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Abstract 

This study surveys the effectiveness of Prediction Systems that 

predominantly assess the quality of software. The quality of the 

software systems depends on functional and non-functional attributes. 

In this technological era, software quality prediction is one of the 

challenging tasks. It became an essential ingredient in many systems 

that produce reliable, cost effective and less complex software. Hence 

various researchers are deploying many faults-prone model systems 

with various testing traits as parameters to develop quality software. 

This paper surveys the pros and cons of software quality prediction 

systems that are based on fault- prone models with Software metrics of 

the quality systems and describes the different kind of measures in the 

field of software engineering. 
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1. INTRODUCTION 

In this technological era, the software systems that we use are 

expected to be infallible. Software intensive systems play a vital 

role in the life of the people involved in social life, business 

promotions, marketing etc. Therefore, it is imperative to boost 

the effectiveness and the accuracy quotient of the software [1]-

[3] [6] [9] [18]-[20].  

A software product with numerous defects definitely lacks 

quality, so it is a vital thing to include methodologies and 

strategies for anticipating effort of testing, beholding the cost and 

results that can help in increasing the productivity and efficiency 

of the software [5]. The persuasiveness of the whole process is 

just sketched out by predicting the fault of the systems. The 

software community is now enthralling in program testing 

domain since there is a high demand for complex-free and 

reliable software [8] [24]-[34]. 

The quality assurance in the software is the preliminary factor 

that is to be inculcated by each and every tester and developer 

before the product release. In the field of computer program, a 

contemporary research tells that cost becomes high when the 

bugs are not detected earlier [12] [38] [40].  

Considering the life cycle of software testing process early 

detection of fault prone modules plays a great role in the 

successful implementation and the quality prediction turns the 

system highly productive. Software metrics is determined as a 

measure of software characteristics that are definite and discrete. 

It plays a critical role in emphasizing the prediction of quality 

software. There is an unmediated relationship between some 

changes attributed to faults and complexity metrics that could be 

sorted out later in verification and validation [15] [42]-[49].  

Many researchers casted about the development of 

relationship between complexity metrics and faults. It is 

suggested that there is a vital necessity of multiple variable 

modules in order to add the program size, subsequently 

examining the relationship between the metrics, faults and 

programs captivates the interest of the researchers [4]. There are 

several techniques to enhance the development of predictive 

software techniques for the categorization of software program 

modules into fault-prone and non-fault prone categories has been 

proposed hence a metric based byway can be surveyed for the 

prediction of software quality by identifying the fault–prone 

modules [14]. 

The organization of the remaining sections is as follows. 

Section 2 illustrates the related works. Section 3 describes a 

framework of software quality prediction and their factors. 

Section 4 summaries the sample datasets of software quality 

prediction. Finally, section 5 concludes the paper.  

2. RELATED WORKS 

Artificial neural network, one of the recent trends that are 

encompassed to sixth generation computing, is applied to the 

model software reliability. In this case there are two types of 

input given for deriving valid output (i.e.) mistake reports are 

given to input of the software quality prediction model and 

software quality metrics is fabricated as input of the artificial 

neural networks with this effective application of giving 

software metrics as the input of neural networks, it is 

comparatively proven that it produces an accurate quality 

prediction [7].  

Considering the severity of fault a software fault- prone 

prediction model can be fabricated by a support vector machine 

and the object oriented metrics. Conventionally the quality 

prediction is rated and qualified by various criteria like accuracy 

percentage, probability of detection and probability of false 

alarms [22].  

Saida et al. [21] predict the faulty and non-faulty modules 

based on the mathematical model to analyzing factors are taken 

as an object oriented metrics [21].  

Bellini et al. [23] find the estimation rate of the fault-

proneness and size of the objects using estimation model based 

K-NN algorithm were implemented [23].  

Salak Bouktif et al. [39] presented how the general problem 

of combining quality experts, modeled as Bayesian classifiers, 

can be tackled via a simulated annealing algorithm 

customization. The general approach was applied to build an 

expert predicting object-oriented software stability, a facet of 

software quality. The findings demonstrate that, on available 

data, composed expert predictive algorithms and outperform the 

best available expert and it compares favorably with the expert 

build via a customized genetic algorithm [39]. 
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3. SOFTWARE QUALITY PREDICTION 

PROCESS AND ITS FACTORS 

Defect prediction is an important fact for analyzing the quality 

of the software. The Fig.1 shows the process of the software 

quality prediction, including the following steps: 

Step 1: Extract program modules/files/classes based required 

database. 

