
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

DOI: 10.21917/ijsc.2019.0282

1999

SQL_NL - A PARSER THAT CONVERTS SQL QUERY TO NATURAL LANGUAGE

Smita Paira and Sourabh Chandra
Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India

Abstract

With the rapid development of technology, Natural Language

processing acts as a technique where machine and human can interact

simultaneously. Besides learning a new programming language,

human being can rather talk with the machine. However, the non-

expert users neither understand any computer command nor have any

idea about the underlying technology. For this reason, a new parser,

SQL_NL has been developed to convert any Structured Query

Language (SQL) query to its corresponding natural language version.

The parser is much efficient to produce the results within milliseconds

with error detection and debugging capabilities. The output produced

by the parser is easily understandable and unambiguous with fast

conversion rate.

Keywords:

LEX, YACC, SQL, Parser, NL, Lexical Analyzer, Grammar, Database

1. INTRODUCTION

Generally, programmers manage databases very carefully and

perform certain operations on the databases using languages like

SQL. It takes structured data as input and produces structured data

as output. The fundamental concept behind this language is to

define or write certain queries. Based on those queries, the

databases are being created, updated or deleted. There are various

platforms for this language like MySQL, Oracle 11g, Oracle 9i,

etc.

The programmers can easily write and execute SQL queries as

and when required. But the problem is that, it becomes difficult

for common public to understand those queries. Therefore, a

parser that takes natural language as input and produces SQL

query as output or a parser that takes SQL query as input and

produces natural language as output can make them better

understand the queries and operations. Efficient compilation

process plays a vital role for the execution of different

programming languages. Lexical Analyzer (LEX) and Yet

Another Compiler Compiler (YACC) are the two fundamental

tools those are used for designing Compilers [16].

This paper deals with the design of a parser called SQL_NL

that translates an SQL query into Natural Language. The

Compiler is designed to compile and SQL query and reproduce

the same in Natural Language, which any human being can easily

understand. LEX and YACC have been used here for designing

the parser. LEX takes a Regular Grammar (RG) as input [14] and

converts it into a recognizer yylex(). On the other hand, YACC

takes a Context Free Grammar (CFG) and converts it into

yyparse().

Given a set of regular expressions (RE), the task is to generate

a Lexical Analyzer. It takes an input stream, scans it, identifies a

part of it, matches it with the set of RE and returns the associated

integer as token to the yyparse(). The Fig.1 shows how a Lexical

Analyzer works.

The Fig.2 presents the block diagram of yylex() and yyparse()

and how they work hand in hand. LEX on receiving the regular

expression generates a number. The number and inputted SQL

query pass through yylex() which further generates a stream of

tokens. The stream of token goes through yyparse() which creates

the required output after compilation through YACC.

Fig.1. Principle of yylex()

Fig.2. Block diagram of LEX and YACC

The structure of LEX and YACC are shown in Fig.3 and Fig.4

respectively. In case of LEX, the definitions of all variables are

kept first, followed by the rules which are further followed by user

subroutines. Even though variable description and subroutines are

optional, rules are mandatory to be mentioned.

Fig.3. Structure of LEX [14]

Lexical

Analyzer or

Scanner

Parser

yylex() yyparse()

(Stream of

tokens)

Input

Stream

(Stream of

characters)

LEX yylex() Regular

Expression

Input

yyparse()

YACC

Output

CFG

Stream

of

tokens

Definitions

%%

Red - Mandatory

%%

Rules

User

Subroutines

Green - Optional

SMITA PAIRA AND SOURABH CHANDRA: SQL_NL - A PARSER THAT CONVERTS SQL QUERY TO NATURAL LANGUAGE

2000

Similarly, structure of YACC consists of two optional parts

namely variable declaration and programs and one mandatory

section consisting of Context Free Grammar (CFG) rules.

Fig.4. Structure of YACC [14]

Consider a grammar with production rules as follows:

E  (E)

E  E+E

E  id

E  int_const

Corresponding to each production rule, there is an associated

action routine both in the lexical analyzer (.l) and parser (.y) files.

