemented

as an assistant named Code Proactive Assistant. Code suggestions for

a particular requirement scenario are considered as the primary goal.

In addition to showing the feasibility of this approach, it provides

further evidence in support of the claim that integrating specialized

code sense interfaces directly into the editor is valuable to professional

developers.

Keywords:

Code Sense, Code Proactive Assistant, Collaborative Learning

1. INTRODUCTION

Nowadays, software developers tend to use code support

feature which is found in modern source code editors. These

editors provide hand in hand support for software development

with its floating menu which contains related data such as

methods, types etc. By selecting the relevant data from this menu,

developers can avoid typographical and syntax errors and also

unnecessary navigation between the programming interface and

the search engine can be avoided. Developers can also explore

unfamiliar development interfaces without the psychlogical

threats which incurs for any human while facing a brand new

environment. With this code sense feature developers need not

face the mental overhead that is associated with switching

between different applications or search engines for the

appropriate or right documentation and suggestions.

Code support menus are previously been suggested in the

literature. These have focused on leveraging additional sources of

information, such as databases of usage history [1] [2], inheritance

information [2], API specific information [2] [3], partial

abbreviations [4], examples extracted from code repositories [5]

[6] and crowd sourced information [7] [8], to increase the

relevance and sophistication of the featured menu items.

In this system, the code sense feature primarily supports the

editor with code solutions for the developer s keyword. This

Knowledge management strategy determines the solution code

sets that are available in the solution base; so far library providers

do not specify contextually relevant code sets for any required

logic. In this paper, a technique is proposed called code sense that

consciously finds mapped code solutions for the context using the

required scenario which is sensed with the user s keyword, and

also supplies suggestions proactively. This assistant can be

integrated as a plugin with developer’s editor directly. When

developers are familiar using this feature coding task becomes

significantly simpler. Any developer would always prefer to use

tools without leaving their editing environment.

In this paper, recommendations and supports by the code sense

is discussed in the context of code construction. When the

developer invokes the code sense by typing the keyword at the

indicated cursor position which is denoted with a symbol (?), the

editor looks for a knowledge map solution code set associated

with the keyword being entered, for example if a developer looks

for sort code, then an associated code solutions are listed in

descending order according to usage count, once the developer

finds the appropriate solution for a particular context, that code

set can be added in to the standard code editor by clicking on it.

The developer can interact with such recommended solution

code sets execute and check immediately by providing parameters

and other information related to the requirement, then post

feedback about the code set, these comments can be made

according to the behavior of the code being constructed. Plug in

proactively picks the code solutions for the required keyword,

with a click or by the press of enter key the user can select the

required code solution which is inserted in to the editor. In

accordance with best practices, the following questions to be

addressed before designing and implementing our proactive code

sense system:

1. What are the specific requirement scenarios for the

development of proactive code sense system in a

professional setting?

2. What capabilities the proactive code sense systems

provide to identify the required scenario with a given

keyword?

3. What usability for solution code sets provided in user

interface designs?

A study with 45 professional developers (Section 2) helped to

find answers for the above questions. Their responses, informal

interviews revealed a number of small unnoticed requirements for

user interfaces as well as the underlying proactive code sense

architecture (Section 3). Participants also suggested a number of

scenarios, demonstrating the applicability of this technique. These

are organized into several broad categories (Section 4). Next, we

describe Code Sense archetype that implements the proactive

code sense architecture for the Java programming language

(Section 5), allowing Java library developers to associate

customized solution code sets with their own classes. Various

design choices are described that satisfy the requirements

discovered in the preliminary investigations and briefly examine

necessary trade-offs.

Finally, related works are discussed with the implemented

code sense system that assists developers as they type code

keywords (Section 6). The study provides specific evidence in

MA KRISHNA PRIYA AND JUSTUS SELWYN: CODE PRESENCE USING CODE SENSE

2338

support of the broader claim 8that highly-specialized tools that are

integrated directly with the editing environment are particularly

useful. Fundamentally proactive code sense system is useful

because it makes discovering and developing simpler.

