
RK MONIKA AND K RAVIKUMAR: PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING BASED ON BIG DATA SECURITY ANALYTICS

DOI: 10.21917/ijsc.2021.0330

2306

PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING

BASED ON BIG DATA SECURITY ANALYTICS

R.K. Monika and K. Ravikumar
Department of Computer Science and Engineering, Knowledge Institute of Technology, India

Abstract

Virtualized infrastructure in cloud computing has become an attractive

target for cyber attackers to launch advanced attacks. This paper

proposes a novel big data based security analytics approach to detecting

advanced attacks in virtualized infrastructures. Network logs as well as

user application logs collected periodically from the guest virtual

machines (VMs) are stored in the Hadoop Distributed File System

(HDFS). Then, extraction of attack features is performed through

graph-based event correlation and Map Reduce parser based

identification of potential attack paths. Next, determination of attack

presence is performed through two-step machine learning, namely

logistic regression is applied to calculate attack’s conditional

probabilities with respect to the attributes, and belief propagation is

applied to calculate the belief in existence of an attack based on them.

Experiments are conducted to evaluate the proposed approach using

well-known malware as well as in comparison with existing security

techniques for virtualized infrastructure. The results show that our

proposed approach is effective in detecting attacks with minimal

performance overhead.

Keywords:

Virtualized Infrastructure, Virtual Machines, Hadoop Distributed File

System

1. INTRODUCTION

A virtualized infrastructure consists of virtual machines

(VMs) that rely upon the software-defined multi-instance

resources of the hosting hardware. The virtual machine monitor,

also called hypervisor, sustains, regulates and manages the

software-defined multi-instance architecture. The ability to pool

different computing resources as well as enable on-demand

resource scaling has led to the widespread deployment of

virtualized infrastructures as an important provisioning to cloud

computing services. This has made virtualized infrastructures

become an attractive target for cyber attackers to launch attacks

for illegal access. Exploiting the software vulnerabilities within

the hypervisor source code, sophisticated attacks such as VENOM

(Virtualized Environment Neglected Operations Manipulation)

have been performed which allow an attacker to break out of a

guest VM and access the underlying hypervisor

Many of today’s devices are internet-enabled with IPv4

internet addresses, exposing them to internet threats. To

determine the true scale of vulnerabilities being introduced,

particularly in the IPv4 internet address space, a new

methodology of scanning the entire IPv4 internet space is

required. To improve scanning speeds we created a framework

combining fast connectionless port scanners with a thorough and

accurate connection-oriented scanner to verify results. The results

are stored to a database. This combined framework provides more

robust results than current connectionless scanners, yet still scans

the IPv4 internet fast enough to be practically usable for mass

scanning.

As the functional complexity of the malicious software

increases, their analyses faces new problems. The paper presents

these aspects in the context of automatic analyses of Internet

threats observed with the Honey Pot technology. The problems

were identified based on the experience gained from the analyses

of exploits and malware using the dedicated infrastructure

deployed in the network of the Institute of Computer Science at

Warsaw University of Technology. They are discussed on the

background of the real-life case of a recent worm targeting

Network Attached Storage (NAS) devices vulnerability. The

paper describes the methodology and data analysis supporting

systems as well as the concept of general and custom Honey Pots

used in the research.

Antivirus software is one of the most widely used tools for

detecting and stopping malicious and unwanted files. However,

the long term effectiveness of traditional host-based antivirus is

questionable. Antivirus software fails to detect many modern

threats and its increasing complexity has resulted in

vulnerabilities that are being exploited by malware. This paper

advocates a new model for malware detection on end hosts based

on providing antivirus as an in-cloud network service. This model

enables identification of malicious and unwanted software by

multiple, heterogeneous detection engines in parallel, and a

technique we term ̀ N-version protection’. This approach provides

several important benefits including better detection of malicious

software, enhanced forensics capabilities, retrospective detection,

and improved deploy ability and management. To explore this

idea we construct and deploy a production quality in-cloud

antivirus system called Cloud AV. Cloud AV includes a

lightweight, cross-platform host agent and a network service with

ten antivirus engines and two behavioral detection engines. We

evaluate the performance, scalability, and efficacy of the system

using data from a real-world deployment lasting more than six

months and a database of 7220 malware samples covering a one

year period. Using this dataset we find that Cloud AV provides

35% better detection coverage against recent threats compared to

a single antivirus engine and a 98% detection rate across the full

dataset. We show that the average length of time to detect new

threats by an antivirus engine is 48 days and that retrospective

detection can greatly minimize the impact of this delay. Finally,

we relate two case studies demonstrating how the forensics

capabilities of Cloud AV were used by operators during the

deployment.