The parse tree for the above grammar is shown in Fig.5.

Fig.5. Parse tree of the given grammar

The reduction of the leaf nodes like id E  x, int_const  5,

id  y, etc. are taken care of by yylex(). The reductions like E 

id, E  int_const, E  (E) and E  E+E are taken care of by

yyparse().

When main() calls yyparse(), the latter calls yylex(). Here,

yylex() scans the input stream from left to right and identifies

tokens [15] [16]. If yylex () provides some value to the identifier

through yylval() in the action routine. This value becomes

available in action routine of YACC as $1, $2, etc. which in turn

will be available in $$ of the left hand side non terminal of the

grammar rules. This value uniquely identifies each identifier.

In this paper, SQL_NL takes SQL query as input and produces

its corresponding natural language expression as the output. The

parser is also flexible enough to check the syntax or semantic

errors if present in the input SQL query. The underlying process

has been elaborated in the remaining sections.

2. RELATED WORK

Alok Parlikar et al. in [1] proposed a Natural Query Markup

Language called NQML. It is an extension of XML [2] that

converts questions in English into SQL queries. The algorithm

works on SELECT queries with multiple WHERE clauses.

NQML returns an exception in case of unknown cases but it is

quite nascent.

Yellin and Mueckstein [3] proposed an automatic inversion

process of attribute grammars which generate compatible two-

way translators from single description. They have implemented

such algorithm on an SQL database to paraphrase the queries into

English. They want to specify that if an attribute grammar can

translate a language L1 into L2, then its inversion can do the

opposite.

Another Natural Language Query (NQL) procession

technique has been proposed by Xuan et al. [4]. NQL works on

Remote sensing query text by extracting the keywords, extending

them and then generating the SQL query.

Axita Shah et al. [5] has proposed a natural language and

keyword based interface called NLKBIDB. The keyword based

interface helps to provide solutions to incorrect natural language

input queries. They have implemented this algorithm on an

agriculture database in which out of 75 syntactically incorrect

queries, 40 are solved.

Reinaldha and Widagdo [6] worked on the extension of the

NLIDB System. The method can process question type query as

well as it can handle unit conversion. It applies different

modifying rules and directive sentences to process different type

of question queries and recognize and translate data into units as

asked by the user.

Mohite and Bhojane [7] developed another method of

converting query in Natural Language to SQL query by forming

a co-occurrence matrix. The steps that they used are syntactic

parsing, extraction of the keywords, matrix generation and

conversion into SQL query. They have done their work on a Java

platform but unfortunately the algorithm does not work for all

form of queries.

Joseph et al. [8] provided a natural language interface to XML

Database. In this method, query in natural language is converted

in XQuery by a mapping technique from the dependency parse

tree. Such an XQuery statement is used to retrieve data from XML

database.

C-Phrase is a Natural Language interface to database that is

proposed in [9]. It uses semantic grammars inspired by X-bar

theory [10], encode those in λ-SCFG. Such encoded grammars

map user inputs to an extended version of Codd’s tuple calculus

which automatically maps to SQL. Sometimes it happens that the

queries entered by the user are contradictory that return empty sets

which is not desirable. A method was proposed by Brass and

Definitions

%%

Red - Mandatory

%%

CFG Rules

Programs

Green - Optional

E

E E

id

y +

E E

id int_const

x 5) (+

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

2001

Goldberg in [11] that checks the semantic errors present in a

query. This helps the DBMS to check the contradictory queries

before execution.

According to Llopis and Ferrández [12], Natural language

interfaces to database are not properly adopted. They designed a

system called AskMe* that provides the adoption and some extra

query authoring services. It lowers the entry barrier of end users.

Frank S.C. Tseng and Chun-Ling Chen, in their work [13] have

extended the representations in UML class diagram to capture

queries in Natural language with fuzzy semantics. The proposed

method converts natural language constructs into class diagrams

and employ SOM methodology to transform into SQL statements.