2. STUDY

The concept of proactive code sense shows clear concrete

system with to solution code sets, and also posses’ requirement

scenarios to justify this need by the conduction of study with

professional software developers.

2.1 PARTICIPANTS

Some participants for this survey are professional developers

and also computer science graduate students. In both cases the

survey stated that development made easy can help out naive

developers with some familiarity with any object-oriented

programming language like Java, C# or Visual Basic and an

integrated development environment like Eclipse or Visual

Studio. Participants took the survey, and they were offered with

the new experience. Out of the 45 people who took the survey, 23

participants completed it. The responses from completed surveys

were examined.

2.2 FAMILIARITY WITH TECHNOLOGY

The participants were asked about their level of familiarity

with several programming languages, on a five-point Likert scale.

63% of the participants indicated that they were an expert in at

least one language, and an additional 37% were “very familiar”

with at least one language. On average, participants rated

themselves as very familiar with Java, C, C++ and JavaScript,

familiar with C#, Python and PHP and somewhat familiar with

Visual Basic and Perl. It is been asked the participants to select

which integrated development environments (IDEs) and code

editors that they were familiar with. The Eclipse IDE was familiar

to 82% of participants. This was followed by Visual Studio at

51%, Netbeans at 77%. Participants could also enter “other”

choices and a number of editors and IDEs were entered, including

BlueJ, Notepad++.

2.3 MOCK SOLUTIONS

Participants were presented with a series of mock solution

codesets for a Sort class. Participants got to see the mock

screenshots that demonstrates how a developer uses the cursor

that provokes the solution popups, and mock shows how the

codeset would be inserted once a selection had been made. For the

Sort class, the majority of participants indicated that they would

look in the code sense popups (56%) or documentation (20%) for

a predefined code corresponding to sort. Another 24% indicated

that they would either do on their own or use an external search

engine to determine the corresponding code to the sort. Finally,

after showing the series of mock screenshots, participants were

asked to rate how useful the integrated system would be to them

if they need to work for the corresponding requirement. The

responses to this question according to individual it varied, 13%

found using it every time, 27 % used most of the time, 32%

utilized some of the time, 11% used rarely, 17% were proficient

enough they did not use at all. Half of the participants indicate that

they would use code sense at least some of the time. In addition

with rating, remarks from participants were also collected. These

responses were helpful while developing the design criteria.

3. DESIGN IDEAS

The above study and suggestions from developers helped out

in designing the system. In the section headings below, the

number of survey responses, summed over the mock screens, that

contained the solution lists are listed in parenthesis. These criteria

were useful in designing Code Sense (Section 6) and it is noted

that this criteria may also be relevant to editors.

3.1 RECOMMENDATION RUBRICS

Many developers noted that in the prototyping phase of a

project, if recommendations also expressed in along with the

solution code sets, it would be more helpful to pick a solution and

try it with inserting parameters so that it could be tested. The

multiple resulting solution code list often confuses several

participants, and they suggested for a note that the information

such as Best used, Better used, Never used should appear in

solution lists.

3.2 TESTING CAPABILITY

The code set shown to the participants allowed users to

immediately test a solution against provided parameters. These

test values and the matched results were inserted as comments

below for the picked source code. A number of participants

requested to generate unit tests, to support the generation of unit

tests, the proactive code sense architecture need to support code

testing locations which can be separately used for testing.

3.3 HISTORY SUPPORT

Several participants asked for the ability to revoke option for

previously selected code sets. In order to support this feature, the

architecture must provide the extension with enough information

to reconstruct. Users might need to modify the selected code and

have these modifications reflected in the new solution code set

upon solution knowledge base.