As the dominator of the Smartphone operating system market,

consequently android has attracted the attention of s malware

authors and researcher alike. The number of types of android

malware is increasing rapidly regardless of the considerable

number of proposed malware analysis systems. In this paper, by

taking advantages of low false-positive rate of misuse detection

and the ability of anomaly detection to detect zero-day malware,

we propose a novel hybrid detection system based on a new open-

source framework Cuckoo Droid, which enables the use of

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2021, VOLUME: 11, ISSUE: 02

2307

Cuckoo Sandbox’s features to analyze Android malware through

dynamic and static analysis. Our proposed system mainly consists

of two parts: anomaly detection engine performing abnormal apps

detection through dynamic analysis; signature detection engine

performing known malware detection and classification with the

combination of static and dynamic analysis. We evaluate our

system using 5560 malware samples and 6000 benign samples.

Experiments show that our anomaly detection engine with

dynamic analysis is capable of detecting zero-day malware with a

low false negative rate (1.16 %) and acceptable false positive rate

(1.30 %); it is worth noting that our signature detection engine

with hybrid analysis can accurately classify malware samples

with an average positive rate 98.94 %. Considering the intensive

computing resources required by the static and dynamic analysis,

our proposed detection system should be deployed off-device,

such as in the Cloud. The app store markets and the ordinary users

can access our detection system for malware detection through

cloud service.

2. RELATED WORKS

Existing approaches to detecting attack presence are limited in

terms of their ability to detect threats in real-time as well as to

scale across multiple hosts. One of the limitations of existing

security approaches stems from the use of a dedicated signature

database for threat detection. This applies to approaches that

feature a regularly updated attack signature database for threat

detection. Typically in the in-VM and outside-VM interworking

approach, an in-VM agent detects and passes any suspicious file

to the remote scrutiny server, which uses the signature database

to determine if it is a malware. The dependence on a regularly-

updated signature database makes it limited in detecting zero-day

attacks.

• Volume: Depending on the number of guest VMs and the

size of the network, the amount of the network and user

application logs to be collected can range from

approximately 500 MB to 1 GB an hour;

• Velocity: The network and user application logs are collected

in real-time, in order to detect the presence of malware and

root kit attacks, accordingly the collected data containing its

behavior needs to be processed as soon as possible;

• Veracity: Due to the “low and slow” approach that malware

and root kit take in hiding their presence within the guest

VMs, data analysis has to rely upon event correlation and

advanced analytics.

3. PROPOSED SYSTEM

In an “attack pyramid” -based scheme is proposed to detect

APTs (advanced persistent threats) in a large enterprise network

environment. Based on threat tree modeling, different planes

(namely hardware, user, network and application) to which an

attack may be launched are placed hierarchically with the end goal

placed at the top. First, outputs from all available sensors in the

network (e.g. network logs, execution traces, etc.) are put into

contexts. Then, in terms of the contexts various suspicious

activities detected at each attack plane are correlated in a Map

Reduce model, which takes in all the sensor outputs and generates

an event set describing potential APTs. Finally, an alert system

determines attack presence by calculating the confidence levels of

each correlated event.

• The scheme first extracts malware features by using static as

well as dynamic analysis on malware apps. The obtained

features are then used to train a one-class SVM (Support

Vector Machine) classifier for anomaly-based detection.

Implemented on an emulated Android platform, Cuckoo

Droid achieved a detection accuracy of 98.84 %.

• The obtained features are then used to train one-class SVM

classifiers to detect malware presence within guest VMs.

• Implemented on KVM, the scheme is able to detect well-

known DDoS (Distributed Denial of Service) and botnet

attacks such as LOIC (Low Orbit Ion Cannon) and Zeus.

4. SOFTWARE DESCRIPTION

Microsoft .NET is a set of Microsoft software technologies for

rapidly building and integrating XML Web services, Microsoft

Windows-based applications, and Web solutions. The .NET

Framework is a language-neutral platform for writing programs

that can easily and securely interoperate. There’s no language

barrier with .NET: there are numerous languages available to the

developer including Managed C++, C#, Visual Basic and Java

Script. The .NET framework provides the foundation for

components to interact seamlessly, whether locally or remotely on

different platforms. It standardizes common data types and

communications protocols so that components created in different

languages can easily interoperate.

• Managed Code: The code that targets .NET, and which

contains certain extra information - “metadata” - to describe

itself. Whilst both managed and unmanaged code can run in

the runtime, only managed code contains the information

that allows the CLR to guarantee, for instance, safe

execution and interoperability.

• Managed Data: With Managed Code comes Managed Data.

CLR provides memory allocation and Deal location

facilities, and garbage collection. Some .NET languages use

Managed Data by default, such as C#, Visual Basic.NET and

JScript.NET, whereas others, namely C++, do not. Targeting

CLR can, depending on the language you’re using, impose

certain constraints on the features available. As with

managed and unmanaged code, one can have both managed

and unmanaged data in .NET applications - data that doesn’t

get garbage collected but instead is looked after by

unmanaged code.