It is felt that accessing data from a database using Natural

Language is quite convenient and easy compared to some formal

languages likes SQL [8]. A lot of works has been done to convert

a query given in Natural Language into SQL. In this paper, we

have proposed a novel approach of applying the reverse technique

i.e. we have developed an algorithm that can translate a given

SQL query into Natural Language. So that common user can not

only feel the essence of accessing data from the database but also

can understand what operations are being performed by different

SQL queries.

3. UNDERLYING ALGORITHM

SQL_NL creates three source files: lexfile.l, yaccfile.y and

abc.h. The algorithm for SQL_NL is described below:-

Step 1: Create the lex file and save it with .l extension. Here, we

have named as lexfile.l. The lexfile.l contains the action

routines of each lexeme. The file should return values to

yyparse() using yylval().

Step 2: Create the yacc file and save it with .y extension. Here,

we have named as yaccfile.y

Step 3: Create a union of terminals and non-terminals in

yaccfile.y file. Design the CFG with associated action

routines.

Step 4: Create themain() function takes the input and output files

names as command line arguments. The main() function

calls yyparse().

Step 5: Create another file abc.h. This file contains the actual

syntax of how to detect the type of query and how to

handle it. The file is included in the yaccfile.y along with

other header files.

Step 6: Each time a query in inputted, the lexfile.l tokenizes it.

The tokens with associated values are sent to the

yaccfile.y file.

Step 7: In yaccfile.y the grammar for each type of query is

written. Simple queries do not have many complexities.

Step 8: For large queries, the parser calls abc.h which contains

code for handling them. The abc.h file also contains code

for handling the semantic errors.

Step 9: The yyparse() itself identifies the syntax errors if any but

the type of error is coded elaborately in abc.h file. The

parser prints the errors efficiently with type and line

numbers.

Step 10: End.

4. EXECUTION RESULTS

The SQL_NL parser has been tested and executed on a Linux

Terminal. Different test cases with outputs are shown in Fig.6-

Fig.8.

Case 1: Input file: in

Output file: opt

Fig.6(a). Input file for case 1

Fig.6(b). Terminal for case 1

The compiler compiles the input file (shown in Fig.6(a)) and

cannot find any error. Upon execution it generates the output file

(shown in Fig.6(b)) which converts the queries into normal

sentences. Hence, the output file (shown in Fig.6(c)) is empty.

 Fig.6(c). Output file for case 1

Case 2: Input file: input

Output file: opt

Fig.7(a). Input file for case 2

SMITA PAIRA AND SOURABH CHANDRA: SQL_NL - A PARSER THAT CONVERTS SQL QUERY TO NATURAL LANGUAGE

2002

Fig.7(b). Terminal for case 2

The input file shown in Fig.7(a) contains some syntax errors.

The SQL queries upon compilation produces syntax errors which

are shown on the terminal (in Fig.7(b)) indicating line numbers

and error positions. Hence, the output file (shown in Fig.7(c)) is

empty.

Fig.7(c). Output File for case 2

Case 3: Input File: input1

Output File: opt

The third case scenario is to show how SQL_NL works in case

there are semantic errors in the input file and how it handles them.

The input file illustrated in Fig.8(a) contains some queries those

are semantically incorrect.

Fig.8(a). Input File for case 3

SQL_NL compiles and points out all semantic errors with line

numbers (shown in Fig.8(b)). It neither allows duplicate

table/relation to be created nor does try to delete or drop a table

that does not exist.

Fig.8(b). Terminal for case 3

Fig.8(c). Output File for case 3

The output file for the third case is shown in Fig.8(c). Queries

those are syntactically as well as semantically correct, are

converted into simple English sentences for the better

understanding of common people.

The parser has been tested several times taking different data

sets. Each data is compiled and executed around 20 times with an

average conversion of 0.348 milliseconds without any ambiguity.