3.4 PORTABILITY

The mock screens were showed to the users based on the Java

and the Eclipse IDE. As we showed, a number of participants

preferred other languages or editors. Many of these participants

made comments asking that the features of IDE and programming

language independent. Indeed, the solutions could be used with

only slight modifications in a variety of programming languages,

given suitable architectural support for porting between editing

environments.

4. REQUIREMENT SPECIFICATION

At the end of the study, the participants were asked to suggest

other code sets that benefits to support the claim of the proactive

code sense that characterize the specific scenarios. A total of 119

participants made one or more suggestions, which is classified

into following categories.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2021, VOLUME: 11, ISSUE: 03

2339

4.1 POPUP WINDOWS

These popular suggestions are given as popup windows,

influenced perhaps by the solution code sets. While other

participants were focused on user interface elements, such as

buttons and layouts, A few also suggested editing popups for

manipulating solution code sets to enhance according to recent

scenarios with intuitive manner.

4.2 SIMPLIFIED SYNTAX

In some cases, simple syntax recommendations were noted

and that syntax provided was felt more desirable by users. To

implement, the popups can also be labeled with two rubrics, one

is practice or usage rubric such as best used, better used and never

used, another rubric is for complexity such as simple, medium and

complex, which helps the user to avoid popups that contains

complex solution sets

A related category of suggestions consisted of solution sets

that offered a more natural interface containing code in different

languages with the additional parameter mentioning the language

or the domain to identify the required syntax that is domain-

specific syntax for a particular expression or statements in the

codeset.

4.3 DOCUMENTATION

Some relevant examples integrated with demos were

suggested by some participants along with the editor, so that these

solutions with the detail documentation can help the users and it

also provides instinct to choose the right solution.

4.4 INTERFACE

According to the well-known Curry-Howard isomorphism

between programming languages and formal logics, proof terms

correspond to expressions and propositions correspond to types

[9]. Proactive code sense works directly with the required

scenarios to help developers construct code sets. If it is integrated

to a language environment with an interoperable connection for

code construction, then it would be useful for building code

interactive assistant interface.

5. RELATED WORK

In addition to the code sense work discussed above, some

other research areas related are listed here.

5.1 LANGUAGES

Graphical user interface entity that generates text

representations can be considered as an approach that follows

interaction techniques from visual and conventional programming

languages.This approach addresses some of the usability

challenges previously associated with visual languages [16].

5.2 LIBRARIES

Libraries behave as a support element for development

activity. Active libraries [16] are libraries that contain methods or

procedures that is invoked at either compile-time or design-time.

5.3 PRODUCTIVITY

Clean code is less likely to contain errors and is easier to test,

understand, and modify-all factors that contribute to fewer bugs

and greater reliability. The Green Hills Compilers [17] enable

enforcement of clean coding conventions, which is a collection of

Compiler warnings and errors that enforces a stricter coding

standard than regular C and C++. The Builder automatically

analyzes the dependencies of a project and compiles and links as

many files in parallel as possible, taking full advantage of modern

multicore systems. The Builder and other sophisticated features

significantly reduce the overhead of project development. A

seamlessly integrated project manager, editor, flash programmer,

instruction set simulator, and more enable you to jumpstart

development and work more efficiently. Barista [18] and the RBA

editor merge concepts from both text-based and structured within

a relatively conventional layout. Barista provides the opportunity

for rich type-specific interfaces. The RBA editor focuses on code

readability rather than new modes of interaction. Both tools use a

custom domain-specific language.

5.4 DEVELOPMENT ENVIRONMENT

Some more environments are specifically designed for certain

types. CodeRush [19] and Resharper [20] have dialogs that allow

developers to launch a color picker directly from the code editor.

IntelliJ IDEA has an inline regular expression palette, driven by

its Intentions system, as well [21]. However, these specific

features are hard-coded user-defined types cannot provide similar

functionality. Recent versions of Visual Studio support user-

defined palettes associated with specific fields, rather than

classes, of user interface widgets. These are shown only in the

property pane when using the graphical window layout editor.

