
R JANARTHANAN AND A HEMA: PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS

DOI: 10.21917/ijsc.2019.0283

2004

PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS

R. Janarthanan and A. Hema
Department of Computer Applications, Kongunadu Arts and Science College, India

Abstract

This study surveys the effectiveness of Prediction Systems that

predominantly assess the quality of software. The quality of the

software systems depends on functional and non-functional attributes.

In this technological era, software quality prediction is one of the

challenging tasks. It became an essential ingredient in many systems

that produce reliable, cost effective and less complex software. Hence

various researchers are deploying many faults-prone model systems

with various testing traits as parameters to develop quality software.

This paper surveys the pros and cons of software quality prediction

systems that are based on fault- prone models with Software metrics of

the quality systems and describes the different kind of measures in the

field of software engineering.

Keywords:

Software Quality, Software Metrics, Models, Prediction Features,

Fault-Prone Systems

1. INTRODUCTION

In this technological era, the software systems that we use are

expected to be infallible. Software intensive systems play a vital

role in the life of the people involved in social life, business

promotions, marketing etc. Therefore, it is imperative to boost

the effectiveness and the accuracy quotient of the software [1]-

[3] [6] [9] [18]-[20].

A software product with numerous defects definitely lacks

quality, so it is a vital thing to include methodologies and

strategies for anticipating effort of testing, beholding the cost and

results that can help in increasing the productivity and efficiency

of the software [5]. The persuasiveness of the whole process is

just sketched out by predicting the fault of the systems. The

software community is now enthralling in program testing

domain since there is a high demand for complex-free and

reliable software [8] [24]-[34].

The quality assurance in the software is the preliminary factor

that is to be inculcated by each and every tester and developer

before the product release. In the field of computer program, a

contemporary research tells that cost becomes high when the

bugs are not detected earlier [12] [38] [40].

Considering the life cycle of software testing process early

detection of fault prone modules plays a great role in the

successful implementation and the quality prediction turns the

system highly productive. Software metrics is determined as a

measure of software characteristics that are definite and discrete.

It plays a critical role in emphasizing the prediction of quality

software. There is an unmediated relationship between some

changes attributed to faults and complexity metrics that could be

sorted out later in verification and validation [15] [42]-[49].

Many researchers casted about the development of

relationship between complexity metrics and faults. It is

suggested that there is a vital necessity of multiple variable

modules in order to add the program size, subsequently

examining the relationship between the metrics, faults and

programs captivates the interest of the researchers [4]. There are

several techniques to enhance the development of predictive

software techniques for the categorization of software program

modules into fault-prone and non-fault prone categories has been

proposed hence a metric based byway can be surveyed for the

prediction of software quality by identifying the fault–prone

modules [14].

The organization of the remaining sections is as follows.

Section 2 illustrates the related works. Section 3 describes a

framework of software quality prediction and their factors.

Section 4 summaries the sample datasets of software quality

prediction. Finally, section 5 concludes the paper.

2. RELATED WORKS

Artificial neural network, one of the recent trends that are

encompassed to sixth generation computing, is applied to the

model software reliability. In this case there are two types of

input given for deriving valid output (i.e.) mistake reports are

given to input of the software quality prediction model and

software quality metrics is fabricated as input of the artificial

neural networks with this effective application of giving

software metrics as the input of neural networks, it is

comparatively proven that it produces an accurate quality

prediction [7].

Considering the severity of fault a software fault- prone

prediction model can be fabricated by a support vector machine

and the object oriented metrics. Conventionally the quality

prediction is rated and qualified by various criteria like accuracy

percentage, probability of detection and probability of false

alarms [22].

Saida et al. [21] predict the faulty and non-faulty modules

based on the mathematical model to analyzing factors are taken

as an object oriented metrics [21].

Bellini et al. [23] find the estimation rate of the fault-

proneness and size of the objects using estimation model based

K-NN algorithm were implemented [23].