• Common Type System: The CLR uses something called the

Common Type System (CTS) to strictly enforce type-safety.

This ensures that all classes are compatible with each other,

by describing types in a common way. CTS define how

types work within the runtime, which enables types in one

language to interoperate with types in another language,

including cross-language exception handling. As well as

ensuring that types are only used in appropriate ways, the

runtime also ensures that code doesn’t attempt to access

memory that hasn’t been allocated to it.

The CLR provides built-in support for language

interoperability. To ensure that you can develop managed code

that can be fully used by developers using any programming

RK MONIKA AND K RAVIKUMAR: PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING BASED ON BIG DATA SECURITY ANALYTICS

2308

language, a set of language features and rules for using them

called the Common Language Specification (CLS) has been

defined. Components that follow these rules and expose only CLS

features are considered CLS-compliant.

• Class Library: NET provides a single-rooted hierarchy of

classes, containing over 7000 types. The root of the

namespace is called System; this contains basic types like

Byte, Double, Boolean, and String, as well as Object. All

objects derive from System. Object. As well as objects, there

are value types. Value types can be allocated on the stack,

which can provide useful flexibility. There are also efficient

means of converting value types to object types if and when

necessary.

The set of classes is pretty comprehensive, providing

collections, file, screen, and network I/O, threading, and so on, as

well as XML and database connectivity.

The class library is subdivided into a number of sets (or

namespaces), each providing distinct areas of functionality, with

dependencies between the namespaces kept to a minimum.

• Languages Supported By .Net: The multi-language

capability of the .NET Framework and Visual Studio .NET

enables developers to use their existing programming skills

to build all types of applications and XML Web services.

The .NET framework supports new versions of Microsoft’s

old favorites Visual Basic and C++ (as VB.NET and

Managed C++), but there are also a number of new additions

to the family.

Visual Basic .NET has been updated to include many new and

improved language features that make it a powerful object-

oriented programming language. These features include

inheritance, interfaces, and overloading, among others. Visual

Basic also now supports structured exception handling, custom

attributes and also supports multi-threading.

Visual Basic .NET is also CLS compliant, which means that

any CLS-compliant language can use the classes, objects, and

components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are

just some of the enhancements made to the C++ language.

Managed Extensions simplify the task of migrating existing C++

applications to the new .NET Framework.

C# is Microsoft’s new language. It’s a C-style language that is

essentially “C++ for Rapid Application Development”. Unlike

other languages, its specification is just the grammar of the

language. It has no standard library of its own, and instead has

been designed with the intention of using the .NET libraries as its

own.

Microsoft Visual J# .NET provides the easiest transition for

Java-language developers into the world of XML Web Services

and dramatically improves the interoperability of Java-language

programs with existing software written in a variety of other

programming languages.

Active State has created Visual Perl and Visual Python, which

enable .NET-aware applications to be built in either Perl or

Python. Both products can be integrated into the Visual Studio

.NET environment. Visual Perl includes support for Active

State’s Perl Dev Kit.

ASP.NET

XML

WEB SERVICES

Windows Forms

Base Class Libraries

Common Language Runtime

Operating System

Fig.1. Net Framework

C#.NET is also compliant with CLS (Common Language

Specification) and supports structured exception handling. CLS is

set of rules and constructs that are supported by the CLR

(Common Language Runtime). CLR is the runtime environment

provided by the .NET Framework; it manages the execution of the

code and also makes the development process easier by providing

services.

C#.NET is a CLS-compliant language. Any objects, classes,

or components that created in C#.NET can be used in any other

CLS-compliant language. In addition, we can use objects, classes,

and components created in other CLS-compliant languages in

C#.NET .The use of CLS ensures complete interoperability

among applications, regardless of the languages used to create the

application.

• Constructors and Destructors: Constructors are used to

initialize objects, whereas destructors are used to destroy

them. In other words, destructors are used to release the

resources allocated to the object. In C#.NET the sub finalize

procedure is available. The sub finalize procedure is used to

complete the tasks that must be performed when an object is

destroyed. The sub finalize procedure is called automatically

when an object is destroyed. In addition, the sub finalize

procedure can be called only from the class it belongs to or

from derived classes.

• Garbage Collection: Garbage Collection is another new

feature in C#.NET. The .NET Framework monitors

allocated resources, such as objects and variables. In

addition, the .NET Framework automatically releases

memory for reuse by destroying objects that are no longer in

use.

In C#.NET, the garbage collector checks for the objects that

are not currently in use by applications. When the garbage

collector comes across an object that is marked for garbage

collection, it releases the memory occupied by the object.