6. SYSTEM IMPLEMENTATION

The survey, helped to build this code sense system Code

Proactive Assistant. It is been decided to build the system for

NetBeans Java IDE because this is widely-used by the participants

in the survey. The sections below describes this novel design

decisions made it possible and the way it satisfies design criteria

from Section 3 and enabled several use cases described in Section

IV. The end result is a simple system that allows an API’s

developers, as well as external developers, to build self-

sustainable projects that can be associated with both built in

solutions and also with user solutions. Code PA can discover and

provokes solutions and displays them through the standard popup

windows.

6.1 BASEWORK

This work is based on KM Trajectory Service Frame work [6]

[10] which is framed to reduce the dependency on human

resources in software development organizations. This Code

Extractor (CE) [7] [11] works as a background process. This tool

monitors the project repository and its files, which are saved

recently. Code Extractor listens and extracts the code on day to

day basis. Programmer’s activity is continuously monitored by

CE. Code is extracted from the programmer’s application only

after he/she saves it. Files are tracked, code sets from the software

application’s work area is extracted. This process silently extracts

MA KRISHNA PRIYA AND JUSTUS SELWYN: CODE PRESENCE USING CODE SENSE

2340

source code from the work area of an application domain and

stores the source code sets in code log. Code log consists of

multiple code segments. Solution knowledge base is synthesized

respectively [9] [12]. Trace, extract code fragment and store it,

identify code scenario of the code fragment and assign code name

and type, Manipulate code fragment as code pattern and Store

code pattern. SKB algorithm automatically parts and extracts code

fragment from code set, starts by collecting various files from

selected directories, Program files are segregated through

extension filter which filters extensions like c and cpp and extra.

Next, it scans lines of code and extracts code fragment from each

file. Keywords and comments from the extracted code fragments

are used for contemplation to identify code Scenario. Solution

Knowledge base consists of code segments which are extracted

from code logs according to comment lines or syntax lines

(symbols). The purpose of the code segment is known only when

the developer documents the purpose either as comments or as a

documentation note. Code retrieval from knowledge base is based

on key word/ text search that acts as input parameter for querying

in the knowledge base. User specifies the requirement in simple

sentence; our model discovers and elicits the appropriate code

from the knowledge base by mining through the keywords. This

work features a model that analyzes source code and uses data

from the Solution Knowledge Database (SKB) to create feature

sets for recognizing a set of code patterns. Specifically, source

code is represented using an Abstract Syntax Tree [13], which

provides the ability to extract statements. Knowledge Map

algorithm processes thousands of code fragments, discover and

supply the required ones This model proposes the extraction of

code sets from project repositories to present a set of solutions to

the user for each requirement.

6.2 CODE PROACTIVE ASSISTANT

Conventional databases are not designed for retrieval and

identification of patterns especially triggered when user types

keywords or using user’s keywords as factors. The approach is

been developed to identify and predict appropriate code pattern

with logical traits. Usually different clustering classification

methods and tools are used for prediction. Wide range of keyword

factors and their numerous combinations in normal conditions

generate customized responses. This suggest that the

identification and characterization of keywords and their code

patterns shows an expression profile of similar code patterns

would increase the understanding of it and provide suggestions in

software manipulation to improve software growth in many fold.

Advancements have revolutionized the identification of required

pattern from similar kind of code patterns makes it possible to

chart out required individual patterns and also to identify,

compare and contrast the requirement specific code pattern of one

condition.

