
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2020, VOLUME: 11, ISSUE: 01

DOI: 10.21917/ijsc.2020.0318

2227

A HYBRID BAT APPROACH WITH TABU SEARCH ALGORITHM FOR TEST CASE

SELECTION IN OBJECT ORIENTED TESTING

B. Geetha1 and D. Jeya Mala2
1Department of Computer Science and Engineering, Anna University, Chennai, India

2Department of Master of Computer Applications, Fatima college, India

Abstract

All research made on the Object-Oriented (OO) paradigms focus on the

fundamentals of analysis, programming, and design. The primary

problem found in testing the systems which are object-oriented is a

methodology of standard testing and this may not be very useful. The

test case may execute software using a new set consisting of some input

values and will then compare them to the output to check if the test has

passed. An optimum test case set is obtained using a process of selection

that is viewed to be a problem of optimization. Thus, metaheuristic

optimizing or searching is a technique used often for optimizing or

searching which is used in automated testing of software. The BAT

Algorithm is a metaheuristic that is dependent on the property of

echolocation of the miniaturized scale bats. The property further

controls the conduct of search of the bats of a small-scale and making

them discover prey thus enabling them to identify distinctive types of

bugs irrespective of the fact they are found to be dull. The work also

proposed a new and hybrid Tabu search algorithm using the BAT for

the selection of test case.

Keywords:

Object Oriented (OO) Paradigms, Hybrid Tabu Search, Bat Algorithm,

Test Case Selection

1. INTRODUCTION

Software testing is done for guaranteeing both the reliability

and quality of software. This Object-oriented (OO) approach is

used for developing software in an efficient manner. It also

enables one to bring down or eliminate certain typical issues

found in procedural software. Also, it can introduce some more

new problems which may result in faults that are addressable

using techniques of traditional testing. The faults that are state-

dependent may occur often in the OO software as opposed to

procedural software. Most of the objects will have a new

associated state and the member function behaviour will be

invoked based on the object which is dependent on the state of the

object. These faults are extremely challenging since they may also

result in failures at the time the objects have been exercised in

certain states [1].

The primary issue in software testing that has been

investigated in the paper will refer to the selection of suitable test

cases consisting of bugs, errors, and functions. The problem that

is serious will be the size of the chosen test cases which may be

too big at the time of modifying programs for every version. This

may further result in testing time thus increasing errors. The main

problem will be the size of the chosen test cases that are too big

at the time of modifying every version of the program. This also

results in testing time and also increases errors. Retest all, a

random technique and a safe test method are the types of selection

used for comparing purposes. Studies have shown the retesting

method to have various cases that are simple and also introduce

consumption of time at the time of software testing. And for this,

there is a random technique which is simpler compared to the

earlier method at the time of testing test cases that are chosen from

this program. However, this will not be able to guarantee accuracy

in terms of auditing software. One more safe technique of testing

that provides better performance of reduction of test cases that are

ineffective and in this, there are some bugs that are produced in

comparison to the other old approaches [2].

The test case denotes a test set that takes all input values along

with the observed output to be compared to the expected output.

The primary feature of this test case was that it had the quality that

covered the test objective and also contributed towards the

reduction of software testing cost. Another problem in the testing

of software is choosing suitable cases of tests from a test suit in

connection to the program size. In case the size of the chosen test

cases are big, it may be able to affect the performance of the life

cycle of software development. In accordance with this, the

testing time increases and further produces many more bugs.

The metaheuristic was a procedure of a higher level that

identifies heuristics that provide an ideal solution to a problem of

optimization. The Tabu Search (TS) is a technique of

metaheuristic search which is based on a premise that says for

qualifying to be intelligent, solving or problem has to include

responsive exploration and adaptive memory. So, this Tabu

Search algorithm is dependent on the next K-neighbours and

maintains the Tabu list (for memory) of the neighbours that

visited the Tabu. This rule features various parameters that were

selected based on the problem and its ideal that needs to be solved.

This objective was operating (fitness function) for measuring the

cost of any solution and for this purpose, there was a suitable

candidate list strategy used. This was to choose neighbour

candidates that are good and for them to go beyond the local

optimum without giving way to exploit or examine parts in the

neighbourhood. This is necessary for outlining the short term

memory and various other methods.