5. CONCLUSION AND FUTURE WORK

In this paper, a new parser called SQL_NL has been proposed

with several benefits associated with it. The parser can compile

an SQL query and generate its corresponding natural language

within fraction of seconds. It also has the capability to detect and

debug any syntax or semantic errors present in the query code.

It acts not only as a language converter but also solves

numerous problems for different segments of society. It increases

interactions among business and social community. It strengthens

client-salesman relationship as well as improves various

management skills like leadership, communication and

motivation

In future, we shall extend our efforts to design efficient

compilers that could process any programming language.

REFERENCES

[1] Alok Parlikar, Dr. Sudip Sanyal, Nishant Shrivastava and

Varun Khullar, “NQML: Natural Query Markup Language”,

Proceedings of International Conference on Natural

Language Processing and Knowledge Engineering, pp. 184-

188, 2005.

[2] Tim Bray, Jean Paoli, C. Michael Sperberg McQueen, Eve

Maler and Francois Yergeau, “Extensible Markup Language

(XML) 1.0”, 1st Edition, World Wide Web Consortium,

2000.

[3] Daniel M. Yellin and Eva-Maria M. Mueckstein, “The

Automatic Inversion of Attribute Grammars”, IEEE

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2019, VOLUME: 10, ISSUE: 01

2003

Transactions on Software Engineering, Vol. 12, No. 5, pp.

590-599, 1986.

[4] Liu Jianbo, Xuan Xuan and Yang Jin, “Research on the

Natural Language Querying for Remote Sensing

Databases”, Proceedings of IEEE International Conference

on Computer Science and Service System, pp. 228-231,

2012.

[5] Axita Shah, Hemal Patel, Jyoti Pareek and Namrata Panchal,

“NLKBIDB - Natural Language and Keyword Based

Interface to Database”, Proceedings of IEEE International

Conference on Advances in Computing, Communications

and Informatics, pp. 1569-1576, 2013.

[6] Filbert Reinaldha and Tricya E. Widagdo, “Natural

Language Interfaces to Database (NLIDB): Question

Handling and Unit Conversion”, Proceedings of IEEE

International Conference on Data and Software

Engineering, pp. 1-7, 2014.

[7] Anuradha Mohite and Varunakshi Bhojane, “Natural

Language Interface to Database Using Modified Co-

Occurrence Matrix Technique”, Proceedings of IEEE

International Conference on Pervasive Computing, pp. 1-6,

2015.

[8] Janu R Panicker, Jiffy Joseph and M. Meera, “An Efficient

Natural Language Interface to XML Database”,

Proceedings of International Conference on Information

Science, pp. 207-212, 2016.

[9] Michael Minock, “C-PHRASE: A System for Building

Robust Natural Language Interfaces to Databases”, Data

and Knowledge Engineering, Vol. 69, No. 3, pp. 290-302,

2010.

[10] R. Jackendoff, “X-Bar-Syntax: A Study of Phrase Structure,

Linguistic Inquiry Monograph”, MIT Press, 1977.

[11] Christian Goldberg and Stefan Brass, “Semantic Errors in

SQL Queries: A Quite Complete List”, Journal of Systems

and Software, Vol. 79, No. 2, pp. 630-644, 2006.

[12] Antonio Ferrandez and Miguel Llopis, “How to Make A

Natural Language Interface to Query Databases Accessible

to Everyone: An Example”, Computer Standards and

Interfaces, Vol. 35, No. 5, pp. 470-481, 2013.

[13] Chun Ling Chen and Frank S.C. Tseng, “Extending the

UML Concepts to Transform Natural Language Queries

with Fuzzy Semantics into SQL”, Information and Software

Technology, Vol. 48, No. 3, pp. 901-914, 2006.

[14] Saumya K. Debray, “Lex and Yacc: A Brisk Tutorial”,

Technical Report, Department of Computer Science,

University of Arizona, 2006.

[15] H. Altay Guvenir, “Lex and Yacc”, Available at:

www.cs.bilkent.edu.tr/~guvenir/courses/CS315/lex-

yacc/lex-yacc.pdf