• Overloading: Overloading is another feature in C#.

Overloading enables us to define multiple procedures with

the same name, where each procedure has a different set of

arguments. Besides using overloading for procedures, we

can use it for constructors and properties in a class.

• Multithreading: C#.NET also supports multithreading. An

application that supports multithreading can handle multiple

tasks simultaneously, we can use multithreading to decrease

the time taken by an application to respond to user

interaction.

• Structured Exception Handling: C#.NET supports

structured handling, which enables us to detect and remove

errors at runtime. In C#.NET, we need to use

Try…Catch…Finally statements to create exception

handlers. Using Try…Catch…Finally statements, we can

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2021, VOLUME: 11, ISSUE: 02

2309

create robust and effective exception handlers to improve the

performance of our application.

5. .NET FRAMEWORK

The .NET Framework is a new computing platform that

simplifies application development in the highly distributed

environment of the Internet.

• To provide a consistent object-oriented programming

environment whether object codes is stored and executed

locally on Internet-distributed, or executed remotely.

• To provide a code-execution environment to minimizes

software deployment and guarantees safe execution of code.

• Eliminates the performance problems.

There are different types of application, such as Windows-

based applications and Web-based applications.

5.1 FEATURES OF SQL-SERVER

The OLAP Services feature available in SQL Server version

7.0 is now called SQL Server 2000 Analysis Services. The term

OLAP Services has been replaced with the term Analysis

Services. Analysis Services also includes a new data mining

component. The Repository component available in SQL Server

version 7.0 is now called Microsoft SQL Server 2000 Meta Data

Services. References to the component now use the term Meta

Data Services. The term repository is used only in reference to the

repository engine within Meta Data Services

5.2 SOFTWARE MODEL

The Waterfall Model is a linear sequential flow. In which

progress is seen as flowing steadily downwards (like a waterfall)

through the phases of software implementation. This means that

any phase in the development process begins only if the previous

phase is complete. The waterfall approach does not define the

process to go back to the previous phase to handle changes in

requirement.

In this article, we will discuss the advantages and

disadvantages of the waterfall, should we avoid it? when to use

it? and the waterfall model pitfall, and why I see it as the father of

the SDLC models.

Waterfall Model contains the main phases similarly to other

process models, you can read this article for more information

about phases definitions.

Due to the nature of the waterfall model, it is hard to get back

to the previous phase once completed. Although, this is can be

very rigid in some software projects which need some flexibility,

while, this model can be essential or the most suitable model for

other software projects’ contexts.

The usage of the waterfall model can fall under the projects

which do not focus on changing the requirements, for example:

1. Projects initiated from a request for proposal (RFP), the

customer has a very clear documented requirements

2. Mission Critical projects, for example, in a Space shuttle

3. Embedded systems.

We can notice some similarities of these types of projects that

they cannot be delivered in iterative, incremental, or agile manner,

for example, in embedded systems for the elevator, you cannot

deliver an elevator who can go up only without going down, or

handling only users requests from inside and ignore outside calls

for the elevator.

5.3 VALIDATION AND VERIFICATION MODEL:

V-MODEL

V-Model is mostly known as the validation and verification

software development process model (The Vee Model), and It is

one of the most know software development methodology.

Although it is considered as an improvement to the waterfall

model and it has some similarities as the process also based on

sequential steps moving down in a linear way, it differs from the

waterfall model as the steps move upwards after the coding phase

to form the typical V shape. This V shape demonstrates the

relationships between each phase of the development life cycle

and its associated phase of testing.

5.4 V-MODEL

This means that any phase in the development process begins

only if the previous phase is complete and has a correspondence

related testing phase which is performed against this phase

completion. Similar to the Waterfall model, the V-Model does not

define the process to go back to the previous phase to handle

changes in requirement.

The technical aspect of the project cycle is considered as a V

shape starting with the business needs on the upper left and ending

with the user acceptance testing on the upper right.

5.5 V-MODEL PHASES

The V-Model Model contains the main phases similarly to

other process models, you can read this article for more

information about SDLC phases definitions.

Moreover, it breaks down the testing phase into detailed steps

to ensure the validation and verification process. So, it contains

the below testing phases:

• Unit Testing: The Unit testing is the testing at the code level

and helps eliminate issues at an early stage, mainly the

developer is responsible to perform the unit test for his code

while not all the defects cannot be discovered at the unit

testing.

• Functional Testing: Functional testing is associated with

the low-level design phase which ensures that collections of

codes and units are working together probably to execute

new function or service.