Salak Bouktif et al. [39] presented how the general problem

of combining quality experts, modeled as Bayesian classifiers,

can be tackled via a simulated annealing algorithm

customization. The general approach was applied to build an

expert predicting object-oriented software stability, a facet of

software quality. The findings demonstrate that, on available

data, composed expert predictive algorithms and outperform the

best available expert and it compares favorably with the expert

build via a customized genetic algorithm [39].

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

2005

3. SOFTWARE QUALITY PREDICTION

PROCESS AND ITS FACTORS

Defect prediction is an important fact for analyzing the quality

of the software. The Fig.1 shows the process of the software

quality prediction, including the following steps:

Step 1: Extract program modules/files/classes based required

database.

Step 2: Extract the features that are related to software defects

by analyzing software code or the development process.

The features are:

a. Halstead features

b. McCabe features

c. Size related metrics

d. Quality metrics

e. Object oriented metrics

Step 3: Construct defect prediction model by training the

instances with the required features based on the below

models:

a. Mathematical models.

b. Architecture based models

c. Soft computing based models

d. Machine learning based models

e. Outperform design metrics models

f. Object oriented models

Step 4: Predict the unlabeled program modules and classify them

either defective or not.

Fig.1. Framework of Software Quality prediction

3.1 HALSTEAD FEATURES

These features are used to predict the effectiveness of the

software quality. The features contain the following properties

such as program vocabulary, program length, calculated program

length, volume, difficulty and efforts [10].

1 = the number of distinct operators

2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

From these numbers, several measures can be calculated:

 Program vocabulary: = 1 + 2 (1)

 Program length: N = N1 + N2 (2)

 Calculated program length: N = 1log21 + 2log22 (3)

 Volume: V = N*log2 (4)

 Difficulty: D = 1 2

2

*
2

N

 (5)

 Effort: E = D * V (6)

3.2 MCCABE FEATURES

McCabe features are used to predict the quality prediction

based on Cyclomatic Complexity metrics the general form

 V(G) = E-N+2p (7)

where N-Nodes, E-Edges, P-connected procedures

Extended Cyclomatic complexity (ECC): McCabe measures

the program complexity based on conditional statement. Extended

Cyclomatic complexity that may be defined as:

 ECC = eV(G)=Pe+1 (8)

where, Pe is the number of predicate nodes in flow graph G

weighted by number of compound statements.

Information flow metrics may be finding by count the number

of local information flows input (fan-in) and flows output (fan-

out). The procedure may be defined as:

 C = [procedure length]*[(fan-in)*(fan-out)]2 (9)

3.3 SIZE RELATED METRICS

Size related metrics are the metrics which can help to

enumerate the software size. There are three types of software

metrics which are used to measure the software size and predict

the software quality the measures are Line of code (LOC),

Function point Metrics and bang [11].

3.4 QUALITY METRICS

Software Quality prediction based on the Quality measures

carried out the defects, product quality and maintainability of the

software package [16]. The quality metrics is classified into three

cases such as Defect metrics, Reliability Metrics and

Maintainability Index. The defect measures perform the following

parameters:

• Counting the defects in the program

• Number of design change

Reliability Metrics is focus on internal product quality which

is measured the number of bugs in the software. Maintainability

Extract the

instances

New

instances

Software

Quality

Prediction

Non Faculty

prediction

Faculty

prediction

Training the

instances

Classifier

Database

R JANARTHANAN AND A HEMA: PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS

2006

Index is defined as a number of functions that predict software

maintainability [41]. The maintainability index may be measured

as follows

MI = 171-5.2*In(aveV)-0.23*aveV(g)-16.2*In(aveLOC) (10)

where,

AveV = average halstead volume per module

AveV(g) = average extended cyclomatic complexity per module.

aveLOC = average line of code per module.

3.5 OBJECT ORIENTED METRICS

Object-oriented metrics is used for predicting the software

quality based on object-oriented software development. Some of

the object oriented metrics are Chen Metrics, Morris’s Metrics,

Lorenz and Kidd Metrics, MOOSE Metrics, EMOOSE, MOOD

Metrics, QMOOD Metrics, LI Metrics and SATC metrics [17].