The hybrid optimization is structured by the strategies of

communication among two different algorithms. The idea had

been based on the replacement of weaker individuals in

accordance with the evaluation of fitness for one algorithm that

has stronger individuals from that of the other swarm intelligent

algorithms in parallel processing. There are many groups in a

structure which are parallel has been created by means of dividing

the population into smaller subpopulations for constructing a new

and parallel processing algorithm. Every subpopulation

independently evolves with regular interactions. They exchange

information among the population at the time the strategy of

communication has been triggered. This may result in completely

taking advantage of individual strengths for every algorithm, thus

replacing weaker individuals with ones that are better. This can

bring down the population size for every population and

cooperation benefit is thus achieved.

B GEETHA AND D JEYA MALA: A HYBRID BAT APPROACH WITH TABU SEARCH ALGORITHM FOR TEST CASE SELECTION IN OBJECT ORIENTED TESTING

2228

The focus of this paper is hybridizing two evolutionary

approaches inspired by nature which are the BAT and the Tabu

used for the optimization of a test suite. These algorithms had

made use of test history for generating the initial population. The

calculation of fitness values was made by using running time and

fault coverage of test cases. After this, only the fit tests will be

carried forward to successive generations for reducing test suites

until such time a stopping criterion is arrived at. The Hybrid BAT

along with Tabu Search algorithm that had been proposed to

choose test cases using a method of OO testing.

The literature that was based on the work had been detailed as

in section 2. The techniques that were proposed had been

discussed in section 3. All results obtained were explained duly in

section 4 and section 5 concluded the work.

2. LITERATURE SURVEY

Thakur and Verma [3] had proposed a new Project Objective

as Software Testing using Optimization Technique. The

identification, automatic prioritization, and characterization of

test cases found in software testing with techniques of

optimization were used. Proposing a new approach in the process

of software testing, optimizing of test effort, reliability, quality

issues, and complexity of testing were employed. In the software

development life cycle (SDLC), the most important phase was the

testing phase. In the case of regression testing, there were many

test cases which were impractical to be tested. So, in order to

overcome the problem, the testing phase was done by making use

of the chosen test cases for reducing efforts and for obtaining the

results accurately.

Lawanna [2] had made a proposal for the software testing and

its improvement in choosing small test cases by means of

considering functions that were modified, the changed lines of

code, the actual bugs produced after program modification. The

reason behind proposing an improvement to software testing was

to prepare an algorithm that was effective and the number of bugs

was found to be lower than that of the traditional methods. Based

on the results of the experiment, the size of the chosen test cases

was made by means of the proposed model which was lower than

the Retest All, the Random and the Safe Test of about 98.70%,

87.86%, and 84.67% respectively. Furthermore, the STI had an

ability that was higher than comparative studies which were about

1- 20 times for the number of the bugs that were identified in the

modification of the program.

Musa et al. [4] had made a modification to the presentation to

reveal the selection of test cases for the object- oriented software

that made use of an analysis of dependence graph in the source

code. There was an experimental evaluation for this approach that

was made by employing a total of nine programs. The

performances of the approach of selection with inclusiveness

metrics and selection metrics were made. The results proved that

the approach was able to increase the efficiency of regression

testing while looking at inclusiveness and precision. The

conclusion was the choice of modification that revealed all test

cases that were based on the statements providing better results

for inclusiveness and precision in comparison to the random and

the retest-all technique thus bringing down regression testing

costs.

For improving the current techniques, there was another new

technique which was a combination of the TABU Search and the

GA that was presented by Miranda et al [5]. This hybrid technique

was a combination of the strength of two different metaheuristic

methods that produced test-case sequences that were efficient.

Agrawal and Kaur [6] had aimed at comparison of the

performance of two different metaheuristics which were the Ant

Colony and the Hybrid Particle Swarm Optimization. Enquiry

domain for the paper was Test Case Selection and this was

relevant in the case of software engineering needing a good

treatment to effectively utilize the software. There were extensive

experiments that were performed which made use of a standard

flex object from the SIR repository. MATLAB was used for

conducting these experiments and here the execution time along

with fault coverage had been considered to be a measure of quality

that has been reported in the paper and was used for analysis. The

motivation behind the paper was the creation of awareness in two

different aspects. Comparison of performance of these

metaheuristic algorithms, and the demonstration of test case

selection significance for software engineering.