Step 2: Extract the features that are related to software defects 

by analyzing software code or the development process. 

The features are: 

a. Halstead features 

b. McCabe features 

c. Size related metrics 

d. Quality metrics 

e. Object oriented metrics 

Step 3: Construct defect prediction model by training the 

instances with the required features based on the below 

models: 

a. Mathematical models. 

b. Architecture based models 

c. Soft computing based models 

d. Machine learning based models 

e. Outperform design metrics models 

f. Object oriented models 

Step 4: Predict the unlabeled program modules and classify them 

either defective or not. 

 

Fig.1. Framework of Software Quality prediction 

3.1 HALSTEAD FEATURES 

These features are used to predict the effectiveness of the 

software quality. The features contain the following properties 

such as program vocabulary, program length, calculated program 

length, volume, difficulty and efforts [10].  

1 = the number of distinct operators 

2 = the number of distinct operands 

N1 = the total number of operators 

N2 = the total number of operands  

From these numbers, several measures can be calculated: 

 Program vocabulary:  = 1 + 2     (1) 

 Program length: N = N1 + N2 (2) 

 Calculated program length: N = 1log21 + 2log22   (3) 

 Volume: V = N*log2 (4) 

 Difficulty: D = 1 2

2

*
2

N


 (5) 

 Effort: E = D * V (6) 

3.2 MCCABE FEATURES 

McCabe features are used to predict the quality prediction 

based on Cyclomatic Complexity metrics the general form 

 V(G) = E-N+2p (7) 

where N-Nodes, E-Edges, P-connected procedures 

Extended Cyclomatic complexity (ECC): McCabe measures 

the program complexity based on conditional statement. Extended 

Cyclomatic complexity that may be defined as:  

 ECC = eV(G)=Pe+1 (8) 

where, Pe is the number of predicate nodes in flow graph G 

weighted by number of compound statements. 

Information flow metrics may be finding by count the number 

of local information flows input (fan-in) and flows output (fan-

out). The procedure may be defined as:  

 C = [procedure length]*[(fan-in)*(fan-out)]2 (9) 

3.3 SIZE RELATED METRICS 

Size related metrics are the metrics which can help to 

enumerate the software size. There are three types of software 

metrics which are used to measure the software size and predict 

the software quality the measures are Line of code (LOC), 

Function point Metrics and bang [11]. 

3.4 QUALITY METRICS 

Software Quality prediction based on the Quality measures 

carried out the defects, product quality and maintainability of the 

software package [16]. The quality metrics is classified into three 

cases such as Defect metrics, Reliability Metrics and 

Maintainability Index. The defect measures perform the following 

parameters: 

• Counting the defects in the program 

• Number of design change 

Reliability Metrics is focus on internal product quality which 

is measured the number of bugs in the software. Maintainability 
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Index is defined as a number of functions that predict software 

maintainability [41]. The maintainability index may be measured 

as follows 

MI = 171-5.2*In(aveV)-0.23*aveV(g)-16.2*In(aveLOC) (10) 

where,  

AveV = average halstead volume per module  

AveV(g) = average extended cyclomatic complexity per module. 

aveLOC = average line of code per module. 

3.5 OBJECT ORIENTED METRICS 

Object-oriented metrics is used for predicting the software 

quality based on object-oriented software development. Some of 

the object oriented metrics are Chen Metrics, Morris’s Metrics, 

Lorenz and Kidd Metrics, MOOSE Metrics, EMOOSE, MOOD 

Metrics, QMOOD Metrics, LI Metrics and SATC metrics [17]. 

Chen Metrics is deals with behavior of the object oriented 

design. The behaviors of the object oriented design are  

• CCM (Class Coupling Metric) 

• OXM (Operating Complexity Metric) 

• OACM (Operating Argument Complexity Metric) 

• ACM (Attribute Complexity Metric) 

• OCM (Operating Coupling Metric) 

• CM (Cohesion Metric) 

• CHM (Class Hierarchy of Method)  

• RM (Reuse Metric) 

Morris metrics deals with the cohesion metrics and complexity 

of the program which based on the depth of the tree [5]. 