Code Sense Algorithm

Input: repository dataset

Output: appropriate solutions for a requirement keyword

CodeSense (in Key, out Value)

Begin

For each row in knowledgebase do

datalines = select records() //read data from knowledge base

For each datalines do

function map(each record):

key = get codename(ticket)

value = extract code(record)

/extract using select query where codename=ticket

// read attributes from record

append solutionlist(key, value, usagecount)

show(solutionlist)

End

/* each reduce identifies, detects and shows set of code

patterns for a particular requirement scenario identifying a

certain code*/

//Sort solutionlist with usagecount in descending order

solution list (in values, out values)

For each solution from reduce(solution list) do

suggestionlist.value=sortdesc(solutionlist.usagecount)

//supply suggestionlists proactively as popups

display suggestionlist.value

End

End

Computational methods are used to mine the patterns related

to requirement scenario. Code fragments are stored in abstract

syntax tree [13] format. Through user’s keyword the stored

structure is analyzed and matched set of code fragments are

detected, discover and elicit the optimum one through the usage

count value with the combination of particular keyword. The

drafted blueprint is used to create a suggestion system to provide

proper assistance to software developers. Classifiers with metric

value will be used by the system for the code knowledge

evaluation with machine learning community such as optimum

rank, usage count either accept or reject. This construct infers

solution using interactive learning based on the user’s

requirement statement or code name.

MapReduce programming model is known for processing

large data sets [14]. MapReduce is a framework used for writing

applications to process huge amounts of data in a reliable manner.

MapReduce is a processing technique and a program model for

distributed computing. The MapReduce algorithm contains two

important tasks, namely Map and Reduce. Map takes a set of data

and converts it into another set of data, where individual elements

are broken down into tuples (key/value pairs). Secondly, reduce

task, which takes the output from a map as an input and combines

those data tuples into a smaller set of tuples. As the sequence of

the name MapReduce implies, the reduce task is always

performed after the map job. Code Sense is the extension of the

Knowledge map algorithm through which the populated code

solutions in the solution knowledge base is learned and reflected

according to the requirement scenario, next every outcome of the

different input scenarios are observed with the optimum outcomes

using the usage count values, finally the algorithm senses the right

and appropriate code solution for the particular requirement.

• Populate solutionlist through Knowledge map. Use code

keyword with knowledge map to discover requirement

scenario from the available code names through map reduce.

• Sense right solutions through observing the usage count of

individual solutions.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2021, VOLUME: 11, ISSUE: 03

2341

• Supply the appropriate suggestions.

6.3 GRADLE WITH GROOVY

Gradle is a new and revolutionary build tool, based on the

Groovy programming language. A Gradle plugin is bulit, which

can be used across many different projects. Gradle is used to

implement the plugin which can be reused with the build logic,

and share it. It can be built in any language can be compiled as

JVM byte code. In this code sense, Java is used as the

implementation language for standalone plugin project and

Groovy in the build script plugin. Source plugin can be put in

several places. The source for the plugin can be included directly

in the build script. This has the benefit that the plugin is

automatically compiled and included in the class path of the build

script without having to do anything. However, the plugin is not

visible outside the build script, and so it cannot be reused outside

the build script it is defined in. the source for the plugin in the

directory is rootProjectDir/buildSrc/src/main/groovy. Gradle will

take care of compiling and testing the plugin and making it

available on the classpath of the build script. The plugin is visible

to every build script used by the build. However, it is not visible

outside the build, and so cannot reuse the plugin outside the build

it is defined in. create a separate project for the code

interactive/proactive assistant (Code PA) plugin. This project

produces and publishes a JAR which can then be used in multiple

builds. Generally, this JAR might bundle related task classes into

a single library. A class is written that implements the Plugin

interface to create a gradle plugin and the plugin is applied to a

project, Gradle creates an instance of the plugin class and calls the

instance using Plugin.apply() method. The project object is passed

as a parameter, the plugin configures the project

A new instance of a plugin is created for each project it is

applied to and also the Plugin class is a generic type receiving the

Project type as a type parameter. A plugin can instead receive a

parameter of type Settings, in which case the plugin can be

applied in a settings script, or a parameter of type Gradle, in which

case the plugin can be applied in an initialization script.