Chen Metrics is deals with behavior of the object oriented

design. The behaviors of the object oriented design are

• CCM (Class Coupling Metric)

• OXM (Operating Complexity Metric)

• OACM (Operating Argument Complexity Metric)

• ACM (Attribute Complexity Metric)

• OCM (Operating Coupling Metric)

• CM (Cohesion Metric)

• CHM (Class Hierarchy of Method)

• RM (Reuse Metric)

Morris metrics deals with the cohesion metrics and complexity

of the program which based on the depth of the tree [5].

Lorenz and Kidd Metrics is a set of metrics that can be

grouped in four categories are size, inheritance, internal and

external these metrics are evaluate to the predict of software

Quality the metrics are

• Class Size (CS)

• Number of Operations overridden by a Subclass (NOO)

• Number of Operations added by a Subclass (NOA)

Specialization Index (SI)

• Average Operation Size (OS)

• Operation Complexity (OC)

• Average number of Parameters per Operation (NP).

Metrics for Object-Oriented Software Engineering (MOOSE)

is a set of metrics which is based on cohesion and coupling [35].

The following parameters are evaluating the quality factors

• Weighted Methods per Class (WMC)

• Depth of Inheritance Tree (DIT)

• Number of children (NOC)

• Coupling between Objects (CBO)

• Response for class (RFC)

• Lack of Cohesion in Methods (LCOM)

Fig.2. QMOOD Metrics

Extended Metrics for Object-Oriented Software Engineering

EMOOSE is an object oriented metrics which is used to estimate

the quality of the software. They may be described as

• Message Pass Coupling (MPC)

• Data Abstraction Coupling (DAC)

• Number of Methods (NOM)

The number of methods depend on the size of the program.

NOM consist of two sizes such as size1 and size2.

• Size1 describes the number of lines of code.

• Size2 is used to count the number of local attributes and the

number of operation defined in the class [13].

Metrics for Object-Oriented Design (MOOD) is a quality

metrics which is based on methods and attribute features [37].

MOOD is a structural model which contain the following

parameters

• Encapsulation as (MHF, AHF)

Number of Attributes

Class

Number of Methods

Number of

Attributes per

class

Number of

modules

If shows number of

classes in terms of ratio

of super class

Reuse

If shows number of

super class in terms of

ratio of sub class

Reuse ratio

Specification

ratio

Inheritance

It calculates the

average of depth of

inheritance for the class

in the system

Average number

of ancestors

Coupling
Number of public

methods in a class

Class interface

size

Informatio

n Hiding

Number of attributes

defined in a class in

terms of ratio of private

and protected attributes

Data access

metrics

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

2007

• Inheritance (MIF, AIF)

• Polymorphism (POF)

• Message passing (COF)

Quality Model for Object-Oriented Design (QMOOD) is an

object oriented measure based on OOPS principles the Fig.2

describes the QMOOD Metrics.

LI metrics is used to analyze the software quality in terms of

tree complexity of the coupling. The metrics are

• Number of Ancestor Classes (NecauseAC)

• Number of Local Methods (NLM)

• Class Method Complexity (CMC)

• Number of Descendent Classes (NDC)

• Coupling Through Abstract data type (CTA)

• Coupling through Message Passing (CTM)

SATC’s Metrics is a based on methods, coupling, inheritance

and internal and external psychological complexity factors. The

metrics are

• Cyclomatic Complexity (CC)

• Line of Code

• Comment percentage

The new object oriented measures are shown in Table.1.

 Table.1. New Object Oriented Metrics

Source

Construct
Metrics

Object Oriented

Structure

Traditional

Metrics

Cyclomatic

Complexity (CC)
Methods

Line of Codes Methods

Comment Percentage

(COM)
Methods

New Object

Oriented

Structure

Weight Method per

Class (WMC)
Methods/Class

Response for a Class

(RFC)
Class/Message

Lack of Cohesion of

Methods (LCOM)
Class/Cohesion

Coupling between

Object (CBO)
Coupling

Depth of Inheritance

Tree (DIT)
Inheritance

Number of Children

(NOC)
Inheritance

4. SOFTWARE QUALITY PREDICTION

FACTORS

In software quality process the following factors are evaluated

to predict the fault and quality of the required systems. The

important software predictions factors are

• Cohesion: It is refers to the degree to which the elements

inside a module belong together. In case of high cohesion

which is an ordinal type of measurement. Modules with high

cohesion is inferable, because high cohesion is associated

with the reusability and reliability of the software with high

cohesion it is easy to maintain, test, reuse and even

understand which are the desirable traits of software.