Software testing has the main objective of locating the

maximum number of bugs in the software by means of using

optimum test cases. This optimum set of the test cases were

obtained using the procedure of selection that is viewed to be a

problem in optimization. Thus, metaheuristic optimizing

techniques are used immensely for automating tasks of software

techniques. Applying techniques of metaheuristic search in

software testing was called Search-Based Testing. The reliable,

non-redundant and optimized test cases that were generated using

search-based testing making use of less time and effort. There was

a systematic review based on various techniques like the TABU

Search, Cuckoo Search, Bee Colony Optimization, Ant Colony

Optimization, Particle Swarm Optimization, and Genetic

Algorithm. There were modified versions for these algorithms as

in Sahoo and Ray [7]. Authors provided a one framework, with

advantages, future scope, and limitations in the works of research

that help in further research of such work.

Kaur and Agrawal [8] had made an evaluation of two different

metaheuristic algorithms which are the Bat Algorithm and the

Cuckoo Search Algorithm. The factors that were taken into

consideration of evaluation of performance were the faults that

were detected during execution. The domain of this study was a

flex object from a Benchmark repository – the Software Artifact

and Infrastructure Repository. There were extensive experiments

conducted for collecting and analysing results. There were a

statistical test and the Ftest that had been conducted for validating

research hypothesis. The results proved that Cuckoo Search

Algorithms were able to perform better compared to the BAT

algorithm.

3. METHODOLOGY

The section details on various datasets such as the Hybrid

BAT with the TABU Search Algorithm, the BAT Algorithm, the

TABU Search Algorithm, the JTOPas, the NanoXML, and the

seina. There were three datasets that were employed for this

experiment.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2020, VOLUME: 11, ISSUE: 01

2229

3.1 SIENA

Siena was a persistence API which was for the Java that had

been inspired by a Google App Engine Python Datastore that

attempts at drawing a bridge between the SQL and the NoSQL. It

also provided the Java Object-DB mapping that was designed

following an Active Record pattern to bring an intuitive and

simple approach for managing Java objects in respect with the

entities of the database.

3.2 NANOXML

 The NanoXML denotes a small and non-validating parser

used for the Java and this comes in various branches. It denotes a

small XML based parser for Java [8]. The NanoXML was non-

GUI based with easy-to-use systems that are available freely and

are buildable from a source which will not have external libraries.

The NanoXML was a non- validating parser used in Java. The

approaches of NanoXML are found in diverse branches and are

considered as a criterion parser recommended for the ones that

prefer to remain autonomous among parsers using the SAX. This

NanoXML/Lite was a descendant of a NanoXML 1 which is very

small (only 6KB) and has traits that are faster as an algorithm. In

case the NanoXML 1 was used, the user may not require to adopt

a new code for the API and if coding applications are found to be

small (like the embedded codes or the applets), this may be

suitable. NanoXML/Lite has a functionality that is limited. Most

of the branches were a selection of some classes that are found to

be a common source tree.

• The NanoXML/Java was a standard parser which is

recommended for the users.

• The NanoXML/SAX was a SAX adapter used for the

NanoXML/Java. The branch was recommended for the ones

that have to be independent of parsers or using the SAX.

• The NanoXML/Lite succeeded the NanoXML 1. This was

quite small (just 6 KB) and the features were faster as an

algorithm. It had been recommended only if the NanoXML

1 is used currently and the code cannot be adapted for a new

API and in case the applications are coding which is very

small.

The JTopas denotes a collection of the modules of Java that

result from experiments or solutions of Java. This is a project

which provides easy-to-use and small Java library for the problem

of the parsing of text data that is arbitrary. Using a few of the

alternations, it may be possible to extract the hyperlinks of meta-

information of an HTML source. There were some more

examples in the JUnit test cases that were provided in the library

of the JTopas.