Plugins offer configuration options using extension objects for

build scripts and for other plugins to customize its work. The

Gradle Project has an associated ExtensionContainer object that

contains all the settings and properties for the plugins that have

been applied to the project. Configuration for the code PA plugin

is provided by adding an extension object which is an object with

Java Bean properties that represent the configuration to this

container. Plugin Extension is an object with a property called

message. The extension object is added to the project with the

name Sense. This object then becomes available as a project

property with the same name as the extension object. Often,

several related properties specified on a single plugin. Gradle adds

a configuration block for each extension object, settings can be

grouped together.

6.4 CODE PROACTIVE ASSISTANT

Code proactive assistant is an injected code within which the

application renders to communicate with the native platform on

which it runs. This provides access to device and platform

functionality. All the main code sense features are implemented

as a plugin; Plugins comprise a single JavaScript interface along

with corresponding native code libraries for each supported

platform. In essence this hides the various native code

implementations behind a common JavaScript interface. This

project is simply a Java project that produces a JAR containing

the plugin classes. The easiest and the recommended way to

package and publish a plugin is to use the Java Gradle Plugin.

This plugin will automatically apply the Java Plugin, add the

gradleApi() dependency to the api configuration, generate the

required plugin descriptors in the resulting JAR file and configure

the Plugin Marker Artifact used when publishing.

6.4.1 Code PA - Creating Plug-In:

plugins { id ‘java-gradle-plugin’}

gradlePlugin {plugins {simplePlugin {

 id = ‘org.sense.pa’

implementationClass = ‘org.gradle.SensePlugin’

 } } }

Plugin ids are fully qualified in a manner similar to Java

packages (i.e. a reverse domain name). This helps to avoid

collisions and provides a way to group plugins with similar

ownership. Plugin id should be a combination of components that

reflect namespace and the name of the plugin it provides. For a

Github account named “sense” and plugin named “pa”, a suitable

plugin id is com.github.sense.pa. Although there are conventional

similarities between plugin ids and package names, package

names are generally more detailed than is necessary for a plugin

id. For instance, it might seem reasonable to add “gradle” as a

component of plugin id, but since plugin ids are only used for

Gradle plugins. Generally, a namespace that identifies ownership

and a name are all that are needed for a good plugin id.

6.4.2 A Build for Code PA:

Code Sense Pseudo Code

// Import packages

import com.eviware.soapui.support.XmlHolder

def groovyUtils = new

com.eviware.soapui.support.GroovyUtils(context)

def projectpath = new

com.eviware.soapui.support.GroovyUtils(context).projectPath

import groovy.sql.Sql

import java.sql.Driver

Class SensePlugin

{

//code to connect to solution DB

def SQL = Sql.newInstance(‘jdbc:sqlserver:”solution env”,

‘codesense’,

‘codesense’,’com.microsoft.sqlserver.jdbc.SQLServerDriver’)

Database

// SQL query

def sqlStr = “Select codekey, codesolution from

SCHEMA.solutiondb where codekey = ‘12345’”

// defining a map to store the possible solutions from the DB

def possSolutions = [:]

int SolutionID = 1

// Executing a SQL query

sql.query (sqlStr) { row ->

MA KRISHNA PRIYA AND JUSTUS SELWYN: CODE PRESENCE USING CODE SENSE

2342

while (row.next ()) {

def solution = row.getString (“solutiondb”)

 SolutionID = SolutionID+1

 possSolutions.put (SolutionID, solution)

}

def sortedsolutions = possSolutions.sort {it.key}

log.info ”The possible solutions are “ +sortedsolutions

}

6.4.3 Publishing Plug-In:

To publish Code PA plugin internally for use within the

organization, publish it like any other code artifact. The plugin in

a build script is configured in the repository in pluginManagement

{} block of the project’s settings file. The plugin has been

published to a local repository:

plugins { id ‘org.sense.pa’ }

In addition to plugins written as standalone projects, Gradle

also allows you to provide build logic written in Groovy as

precompiled script plugins. These are written as *.gradle files in

src/main/groovy directory Precompiled script plugins are

compiled into class files and packaged into a jar. For all intents

and purposes, they are binary plugins and can be applied by plugin

ID, tested and published as binary plugins. To apply a

precompiled script plugin, It is required to know its ID which is

derived from the plugin script’s filename

src/main/groovy/sense.java-library- convention.gradle Plugin ID

sense.java-library-convention. To implement and use a

precompiled script plugin in a buildSrc project, create a

buildSrc/build.gradle file that applies the groovy-gradle-plugin

plugin, then create a new java-library-convention.gradle file in the

buildSrc/src/main/ groovy directory and set its contents

buildSrc/src/main/groovy/java-library-convention.gradle

plugins {

 id ‘java-library’

 id ‘checkstyle’

}

This script plugin simply applies the Java Library and

Checkstyle Plugins and configures them. This will actually apply

the plugins to the main project. Finally, apply the script plugin to

the root project. Apply the precompiled script plugin to the main

project plugins {id ‘java-library-convention’}. In order to apply

an external plugin in a precompiled script plugin, it has to be

added to the plugin project’s implementation classpath in the

plugin’s build file properties filename matches the plugin id and

is placed in the resources folder, and that the implementation-

class property identifies the Plugin implementation class. And

because an extension object is simply a regular object, using an

extension object extends the Gradle groovy script to add a project

property and groovy block which can be nested inside the plugin

block by adding properties and methods to the extension object.

Mapping extension properties to task properties. The imperative

logic is hidden in the plugin implementation.

buildSrc/build.gradle.

plugins { id ‘groovy-gradle-plugin’ }

repositories { jcenter() }

dependencies{implementation ‘com.bmuschko:gradle-docker-

plugin:6.4.0’}

implementation-class=org.gradle.SensePlugin

class SensePluginExtension

{

String message

String codename

}

class SensePlugin implements Plugin<Project>

{

void apply(Project project)

{

def extension = project.extensions.create(‘codename’,

SensePluginExtension)

project.task(‘sensing’)

{

doLast

{println”${extension.message}for ${extension.codename}”

} } } }

apply plugin: SensingPlugin

// Configure the extension using a groovy block

sensing {

 message = ‘solution’

 codename = ‘codekey’

}

Capturing user input from the build script through an

extension and mapping it to input/output properties of a custom

task is a useful pattern. The build script author interacts only with

the domain specific language defined by the extension

7. CONCLUSION

Embedding specialized tools into a developer’s environment

is ultimately helpful; the code sense concept is a general archetype

which supports proactively that can be easily followed in any

level of organization. The usability is identified with a number of

use case scenarios Design constraints as well as the archetype of

the tool is recognized through a survey from developers. With

these findings, code proactive assistant is built that suggests

solution decisions.

7.1 FUTURE WORK

Code sense systems can be enhanced in various perceptual

angles which will considerably ease the software process for sure.

In future, it is possible to explore an extensible machine driven

code generation with intuition that instincts to identify a particular

solution according to the need to eliminate the difficulties for the

right decisions to follow the solutions. Even though software

developer is well versed in particular technology, the developers

have to update themselves frequently to accommodate their skill

with the new technologies, in order to address this problem an

unified code representation, unified code patterns can be used in

this supply system as a further work.

http://log.info/

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2021, VOLUME: 11, ISSUE: 03

2343

REFERENCES

[1] R. Robbes and M. Lanza, “How Program History Can

Improve Code Completion”, Proceedings of 23rd IEEE/ACM

International Conference on Automated Software

Engineering, pp. 317-326, 2008.

[2] D. Hou and D. Pletcher, “An Evaluation of the Strategies of

Sorting, Filtering, and Grouping API Methods for Code

Completion”, Proceedings of IEEE International

Conference on Software Maintenance, pp. 233-242, 2011.

[3] H.M. Lee, M. Antkiewicz and K. Czarnecki, “Towards a

Generic Infrastructure for Framework-Specific Integrated

Development Environment Extensions”, Proceedings of

International Workshop on Domain-Specific Program

Development, pp. 1-12, 2008.