RK MONIKA AND K RAVIKUMAR: PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING BASED ON BIG DATA SECURITY ANALYTICS

2310

Table.2. Requirement Format

Req# Requirement Comments Priority
SME Reviewed /

Approved

BR_LR_05
The system should associate a supervisor

indicator with each job class.
Business Process = “Maintenance

3

Bob Dylan, Mick

Jagger

BR_LR_08

The system should handle any number of

fees (existing and new) associated with

unions.

Business Process = “Changing Dues in the

System”

An example of a new fee is an initiation fee.

2
Bob Dylan, Mick

Jagger

BR_LR_10
The system should capture and maintain

job class status (i.e., active or inactive)

Business Process = “Maintenance”

Some job classes are old and are no longer used.

However, they still need to be maintained for

legal, contract and historical purposes.

2
Bob Dylan, Mick

Jagger

BR_LR_16

The system should assign the Supervisor

Code based on the value in the Job Class

table and additional criteria as specified

by the clients.

April 2005 – New requirement. It is one of three

new requirements from BR_LR_03.
2

BR_LR_18

The system should provide the Labor

Relations office with the ability to

override the system-derived Bargaining

Unit code and the Union Code for to-be-

determined employee types, including

hourly appointments.

April 2005 – New requirement. It is one of three

new requirements from BR_LR_04.

5/11/2005 – Priority changed from 2 to 3.

2

3

Table.3. Deferred Requirements

Req# Business Requirement Status Comments Pri

SME

Reviewed

/Approved

BR_LR_01

The system should validate the

relationship between Bargaining

Unit/Location and Job Class.

April 2005: Deleted.

This requirement has

been replaced by

BR_LR_036 and

BR_CC_33.

Business Process = “Assigning a

Bargaining Unit to an

Appointment”

1
Bob Dylan,

Mick Jagger

BR_LR_02

The system should validate that the

supervisor indicator is correct according

to job class.

Deferred to Phase 2B: 3/29/2005

April 2005: Deferred

to Phase 2B.

Business Process = “Assigning a

Bargaining Unit to an

Appointment”

3
Bob Dylan,

Mick Jagger

BR_LR_03

The system should derive the bargaining

unit code, union code, and supervisor

indicator from the job class code and

location.

April 2005: Deleted

Replaced by

BR_LR_16 and

BR_LR_17.

Business Process = “Assigning a

Bargaining Unit to an

Appointment”; This will eliminate

the need, typically, for the user to

enter the bargaining unit code,

union code and supervisor indicator.

1
Bob Dylan,

Mick Jagger

• Integration Testing: Integration testing is associated with

the high-level design phase. Integration testing ensures the

integration between all system modules after adding any

new functions or updates.

• System Testing: System testing is associated with the

system requirements and design phase. It combines the

software, hardware, and the integration of this system with

the other external systems.

• User Acceptance Testing: User Acceptance testing is

associated with the business and operations analysis phase.

The customer users are the main performers of this testing

based on test cases and scenarios that cover the business

requirements to ensure that they have delivered the right

software as per the specifications.

Identify any requirements that have been deleted after

approval or that may be delayed until future versions of the

system.

5.6 CASE STUDY

Computer-Aided Software Engineering (CASE) is the use of

software tools to assist in the development and maintenance of

software. Tools used to assist in this way are known as CASE

Tools.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2021, VOLUME: 11, ISSUE: 02

2311

5.6.1 CASE Tool:

• A CASE tool is a computer-based product aimed at

supporting one or more software engineering activities

within a software development process.

• Computer-Aided Software Engineering tools are those

software which are used in any and all phases of developing

an information system, including analysis, design and

programming. For example, data dictionaries and

diagramming tools aid in the analysis and design phases,

while application generators speed up the programming

phase.

• CASE tools provide automated methods for designing and

documenting traditional structured programming

techniques. The ultimate goal of CASE is to provide a

language for describing the overall system that is sufficient

to generate all the necessary programs needed.

6. MODULE DESCRIPTION

• Hypervisor-Assisted Malware Detection: Hypervisor-

assisted malware detection, on the other hand, uses the

underlying hypervisor to detect malware within the guest

VMs. A hypervisor-assisted malware detection scheme is

designed in to detect botnet activity within the guest VMs.

The scheme installs a network sniffer on the hypervisor to

monitor external traffic as well as inter-VM traffic.

Implemented on Xen, it is able to detect the presence of the

Zeus botnet on the guest VMs. A hypervisor-assisted

detection scheme is proposed in using guest application and

network flow characteristics.

• Clustering for Security Analytics: Clustering organises data

items in an unlabeled dataset into groups based on their

feature similarities. For security analytics, clustering finds a

pattern which generalises the characteristics of data items,

ensuring that it is well generalized to detect unknown

attacks. Examples of cluster based classifiers include K-

means clustering and k-nearest neighbors, which are used in

both intrusion detection and

Clustering is used for security analytics for industrial control

systems in an NCI (networked critical infrastructure)

environment. First, data outputs from various network sensors are

arranged as vectors and K-means clustering is applied to group

the vectors into clusters. The MapReduce model is then applied

to the grouped clusters to find groupings of possible attack

behaviour, thus allowing the detection to be carried out

efficiently.