4. TABU SEARCH (TS) ALGORITHM

The TABU search is an approach to metaheuristics used for

solving problems in optimization [5]. This has been designed in a

manner in which other methods may be guided to move from the

local optima. There are some traits of the

TABU Search that are its flexible memory structure that had

been designed to ensure the criteria and information relating to the

search have been exploited. The TABU has maintained two

different types of memory, a short term one and a long term one.

There are both intensification strategies and diversification

strategies to help in the process of search in order to provide

optimal results. The strategies of intensification will help in

reinforcing the earlier solutions which are found. These strategies

of diversification will help in searching for new ideas which are

not explored in earlier situations. For avoiding getting stuck

within local optima, there is a list that is created to maintain all

recent solutions. This is known as the TABU list. This list

contains some forbidden moves for preventing avoiding them

from getting stuck within local optima. A TABU Search can look

out for better solutions until such time testing criteria are arrived

at. The pseudo-code for the TABU Search Algorithm is shown

below:

Step 1: Create an initial solution n

Step 2: While ith while stopping criteria is not met

Step 3: Create a set of solutions K that are the neighbors of n and

that are not in Tabu list

Step 4: Choose a best solution n* in K Update the Tabu list based

on n*

Step 5: Let n=n*

The advantages of Tabu Search Algorithm is given below:

• This may be applied to the discrete and continuous spaces.

• Using of the TABU List

• A new meta-heuristic which guides procedures of local

search for exploring solution spaces that are beyond their

local optimality.

• For problems that are more challenging, TABU search has

solutions that surpass the best ones found by alternate

approaches.

4.1 BAT ALGORITHM

There are several algorithms that are bio- inspired in existence.

The BAT algorithm is part of a class based on swarm intelligence.

This was developed by Xin-She Yang in the year 2010. As it had

been defined in Yang [9], the BAT algorithm will follow

echolocation of the bats using sonar echoes for detection and

avoidance of obstacles. This is called sound pulses that have been

transformed into some more frequencies that have been reflected

from the obstacles. There were three different generalized rules.

All bats use echolocation to sense distance, and they also know

the difference between food or prey and background barriers in

some magical way. Bats fly randomly with velocity Vi at position

Xi with different frequency ranges f [min,max], varying

wavelength and loudness A0 to search for prey. They can

automatically adjust the wavelength of their emitted pulses and

adjust the rate of pulse Emission r [0,1] depending on the

proximity of their target. The loudness varies from a large

(positive) A0 to a minimum value Amin. Each bat is randomly

assigned a frequency between [fmin,fmax], hence this algorithm is

called as frequency tuning algorithm. Every bat is associated with

velocity vi and position in search space at each iteration t with

respect to frequency fi. Hence at each iteration we need to update

fi,vi and xi as per the following equation

 fi = fmin + (fmax - fmin)×β

where β is current frequency

 Vit = vit-1 + (xit-1-x*)fi

B GEETHA AND D JEYA MALA: A HYBRID BAT APPROACH WITH TABU SEARCH ALGORITHM FOR TEST CASE SELECTION IN OBJECT ORIENTED TESTING

2230

 Xi = xit-1+vit

• All the bats make use of echolocation for sensing distance

and guess differences between their prey or food and their

background barriers in a magical manner.

• The bats fly in a random manner using velocity vi at a

position xi using a fixed frequency which is fmin that had

different loudness and wavelength the A0to that search for

its prey. These will adjust automatically to the wavelength

or frequency of emitted pulses and will also adjust the pulse

rate emission r which is dependent on the target and its

proximity.

• Even though loudness varies in different ways, the

assumption is that its loudness will vary from the large

(positive) A0 to the minimum constant value which is Amin.

The algorithm is as follows [10]: Pseudo-code for the BAT

is shown below.