• Coupling: Coupling is usually contrasted with cohesion.

High cohesion infers desirable traits of software which low

coupling correlates with it to give desirable software traits

and determines the strength of the relationship between

modules. It increases the understandability and

maintainability of the software.

• Complexity: It is the term that will affect the internal

interactions of the modules in the software it makes the

product to be less effectuate in terms of time and cost. High

level of complexity will reduce the desirable traits of the

software [36].

• Feasibility: Feasibility study is done as part of systems

developments life cycles that incurs and reveal the strength

and weakness of technical, operational and economical

aspects of the product.

• Customizability: The major perspective of customizability is

user interface that will definitely improve the software

quality in order to satisfy the requirement of the end user.

5. DATASETS DESCRIPTION

In order to evaluate the software quality we consider the

following dataset for empirical study. In this paper we are discuss

four open datasets in NASA, Promise, AEEEM and Relink which

are used for defect prediction based quality assessment.

NASA Dataset- this dataset was collected by NASA metrics

data program. This dataset contain 40 features may contain both

Hallstead features and McCabe features. The features are given in

Table.2.

Promise Dataset- it is open source java projects which contain

different metrics such as lines of code, Response for class,

Average method complexity, coupling between object classes etc.

this metrics is used for evaluation of software quality

effectiveness. The Fig.3 describes the metrics and attributes of the

Promise dataset.

AEEEM Dataset- this dataset which comes from Eclipse and

Apache. This type of dataset may contain classic metrics, object

oriented metrics and source code entropy metrics which is used

for predicting the quality of the software. The Table.3 describes

the attributes and description about the AEEEM Dataset.

Relink Dataset- it is object oriented software metrics which

was developed by Wu et al. it consists of 26 complexity metrics.

The data set range will be 56 to 7782. The Table.4 describes the

attributes of Relink dataset description.

R JANARTHANAN AND A HEMA: PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS

2008

Table.2. NASA Dataset metrics

Dataset

G H I J K L M

Identical

cases

Inconsistent

cases

Cases with

missing values

Cases with

conflicting feature

values

Cases with

implausible

values

Total problem

cases, DS

Total problem

cases, DS

MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom

CM1 26 94 0 2 161 0 2 3 0 1 161 3 178 61

JM1 2628 2628 889 889 0 5 1287 1294 0 1 1287 1294 3158 3165

KC1 1070 1070 253 253 0 0 12 14 0 1 12 14 945 947

KC2 n.a. 182 n.a. 118 n.a. 0 n.a. 38 n.a. 1 n.a. 38 n.a. 197

KC3 12 170 0 2 258 0 0 0 29 29 258 29 264 142

KC4 10 n.a. 9 n.a. 0 n.a. 125 n.a. 0 n.a. 125 n.a. 125 n.a.

MC1 7972 7972 106 106 0 0 189 189 4841 4841 4841 4841 7619 7619

MC2 4 6 0 2 34 0 0 0 0 0 34 0 36 5

MW1 15 36 5 7 139 0 0 0 0 0 139 0 152 27

PC1 85 240 13 13 348 0 3 26 48 49 355 74 411 196

PC2 984 4621 0 100 4004 0 129 129 1084 1084 4055 1163 4855 4297

PC3 79 189 6 9 438 0 2 2 52 52 444 54 490 138

PC4 166 166 3 3 0 0 60 60 111 111 112 112 182 182

PC5 15370 15370 1725 1725 0 0 185 185 1772 1772 1782 1782 15507 15507

Fig.3. Promise dataset description

Table.3. AEEEM Dataset description

Project
Total number of

subclasses (Hopt)