Lorenz and Kidd Metrics is a set of metrics that can be 

grouped in four categories are size, inheritance, internal and 

external these metrics are evaluate to the predict of software 

Quality the metrics are 

• Class Size (CS) 

• Number of Operations overridden by a Subclass (NOO) 

• Number of Operations added by a Subclass (NOA) 

Specialization Index (SI) 

• Average Operation Size (OS) 

• Operation Complexity (OC) 

• Average number of Parameters per Operation (NP). 

Metrics for Object-Oriented Software Engineering (MOOSE) 

is a set of metrics which is based on cohesion and coupling [35]. 

The following parameters are evaluating the quality factors 

• Weighted Methods per Class (WMC) 

• Depth of Inheritance Tree (DIT) 

• Number of children (NOC) 

• Coupling between Objects (CBO) 

• Response for class (RFC) 

• Lack of Cohesion in Methods (LCOM) 

 

Fig.2. QMOOD Metrics 

Extended Metrics for Object-Oriented Software Engineering 

EMOOSE is an object oriented metrics which is used to estimate 

the quality of the software. They may be described as 

• Message Pass Coupling (MPC) 

• Data Abstraction Coupling (DAC) 

• Number of Methods (NOM) 

The number of methods depend on the size of the program. 

NOM consist of two sizes such as size1 and size2.  

• Size1 describes the number of lines of code.  

• Size2 is used to count the number of local attributes and the 

number of operation defined in the class [13]. 

Metrics for Object-Oriented Design (MOOD) is a quality 

metrics which is based on methods and attribute features [37]. 

MOOD is a structural model which contain the following 

parameters 

• Encapsulation as (MHF, AHF) 
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• Inheritance (MIF, AIF) 

• Polymorphism (POF) 

• Message passing (COF) 

Quality Model for Object-Oriented Design (QMOOD) is an 

object oriented measure based on OOPS principles the Fig.2 

describes the QMOOD Metrics. 

LI metrics is used to analyze the software quality in terms of 

tree complexity of the coupling. The metrics are 

• Number of Ancestor Classes (NecauseAC) 

• Number of Local Methods (NLM) 

• Class Method Complexity (CMC) 

• Number of Descendent Classes (NDC) 

• Coupling Through Abstract data type (CTA) 

• Coupling through Message Passing (CTM) 

SATC’s Metrics is a based on methods, coupling, inheritance 

and internal and external psychological complexity factors. The 

metrics are 

• Cyclomatic Complexity (CC) 

• Line of Code 

• Comment percentage 

The new object oriented measures are shown in Table.1. 

 Table.1. New Object Oriented Metrics 

Source 

Construct 
Metrics 

Object Oriented 

Structure  

Traditional 

Metrics 

Cyclomatic 

Complexity (CC) 
Methods 

Line of Codes Methods 

Comment Percentage 

(COM) 
Methods 

New Object 

Oriented 

Structure 

Weight Method per 

Class (WMC) 
Methods/Class 

Response for a Class 

(RFC) 
Class/Message 

Lack of Cohesion of 

Methods (LCOM) 
Class/Cohesion 

Coupling between 

Object (CBO) 
Coupling 

Depth of Inheritance 

Tree (DIT) 
Inheritance 

Number of Children 

(NOC) 
Inheritance 

4. SOFTWARE QUALITY PREDICTION 

FACTORS 

In software quality process the following factors are evaluated 

to predict the fault and quality of the required systems. The 

important software predictions factors are 

• Cohesion: It is refers to the degree to which the elements 

inside a module belong together. In case of high cohesion 

which is an ordinal type of measurement. Modules with high 

cohesion is inferable, because high cohesion is associated 

with the reusability and reliability of the software with high 

cohesion it is easy to maintain, test, reuse and even 

understand which are the desirable traits of software. 

• Coupling: Coupling is usually contrasted with cohesion. 

High cohesion infers desirable traits of software which low 

coupling correlates with it to give desirable software traits 

and determines the strength of the relationship between 

modules. It increases the understandability and 

maintainability of the software. 

• Complexity: It is the term that will affect the internal 

interactions of the modules in the software it makes the 

product to be less effectuate in terms of time and cost. High 

level of complexity will reduce the desirable traits of the 

software [36]. 

• Feasibility: Feasibility study is done as part of systems 

developments life cycles that incurs and reveal the strength 

and weakness of technical, operational and economical 

aspects of the product. 