Step 1: Objective function is f(x), x = (x1,...,xd)T

Step 2: Initializing of the bat population xi(i = 1,2,...,n) and vi

Step 3: Now define pulse frequency fi at xi, initializing of pulse

rates ri and loudness Ai

Step 4: while t < The max number of the iterations do

Step 5: Generation of new solutions by means of adjusting

frequency, and updating velocities, as well as locations or

solutions

Step 6: if rand >ri then

Step 7: Choose a new solution from among its best solutions

Step 8: Generation of a local solution which is around the chosen

best solution

Step 9: end if

Step 10: Generation of a new solution by random flying

Step 11: if rand <Ai and f(xi) < f(x∗) then

Step 12: Accepting new solutions Increasing ri and reducing Ai

Step 13: end if

Step 14: Ranking the bats and finding the current best x

Step 15: end while

Step 16: The post-process results and their visualization

4.2 PROPOSED HYBRID TABU SEARCH WITH

BAT ALGORITHM

The hybrid optimization algorithm has been structured using

strategies of communication among two different algorithms. The

idea has been based on the replacement of individuals that are

weaker in accordance with the evaluation of the fitness of an

algorithm having stronger individuals that are from other

algorithms found in parallel processing in algorithms that are

swarm intelligent. There are many groups within the parallel

structure that have been created by dividing the population into

smaller subpopulations for constructing algorithms of parallel

processing. Every subpopulation thus evolves in regular

iterations. Information is exchanged only on triggering

communication strategies. This may result in the individual

strengths being taken advantage of. This may replace the

individuals that are weaker with the one which is better from each

other and also reducing the size of the population along with the

benefit of cooperation which is achieved.

BAT algorithm and TABU Search hybridization have been

proposed and here the Bat algorithm has the capacity to

automatically zoom into the region that has promising results

under the right conditions. The TABU search may restrict

modification definition by means of elimination of solutions

treated with the TABU list. The focus of this hybridization was

on the modification phase of a new Bat Algorithm solution that

takes advantage of the TABU to ensure the solution obtained has

been untreated earlier.

5. RESULTS AND DISCUSSION

The Table.1 shows the simulation parameters. The Table.2 to

Table.4 shows the code coverage for datasets like Siena,

NanoXML and JTOPas respectively.

Table.1. Simulation parameters

Parameter Value

Population Size 50

Minimum Frequency 0

Maximum Frequency 1

Initial Loudness 1

Loudness Adaption Parameter 0.95

Initial Pulse Rate 0.5

Pulse Rate Adaption Parameter 0.98

Standard Deviation 2

Penalty Coefficient 1

Size of Tabu List 15

Number of Iteration 1-500

Length of candidate Lists 48

Tabu length 10

Table.2. Code Coverage for Siena

Cost Ref Tabu G Bat-tabu Imp%

10000 0.82 0.84 0.79 0.85 6%

20000 0.84 0.86 0.78 0.87 9%

30000 0.85 0.87 0.82 0.89 7%

40000 0.88 0.91 0.84 0.92 8%

50000 0.9 0.93 0.83 0.94 11%

60000 0.92 0.94 0.87 0.95 8%

70000 0.92 0.93 0.86 0.94 8%

80000 0.92 0.93 0.88 0.94 6%

The Table.2 shows that the code coverage for Siena dataset.

The proposed Hybrid TABU with BAT algorithm yields best

result than TABU search algorithm. The above table shows that

BAT with TABU search yields 0.04625 % improved than TABU

algorithm for using Siena dataset. This shows that the code

coverage criteria is very close to the reference value. The

reference value indicates the benchmark to be achieved. It is

observed that the proposed BAT-TABU achieves the values

closest to the reference when compared to BAT algorithm

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2020, VOLUME: 11, ISSUE: 01

2231

Table.3. Code Coverage for NanoXML

Cost Ref Tabu G Bat-tabu Imp%

10000 0.8 0.82 0.76 0.83 7%

20000 0.81 0.83 0.75 0.84 9%

30000 0.83 0.85 0.79 0.86 7%

40000 0.86 0.88 0.81 0.89 8%

50000 0.87 0.9 0.81 0.91 10%

60000 0.89 0.92 0.82 0.93 11%

70000 0.9 0.91 0.84 0.92 8%

80000 0.89 0.91 0.85 0.92 7%

The Table.3 shows that the code coverage for NanoXML

dataset.The proposed Hybrid TABU with BAT algorithm yields

best result than TABU search algorithm. The proposed BAT with

TABU search yields 0.04875 % improved than TABU algorithm

for using NanoXML dataset. The Table.3 further shows that the

code coverage criteria is very close to the reference value. It is

observed that the proposed BAT-TABU achieves the values

closest to the reference when compared to BAT algorithm.