Original metric

number of

instances (p)

Learned feature

dimensionality

(R)

EQ 10 61 6

JDT 20 61 13

LC 26 61 15

ML 116 61 38

PDE 93 61 23

Table.4. Relink Dataset Description

Project

Number of

defective

instances

Number of

total

instances

Number

of metrics

Percentage of

defective

instances

Apache 98 194 26 50.52%

Safe 22 56 26 39.29%

Zxing 118 399 26 29.57%

6. CONCLUSIONS

Based on the survey, an assortment of software fault

predictions techniques has been reviewed, but none has proven to

be consistently accurate. So hybrid algorithms were implemented

to obtain the better results when compared to the traditional

techniques like statistical methods, machine learning methods,

parametric and non-parametric models. In this paper we

summarize different kinds of Metrics, factors and open source

dataset that are known to deliver the desired results in the

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

2009

prediction of Software Quality. In future mathematical features

are to be implemented to accurately detect software faults.

REFERENCES

[1] M.R. Lyu, “Handbook of software Reliability Engineering”,

IEEE Computer Society Press, 1996.

[2] B.W. Boehm and P.N. Papaccio, “Understanding and

Controlling Software Costs”, IEEE Transactions on

Software Engineering, Vol. 14, No. 10, pp. 1462-1477,

1988.

[3] F.G. Sayward, A.J. Perlis and M. Shaw, “Software Metrics:

An Analysis and Evaluation”, MIT Press, 1981.

[4] V.Y. Shen, T. Yu, S.M. Thebaut and L.R. Paulsen,

“Identifying Errorprone Software-An Empirical Study”,

IEEE Transactions on Software Engineering, Vol. 11, No.

7, pp. 317-323, 1985.

[5] S.G. Crawford, A.A. McIntosh and D. Pregibon, “An

Analysis of Static Metrics and Faults in C Software”,

Journal of Systems and Software, Vol. 5, No. 1, pp. 27-48,

1985.

[6] Liang Tian and Afzel Noore, “On-Line Prediction of

Software Reliability using An Evolutionary Connectionist

Model”, Journal of System and Software, Vol. 77, No. 2, pp.

173-180, 2005.

[7] Liang Tian and Afzel Noore, “Evolutionary Neural Network

Modeling for Software Cumulative Failure Time

Prediction”, Reliability Engineering and System Safety, Vol.

87, No. 1, pp. 45-51, 2005.

[8] Q.P. Hu, M. Xie, S.H. Ng and G. Levitin, “Robust Recurrent

Neural Network Modeling for Software Fault Detection and

Correction Prediction”, Reliability Engineering and System

Safety, Vol. 92, No. 3, pp. 332-340, 2007.

[9] T.M. Khoshgoftaar, E.B. Allen and Zhiwei Xu, “Predicting

Testability of Program Modules using a Neural Network”,

Proceedings of 3rd IEEE Symposium on Application-Specific

Systems and Software Engineering Technology, pp. 57-62,

2000.

[10] Zhiwei Xu and T.M. Khoshgoftaar, “Software Quality

Prediction for High Assurance Network

Telecommunications Systems”, Computer Journal, Vol. 44,

No. 6, pp. 557-568, 2001.

[11] Donald E. Neumann, “An Enhanced Neural Network

Technique for Software Risk Analysis”, IEEE Transactions

on Software Engineering, Vol. 28, No. 9, pp. 904-912, 2002.

[12] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan

and P. Thambidurai, “Object Oriented Software Fault

Prediction using Neural Networks”, Information and

Software Technology, Vol. 49, No. 5, pp. 483-492, 2007.

[13] Jon T.S. Quah and Mie Mie Thet Thwin, “Prediction of

Software Readiness using Neural Network”, Proceedings of

1st International Conference on Information Technology and

Applications, pp. 2312-2316, 2002.

[14] Mie Thet Thwin and Tong Seng Quah, “Application of

Neural Networks for Software Quality Prediction using

Object Oriented Metrics”, Journal of Systems and Software,

Vol. 76, No. 2, pp. 147-156, 2005.