• Virtualized Environment Neglected Operations

Manipulation: A virtualized infrastructure consists of

virtual machines (VMs) that rely upon the software-defined

multi-instance resources of the hosting hardware. The virtual

machine monitor, also called hypervisor, sustains, regulates

and manages the software-defined multi-instance

architecture. The ability to pool different computing

resources as well as enable on-demand resource scaling has

led to the widespread deployment of virtualized

infrastructures as an important provisioning to cloud

computing services. This has made virtualized

infrastructures become an attractive target for cyber

attackers to launch attacks for illegal access. Exploiting the

software vulnerabilities within the hypervisor source code,

sophisticated attacks such as VENOM (Virtualized

Environment Neglected Operations Manipulation) have

been performed which allow an attacker to break out of a

guest VM and access the underlying hypervisor.

• Security Information and Event Management: Security

analytics applies analytics on the various logs which are

obtained at different points within the network to determine

attack presence. By leveraging the huge amounts of logs

generated by various security systems (e.g., intrusion

detection systems (IDS), security information and event

management (SIEM), etc.), applying big data analytics will

be able to detect attacks which are not discovered through

signature- or rule-based detection methods. While security

analytics removes the need for signature database by using

event correlation to detect previously undiscovered attacks,

this is often not carried out in real-time and current

implementations are intrinsically non-scalable. To

overcome these limitations, in this paper we propose a novel

big data based security analytics (BDSA) approach to

protecting virtualized infrastructures against advanced

attacks.

7. SYSTEMS DESIGN

Systems design is the process or art of defining the

architecture, components, modules, interfaces, and data for a

system to satisfy specified requirements. One could see it as the

application of systems theory to product development. There is

some overlap and synergy with the disciplines of systems

analysis, systems architecture and systems engineering.

The System Design Document describes the system

requirements, operating environment, system and subsystem

architecture, files and database design, input formats, output

layouts, human-machine interfaces, detailed design, processing

logic, and external interfaces. This section provides a brief

description of the Systems Design Document’s purpose and

scope.

This section provides a description of the project from a

management perspective and an overview of the framework

within which the conceptual system design was prepared. If

appropriate, include the information discussed in the subsequent

sections in the summary.

This section describes the system in narrative form using non-

technical terms. It should provide a high-level system architecture

diagram showing a subsystem breakout of the system, if

applicable. The high-level system architecture or subsystem

diagrams should, if applicable, show interfaces to external

systems. Supply a high-level context diagram for the system and

subsystems, if applicable. Refer to the requirements trace ability

matrix (RTM) in the Functional Requirements Document (FRD),

to identify the allocation of the functional requirements into this

design document.

8. SYSTEM ARCHITECTURE

In this section, describe the system and/or subsystem(s)

architecture for the project. References to external entities should

RK MONIKA AND K RAVIKUMAR: PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING BASED ON BIG DATA SECURITY ANALYTICS

2312

be minimal, as they will be described in detail in Section 6,

External Interfaces.

• System Hardware Architecture: In this section, describe the

overall system hardware and organization. Include a list of

hardware components (with a brief description of each item)

and diagrams showing the connectivity between the

components. If appropriate, use subsections to address each

subsystem.

• System Software Architecture: In this section, describe the

overall system software and organization. Include a list of

software modules (this could include functions, subroutines,

or classes), computer languages, and programming

computer-aided software engineering tools (with a brief

description of the function of each item). Use structured

organization diagrams/object-oriented diagrams that show

the various segmentation levels down to the lowest level. All

features on the diagrams should have reference numbers and

names. Include a narrative that expands on and enhances the

understanding of the functional breakdown. If appropriate,

use subsections to address each module.

• Internal Communications Architecture: In this section,

describe the overall communications within the system; for

example, LANs, buses, etc. Include the communications

architecture(s) being implemented, such as X.25, Token

Ring, etc. Provide a diagram depicting the communications

path(s) between the system and subsystem modules. If

appropriate, use subsections to address each architecture

being employed.

• File and Database Design: Interact with the Database

Administrator (DBA) when preparing this section. The

section should reveal the final design of all database

management system (DBMS) files and the non-DBMS files

associated with the system under development. Additional

information may add as required for the particular project.

Provide a comprehensive data dictionary showing data

element name, type, length, source, validation rules,

maintenance (create, read, update, delete (CRUD)

capability), data stores, outputs, aliases, and description. Can

be included as an appendix.