Table.4. Code Coverage for JTOPas dataset

Cost Ref Tabu G Bat-tabu Imp%

10000 0.8 0.82 0.76 0.84 8%

20000 0.82 0.84 0.77 0.85 8%

30000 0.83 0.85 0.8 0.86 6%

40000 0.86 0.88 0.82 0.90 8%

50000 0.88 0.91 0.83 0.92 9%

60000 0.9 0.91 0.84 0.92 8%

70000 0.9 0.91 0.85 0.92 7%

80000 0.9 0.9 0.85 0.92 7%

The Table.5 shows that the code coverage for JTOPas dataset.

The proposed Hybrid TABU with BAT algorithm yields best

result than TABU search algorithm. This shows that the code

coverage criteria is very close to the reference value. The

proposed BAT with TABU search yields 0.0525 % improved than

TABU algorithm for using JTOPas dataset. It is observed that the

proposed BAT-TABU achieves the values closest to the reference

when compared to BAT algorithm.

6. CONCLUSION

There are large test suites that consist of certain redundancies

was the faults are covered using either two or more of these test

cases. So it may be advisable to bring down the test suite. As the

selection of the manual test case can get time-consuming and

prone to errors, the search-based optimization is used to solve this

by employing metaheuristic algorithms. A problem of

optimization will be to identify an ideal solution from other

solutions and for this optimization is needed. The BAT algorithm

is a combination of some good features which are of some more

nature-inspired metaheuristics. The BAT is a very powerful

algorithm found in exploitation (or local search) and sometimes it

may get trapped within local optima thus not being able to

perform a global search. The proposed hybridization of BAT

algorithm with Tabu search achieves the optimal code coverage.

REFERENCES

[1] M. Chaitra, M.K. Prakruthi and N.R. Sarala, “Optimizing

Test Cases for Object-Oriented Software”, International

Journal on Recent and Innovation Trends in Computing and

Communication, Vol: 4, No. 2, pp. 1-16, 2016.

[2] A. Lawanna, “An Effective Test Case Selection for Software

Testing Improvement”, Proceedings of International

Conference Computer Science and Engineering, pp. 1-6,

2015.

[3] P.B. Thakur and T. Verma., “A Survey on Test case

selection Using Optimization Techniques in Software

Testing”, International Journal of Innovative Science,

Engineering and Technology, Vol. 2, No. 4, pp. 1-13, 2015.

[4] S. Musa, A.B.M. Sultan, A.B.A. Ghani and S. Bahaarom,

“Regression Test Cases Selection for Object-Oriented

Programs based on Affected Statements”, International

Journal of Software Engineering and Its Applications, Vol.

9, No. 10, pp. 91-108, 2015.

[5] T.B. Miranda, M. Dhinya and K. Sathyamoorthy, “Test Case

Optimization Using Genetic and Tabu Search Algorithm in

Structural Testing”, International Journal of Computer

Application Technology and Research, Vol. 4, No. 5, pp.

355-358, 2015.

[6] A.P. Agrawal and A. Kaur, “A Comprehensive Comparison

of Ant Colony and Hybrid Particle Swarm Optimization

Algorithms through Test Case Selection”, Data Engineering

and Intelligent Computing, pp. 397-405, 2018.

[7] R.R. Sahoo and M. Ray, “Metaheuristic Techniques for Test

Case Generation: A Review”, Journal of Information

Technology Research, Vol. 11, No. 1, pp. 158-171, 2018.

[8] A. Kaur and A.P. Agrawal, “A Comparative Study of Bat

and Cuckoo Search Algorithm for Regression Test Case

Selection”, Proceedings of 7th International Conference on

Cloud Computing, Data Science and Engineering, pp. 164-

170, 2017.

[9] X.S. Yang, “A New Metaheuristic Bat-Inspired Algorithm”,

Proceedings of 7th International Conference on Nature

Inspired Cooperative Strategies for Optimization, pp. 331-

337, 2010

[10] J. R. Gonzalez, “Studies in Computational Intelligence”,

Springer Publisher, 2012.

[11] M. Imane and K. Nadjet, “Hybrid Bat Algorithm for

Overlapping Community Detection”, IFAC Papers Online

Journal, Vol. 49, No. 12, pp. 1454-1459, 2016.