• Customizability: The major perspective of customizability is 

user interface that will definitely improve the software 

quality in order to satisfy the requirement of the end user. 

5. DATASETS DESCRIPTION 

In order to evaluate the software quality we consider the 

following dataset for empirical study. In this paper we are discuss 

four open datasets in NASA, Promise, AEEEM and Relink which 

are used for defect prediction based quality assessment. 

NASA Dataset- this dataset was collected by NASA metrics 

data program. This dataset contain 40 features may contain both 

Hallstead features and McCabe features. The features are given in 

Table.2. 

Promise Dataset- it is open source java projects which contain 

different metrics such as lines of code, Response for class, 

Average method complexity, coupling between object classes etc. 

this metrics is used for evaluation of software quality 

effectiveness. The Fig.3 describes the metrics and attributes of the 

Promise dataset. 

AEEEM Dataset- this dataset which comes from Eclipse and 

Apache. This type of dataset may contain classic metrics, object 

oriented metrics and source code entropy metrics which is used 

for predicting the quality of the software. The Table.3 describes 

the attributes and description about the AEEEM Dataset. 

Relink Dataset- it is object oriented software metrics which 

was developed by Wu et al. it consists of 26 complexity metrics. 

The data set range will be 56 to 7782. The Table.4 describes the 

attributes of Relink dataset description. 

 



R JANARTHANAN AND A HEMA: PERSPECTIVE VIEW ON SOFTWARE QUALITY PREDICTION SYSTEMS 

2008 

Table.2. NASA Dataset metrics 

Dataset 

G H I J K L M 

Identical 

cases 

Inconsistent 

cases 

Cases with 

missing values 

Cases with 

conflicting feature 

values 

Cases with 

implausible 

values 

Total problem 

cases, DS 

Total problem 

cases, DS 

MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom 

CM1 26 94 0 2 161 0 2 3 0 1 161 3 178 61 

JM1 2628 2628 889 889 0 5 1287 1294 0 1 1287 1294 3158 3165 

KC1 1070 1070 253 253 0 0 12 14 0 1 12 14 945 947 

KC2 n.a. 182 n.a. 118 n.a. 0 n.a. 38 n.a. 1 n.a. 38 n.a. 197 

KC3 12 170 0 2 258 0 0 0 29 29 258 29 264 142 

KC4 10 n.a. 9 n.a. 0 n.a. 125 n.a. 0 n.a. 125 n.a. 125 n.a. 

MC1 7972 7972 106 106 0 0 189 189 4841 4841 4841 4841 7619 7619 

MC2 4 6 0 2 34 0 0 0 0 0 34 0 36 5 

MW1 15 36 5 7 139 0 0 0 0 0 139 0 152 27 

PC1 85 240 13 13 348 0 3 26 48 49 355 74 411 196 

PC2 984 4621 0 100 4004 0 129 129 1084 1084 4055 1163 4855 4297 

PC3 79 189 6 9 438 0 2 2 52 52 444 54 490 138 

PC4 166 166 3 3 0 0 60 60 111 111 112 112 182 182 

PC5 15370 15370 1725 1725 0 0 185 185 1772 1772 1782 1782 15507 15507 

 

Fig.3. Promise dataset description 

Table.3. AEEEM Dataset description 

Project 
Total number of 

subclasses (Hopt) 

Original metric 

number of 

instances (p) 

Learned feature 

dimensionality 

(R) 

EQ 10 61 6 

JDT 20 61 13 

LC 26 61 15 

ML 116 61 38 

PDE 93 61 23 

Table.4. Relink Dataset Description 

Project 

Number of 

defective 

instances 

Number of 

total 

instances 

Number 

of metrics 

Percentage of 

defective 

instances 

Apache 98 194 26 50.52% 

Safe 22 56 26 39.29% 

Zxing 118 399 26 29.57% 

6. CONCLUSIONS 

Based on the survey, an assortment of software fault 

predictions techniques has been reviewed, but none has proven to 

be consistently accurate. So hybrid algorithms were implemented 

to obtain the better results when compared to the traditional 

techniques like statistical methods, machine learning methods, 

parametric and non-parametric models. In this paper we 

summarize different kinds of Metrics, factors and open source 

dataset that are known to deliver the desired results in the 
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prediction of Software Quality. In future mathematical features 

are to be implemented to accurately detect software faults. 
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