8.1. DETAILED DESIGN

This section provides the information needed for a system

development team to actually build and integrate the hardware

components, code and integrate the software modules, and

interconnect the hardware and software segments into a functional

product. Additionally, this section addresses the detailed

procedures for combining separate COTS packages into a single

system. Every detailed requirement should map back to the FRD,

and the mapping should be presented in an update to the RTM and

include the RTM as an appendix to this design document.

8.2. HARDWARE DETAILED DESIGN

A hardware component is the lowest level of design

granularity in the system. Depending on the design requirements,

there may be one or more components per system. This section

should provide enough detailed information about individual

component requirements to correctly build and/or procure all the

hardware for the system (or integrate COTS items).

If there are many components or if the component

documentation is extensive, place it in an appendix or reference a

separate document. Add additional diagrams and information, if

necessary, to describe each component and its functions,

adequately. Industry-standard component specification practices

should be followed. For COTS procurements, if a specific vendor

has been identified, include appropriate item names.

8.3. SOFTWARE DETAILED DESIGN

A software module is the lowest level of design granularity in

the system. Depending on the software development approach,

there may be one or more modules per system. This section should

provide enough detailed information about logic and data

necessary to completely write source code for all modules in the

system (and/or integrate COTS software programs).

If there are many modules or if the module documentation is

extensive, place it in an appendix or reference a separate

document. Add additional diagrams and information, if necessary,

to describe each module, its functionality, and its hierarchy.

Industry-standard module specification practices should be

followed. Include the following information in the detailed

module designs:

If the system includes more than one component there may be

a requirement for internal communications to exchange

information, provide commands, or support input/output

functions. This section should provide enough detailed

information about the communication requirements to correctly

build and/or procure the communications components for the

system. Include the following information in the detailed designs

(as appropriate):

8.4. EXTERNAL INTERFACES

External systems are any systems that are not within the scope

of the system under development, regardless whether the other

systems are managed by the State or another agency. In this

section, describe the electronic interface(s) between this system

and each of the other systems and/or subsystem(s), emphasizing

the point of view of the system being developed.

In this section, describe the interface(s) between the system

being developed and other systems; for example, batch transfers,

queries, etc. Include the interface architecture(s) being

implemented, such as wide area networks, gateways, etc. If

appropriate, use subsections to address each interface being

implemented.

For each system that provides information exchange with the

system under development, there is a requirement for rules

governing the interface. This section should provide enough

detailed information about the interface requirements to correctly

format, transmit, and/or receive data across the interface. Include

the following information in the detailed design for each interface

(as appropriate):

8.5. INPUT DESIGN

The input design is the link between the information system

and the user. It comprises the developing specification and

procedures for data preparation and those steps are necessary to

put transaction data in to a usable form for processing can be

achieved by inspecting the computer to read data from a written

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2021, VOLUME: 11, ISSUE: 02

2313

or printed document or it can occur by having people keying the

data directly into the system. The design of input focuses on

controlling the amount of input required, controlling the errors,

avoiding delay, avoiding extra steps and keeping the process

simple. The input is designed in such a way so that it provides

security and ease of use with retaining the privacy. Input Design

considered the following things:

• Input Design is the process of converting a user-oriented

description of the input into a computer-based system. This

design is important to avoid errors in the data input process

and show the correct direction to the management for getting

correct information from the computerized system.

• It is achieved by creating user-friendly screens for the data

entry to handle large volume of data. The goal of designing

input is to make data entry easier and to be free from errors.

The data entry screen is designed in such a way that all the

data manipulates can be performed. It also provides record

viewing facilities.

• When the data is entered it will check for its validity. Data

can be entered with the help of screens. Appropriate

messages are provided as when needed so that the user will

not be in maize of instant. Thus the objective of input design

is to create an input layout that is easy to follow.

8.6. OUTPUT DESIGN

A quality output is one, which meets the requirements of the

end user and presents the information clearly. In any system

results of processing are communicated to the users and to other

system through outputs. In output design it is determined how the

information is to be displaced for immediate need and also the

hard copy output. It is the most important and direct source

information to the user. Efficient and intelligent output design

improves the system’s relationship to help user decision-making.

Fig.1. System Design

Fig.2. User Case Diagram

RK MONIKA AND K RAVIKUMAR: PROTECTING VIRTUALIZED INFRASTRUCTURES IN CLOUD COMPUTING BASED ON BIG DATA SECURITY ANALYTICS

2314

Fig.3. Class Diagram

Fig.4. Activity Diagram

Fig.5. Sequence Diagram

The DFD is also called as bubble chart. It is a simple graphical

formalism that can be used to represent a system in terms of the

input data to the system, various processing carried out on these

data, and the output data is generated by the system.