[4] S. Han, D.R. Wallace and R.C. Miller, “Code Completion

from Abbreviated Input”, Proceedings of IEEE/ACM

International Conference on Automated Software

Engineering, pp. 332-343, 2009.

[5] M. Bruch, M. Monperrus and M. Mezini, “Learning from

Examples to Improve Code Completion Systems”,

Proceedings of 7th European Conference on Software

Engineering, pp. 213-222, 2009.

[6] J. Brandt, M. Dontcheva, M. Weskamp and S.R. Klemmer,

“Example-Centric Programming: Integrating Web Search

into the Development Environment”, Proceedings of ACM

Conference on Human Factors in Computing Systems, pp.

513-522, 2010.

[7] M. Mooty, A. Faulring, J. Stylos and B. Myers, “Calcite:

Completing Code Completion for Constructors using

Crowds”, Proceedings of IEEE Symposium on Visual

Languages and Human-Centric Computing, pp. 15-22,

2010.

[8] Snipmatch, Available at: http://languageinterfaces. com/,

Accessed at 2017.

[9] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in API

Design: A Usability Evaluation”, Proceedings of

International Conference on Software Engineering, pp. 302-

312, 2007.

[10] M.A. Krishna Priya, “Trajectory Schema Service Frame

Work for Software Development Organizations”,

International Journal of Engineering and Technology, Vol.

7, no. 3, pp. 616-620, 2018.

[11] M.A. Krishna Priya and Justus Selwyn, “Code Knowledge

Acquisition for Knowledge Management Trajectory

Framework”, International Journal of Recent Technology

and Engineering, Vol. 8, No. 3, pp. 1-12, 2019.

[12] M.A. Krishna Priya and Justus Selwyn, “Synthetization of

Solution Knowledge Base”, International Journal of

Analytical and Experimental Modal Analysis, Vol. 11, No.

10, pp. 1-9, 2019.

[13] R. Software, “Abstract Syntax Tree (AST)”, Available at

https://support.roguewave.com/documentation/klocwork/en

/10-x/ abstractsyntaxtreeast/, Accessed at 2018.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data

Processing on Large Clusters”, Communications of the

ACM, Vol. 51, No. 1, pp. 107-113, 2008.

[15] Developing Plugins, Available at https://docs.gradle.org,

Accessed at 2018.

[16] Jquery, “Jquery: The Write Less, Do More, Javascript

Library”, Available at http://jquery.com/, Accessed at 2020.

[17] Multi Integrated Development Environment, Available at

https://www.ghs.com/products/MULTI_IDE.html,

Accessed at 2020.

[18] P. Miller, J. Pane, G. Meter and S. Vorthmann, “Evolution

of Novice Programming Environments: The Structure

Editors of Carnegie Mellon University”, Interactive

Learning Environments, Vol. 4, No. 2, pp. 140-158, 1994.

[19] S. Davis and G. Kiczales, “Registration-Based Language

Abstractions”, Proceedings of ACM International

Conference on Object Oriented Programming Systems

Languages and Applications, pp. 754-773, 2010.

[20] Jet Brains, “How to Check Your Regexps in Intellij Idea

11?”, Available at

http://blogs.jetbrains.com/idea/tag/regexp/, Accessed at

2019.

[21] Microsoft Magazine, “Custom Design-Time Control

Features in Visual Studio.net”, Available at

http://msdn.microsoft.com/en-us/ magazine/cc164048.aspx,

Accessed at 2018.

http://languageinterfaces.com/
http://languageinterfaces.com/
https://docs.gradle.org/
http://jquery.com/
https://www.ghs.com/products/MULTI_IDE.html
http://blogs.jetbrains.com/idea/tag/regexp/
http://msdn.microsoft.com/en-us/magazine/cc164048.aspx
http://msdn.microsoft.com/en-us/magazine/cc164048.aspx