[15] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan,

P. Thambidurai, “Object Oriented Software Quality

Prediction using General Regression Neural Networks”,

ACM SIGSOFT Software Engineering Notes, Vol. 29, No. 5,

pp. 1-6, 2004.

[16] Atchara Mahaweerawat, Peraphon Sophatsathit,

Chidchanok Lursinsap and Petr Musilek, “Fault Prediction

in Object-Oriented Software using Neural Network

Techniques”, Journal of Advanced Computational

Intelligence and Intelligent Informatics, Vol. 10, No. 3, pp.

312-322, 2006.

[17] T.M. Khoshgoftaar and R.M. Szabo, “Using Neural

Network to Predict Software Faults during Testing”, IEEE

Transactions on Reliability, Vol. 45, No. 3, pp. 456-462,

1996.

[18] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepoh and S.J. Aud,

“Application of Neural Networks to Software Quality

Modeling of a Very Large Telecommunications System”,

IEEE Transactions on Neural Networks, Vol. 8, No. 4, pp.

902-909, 1997.

[19] Qiu-suo Hu and Cheng Zhong, “Model of Predicting

Software Module Risk based on Neural Network”,

Computer Engineering and Applications, Vol. 43, No. 18,

pp. 106-110, 2007.

[20] Yan Zhao, Cheng Zhong, Zhi Li and Tie Yan, “Object

Oriented Software Fault Proneness Prediction using Support

Vector Machine”, Computer Engineering and Science, Vol.

30, No. 11, pp. 115-117, 2008.

[21] Saida Benlarbi, Khaled El Emam and Nishith Geol, “Issues

in Validating Object-Oriented Metrics for Early Risk

Prediction”, Proceedings of 10th International Symposium

on Software Reliability Engineering, pp. 1-7, 1999.

[22] N.E. Fenton and M. Neil, “A Critique of Software Defect

Prediction Models”, IEEE Transactions on Software

Engineering, Vol. 25, No. 5, pp. 675-689, 1999.

[23] P. Bellini, “Comparing Fault-Proneness Estimation

Models”, Proceedings of 10th IEEE International

Conference on Engineering of Complex Computer Systems,

pp. 205-214, 2005.

[24] Giovanni Denaro, “Estimating Software Fault-Proneness for

Tuning Testing Activities”, Proceedings of 22nd

International Conference on Software Engineering, pp. 1-7,

2000.

[25] A. Mahaweerawat, “Fault-Prediction in Object Oriented

Software’s using Neural Network Techniques”, IEEE

Transactions on Software Engineering, Vol. 30, No. 3, pp.

711-718, 2004.

[26] Y. Ma and L. Guo, “A Statistical Framework for the

Prediction of Fault-Proneness”, IEEE Transactions on

Software Engineering, Vol. 32, No. 5, pp. 651-662, 2006.

[27] Thomas Zimmermann and Nachiappan Nagappan,

“Predicting Defects using Social Network Analysis on

Dependency Graphs”, Proceedings of International

Conference on Software Engineering, pp. 1-7, 2008.

[28] Audris Mockus, Nachiappan Nagappan and Trung T. Dinh

Trong, “Test Coverage and Post-Verification Defects: A

Multiple Case Study”, Proceedings of ACM-IEEE

International Conference on Empirical Software

Engineering and Measurement, pp. 23-29, 2009.

[29] Cagatay Catal and Banu Diri, “A Systematic Review of

Software Fault Prediction Studies”, Journal of Expert

Systems with Applications, Vol. 36, No. 4, pp. 7346-7354,

2009.

R JANARTHANAN AND A HEMA: PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS

2010

[30] Jonas Boberg, “Early Fault Detection with the Model-based

Testing”, Proceedings of 7th ACM SIGNPLAN workshop on

ERLANG, pp. 9-20, 2008.

[31] Bindu Goel and Yogesh Singh, “Emperical Investigation of

Metrics for Fault Prediction on Object Oriented Software”,

Computer and Information Science, Vol. 131, pp. 255-265,

2008.