8.7. SYSTEM TESTING

The purpose of testing is to discover errors. Testing is the

process of trying to discover every conceivable fault or weakness

in a work product. It provides a way to check the functionality of

components, sub-assemblies, assemblies and/or a finished

product It is the process of exercising software with the intent of

ensuring that the

Software system meets its requirements and user expectations

and does not fail in an unacceptable manner. There are various

types of test. Each test type addresses a specific testing

requirement.

9. CONCLUSION

In this paper, we have put forward a novel big data based

security analytics (BDSA) approach to protecting virtualized

infrastructures in cloud computing against advanced attacks. Our

BDSA approach constitutes a three phase framework for detecting

advanced attacks in real-time. First, the guest VMs network logs

as well as user application logs are periodically collected from the

guest VMs and stored in the HDFS. Then, attack features are

extracted through correlation graph and MapReduce parser.

Finally, two-step machine learning is utilized to ascertain attack

presence. Logistic regression is applied to calculate attack’s

conditional probabilities with respect to individual attributes.

Furthermore, belief propagation is applied to calculate the overall

belief of an attack presence. From the second phase to the third,

the extraction of attack features is further strengthened towards

the determination of attack presence by the two-step machine

learning. The use of logistic regression enables the fast calculation

of attack’s conditional probabilities.

The effectiveness of our BDSA approach is evaluated by

testing it against well-known malware and rookit attacks. In all

cases, it has been shown that our BDSA approach is able to detect

them while maintaining a consistent performance overhead with

increasing number of guest VMs at an average detection time of

approximately 0.06 ms. Tested against Livewire, our BDSA

approach incurs less performance overhead in attack detection

through monitoring the guest VM’s behavior. Our BDSA

approach has taken advantage of the distributed processing of

HDFS and real-time ability of Map Reduce model in Spark to

address the velocity and volume challenges in security analytics.

REFERENCES

[1] D. Fisher, “Venom’ Flaw in Virtualization Software Could

Lead to VM Escapes, Data Theft”, Available at:

https://threatpost.com/venomflaw- in-virtualization-

software-could-lead-to-vm-escapes-datatheft/ 112772/,

2015, Accessed at 2015.

[2] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M.

Bailey, F. Li, N.Weaver, J. Amann, J. Beekman and M.

Payer, “The matter of Heart Bleed”, Proceedings of

International Conference on Internet Measurement, pp. 475-

488, 2014.

[3] K. Cabaj, K. Grochowski and P. Gawkowski, “Practical

Problems of Internet Threats Analyses”, Proceedings of

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2021, VOLUME: 11, ISSUE: 02

2315

International Conference on Theory and Engineering of

Complex Systems and Dependability, pp. 87-96, 2015.

[4] J. Oberheide, E. Cooke and F. Jahanian, “Cloudav: N-

Version Antivirus in the Network Cloud”, Proceedings of

International Symposium on USENIX Security, pp. 91-106,

2008.

[5] X. Wang, Y. Yang and Y. Zeng, “Accurate Mobile Malware

Detection and Classification in the Cloud”, Springer Plus,

Vol. 4, No. 1, pp. 1-23, 2015.

[6] N.V. Kousik, S. Jayasr and A. Daniel, “A Survey on Various

Load Balancing Algorithm to Improve the Task Scheduling

in Cloud Computing Environment”, Journal of Advanced

Research in Dynamical and Control Systems, Vol. 11, No.

8, pp. 2397-2406, 2019.

[7] V. Ganesan and S.G. Dhas, “Analysis on Improving the

Response Time with PIDSARSA-RAL in Clowd Flows

Mining Platform”, EAI Endorsed Transactions on Energy

Web, Vol. 5, No. 20, pp. 1-14, 2018.

[8] K. Cabaj, K. Grochowski and P. Gawkowski, “Practical

Problems of Internet Threats Analyses”, Proceedings of

International Conference on Dependability and Complex

Systems, pp. 87-96, 2015.

[9] Y. Lee and D. Kim, “Threats Analysis, Requirements and

Considerations for secure Internet of Things”, International

Journal of Smart Home, Vol. 9, No. 12, pp. 191-198, 2015.

[10] S. Fedushko and E. Benova, “Semantic Analysis for

Information and Communication Threats Detection of

Online Service Users”, Procedia Computer Science, Vol.

160, pp. 254-259, 2019.

[11] Y. Lee, Y. Park and D. Kim, “Security Threats Analysis and

Considerations for Internet of Things”, Proceedings of

International Conference on Security Technology, pp. 28-

30, 2015.

[12] R.E. Crossler, F. Belanger and D. Ormond, “The Quest for

Complete Security: An Empirical Analysis of Users’ Multi-

Layered Protection from Security Threats”, Information

Systems Frontiers, Vol. 21, no. 2, pp. 343-357, 2019.