[32] T.M. Khoshgoftaar, E.B. Allen, F.D. Ross, R. Munikoti, N.

Goel, and A. Nandi, “Predicting Fault-Prone Modules with

Case-Based Reasoning”, Proceedings of 8th International

Symposium on Software Engineering, pp. 27-35, 1997.

[33] Min Gu Lee and Theresa L. Jefferson, “An Empirical Study

of Software Maintenance of a Web-based Java Application”,

Proceedings 21st IEEE International Conference on

Software Maintenance, pp. 455-463, 2005.

[34] Marco D. Ambros and Michle Lanza, “Software Bugs and

Evolution: A Visual Approach to Uncover Their

Relationship”, Proceedings of IEEE Conference on

Software Maintenance and Reengineering, pp. 229-238,

2006.

[35] George E. Stark, “Measurements for Managing Software

Maintenance”, I Proceedings of IEEE Conference on

Software Maintenance, pp. 4-8, 1996.

[36] T.M. Khoshgoftaar and J.C. Munson, “Predicting Software

Development Errors using Complexity Metrics”, IEEE

Journal on Selected Areas in Communications, Vol. 8, No.

2, pp. 253-261, 1990.

[37] T. Menzies, K. Ammar, A. Nikora and S. Stefano, “How

Simple is Software Defect Prediction?”, Kluwer Academic

Publishers, 2003.

[38] K. Eman, S. Benlarbi, N. Goel and S. Rai, “Comparing Case-

based Reasoning Classifiers for Predicting High Risk

Software Components”, Journal of Systems Software, Vol.

55, No. 3, pp. 301-310, 2001.

[39] Salah Bouktif, Houari Sahraoui and Giuliano Antoniol,

“Simulated Annealing for Improving Software Quality

Prediction”, Proceedings of 8th Annual Conference on

Genetic and Evolutionary Computation, pp. 1893-1900,

2006.

[40] Ping Guo and Michael R. Lyu, “Software Quality Prediction

using Mixture Models with EM Algorithm”, Proceedings of

1st Asia Pacific Conference on Quality Software, pp. 69-78,

2000.

[41] Yue Jiang, Bojan Cukic, Tim Menzies and Nick Bartlow,

“Comparing Design and Code Metrics for Software Quality

Prediction”, Proceedings of 4th International Workshop on

Predictor Models in Software Engineering, pp. 227-234,

2008.

[42] A. Kaur, A.S. Brar and P.S. Sandhu, “An Empirical

Approach for Software Fault Prediction”, Proceedings of

International Conference on Industrial and Information

Systems, pp. 261-265, 2010.

[43] NASA, “NASA Independent Verification and Validation

Facility”, Available at:

https://www.nasa.gov/sites/default/files/166681main_NAS

A_Annual_Report_2005.pdf.

[44] M.A. Hall, “Correlation-based Feature Subset Selection for

Machine Learning”, PhD Dissertation, Department of

Computer Science, The University of Waikato, 1998.

[45] M. Praneesh and K. Mahalakshmi, “Object Oriented

Approach for Analysis of Software Fault Prediction using

K-Jensen Shannon Entropy Model based Clustering

Algorithm”, International Journal of Advanced Research in

Computer and Communication Engineering, Vol. 6, No. 1,

pp. 21-29, 2017.

[46] M. Serdar Bicer and Banu Diri, “Defect Prediction for

Cascading Style Sheets”, Applied Soft Computing, Vol. 49,

No. 2, pp. 1078-1084, 2016.

[47] Raed Shatnawi, “Deriving Metrics Thresholds using Log

Transformation”, Journal of Software: Evolution and

Process, Vol. 27, pp. 95-113, 2015.

[48] Ruchika Malhotra, “A Systematic Review of Machine

Learning Techniques for Software Fault Prediction”,

Applied Soft Computing, Vol. 27, pp. 504-518, 2015.

[49] Ruchika Malhotra, “Comparative Analysis of Statistical and

Machine Learning Methods for Predicting Faulty Modules”,

Applied Soft Computing, Vol. 21, pp. 286-297, 2014.

