
N BHARATHI AND P NEELAMEGAM: FPGA BASED SOFTWARE TESTING PRIORITIZATION USING RnK-MEANS CLUSTERING

doi: 10.21917/ijsc.2013.0094

656

FPGA BASED SOFTWARE TESTING PRIORITIZATION USING RnK-MEANS

CLUSTERING

N. Bharathi
1
 and P. Neelamegam

2

1
School of Computing, SASTRA University, India

E-mail: bharathi_n@cse.sastra.edu
2
School of Electrical and Electronics Engineering, SASTRA University, India

E-mail: neelkeer@eie.sastra.edu

Abstract

Testing the software is to validate its correctness when it is deployed

in its actual environment. Various test cases should be implemented

and tested to validate the software. When more than one test case is

involved, the order of testing needs to be prioritized to optimize the

testing process. This paper proposed a prioritization method with

repeated n times K means (RnK-means) clustering. Priority for the

test cases is assigned based on the cluster mean values by executing

RnK-means for each factor of test cases. Existing techniques are

calculating merely the average of factor weights for each test case for

deciding priority. The proposed method involves K-means

computations and it is accelerated by FPGA for deciding priority. The

observed results proved 20 percent better performance with RnK-

means clustering than the existing weighted average method.

Keywords:

K-means Clustering, Field Programmable Gate Array (FPGA), ATM

Application, Scalability, User Friendliness

1. INTRODUCTION

Any computing system comprises of hardware as well as

software to achieve a task. Hardware is all-inclusive of physical

components and wires of the computing system. Certification of

correctness is checked at the manufacturer site itself and its

damage or fault can be checked easily by viewing and

connecting it together using wires. Software fault cannot be

detected easily by simply viewing it [1].

At present, releasing of new software components and

applications are rapidly increased. The important and most asked

question is which software is better that satisfies the various

requirements of the end users and what certifies that this

software is correct and gives reliable outcome. The answer to

this question is software testing. Testing is verifying whether the

software is satisfying the necessary conditions stated at the

commencement of its development phase and validating whether

it meets the specified user requirements [2]. There are different

levels of testing in which test cases are applied to software. Unit

testing verifies single block or portion of code e.g.

subroutine/function etc. Integration testing verifies the

interfacing between the components or block of codes,

communications between the subroutines and functions. System

testing tests the complete set of codes in its final form [3].

Testing can be done in two ways. The software developers

themselves test their own software for its validation during

development life cycle [4]. Other approach is deputing a team

for testing the software. The software testing team should design

various test cases to validate and verify the correctness of the

software.

Test cases are the commonly used method for testing the

software [3]. Gamut of test cases from more general case that

can be applied to any software, to more specific case applied to

particular software are available for testing. When new software

is developed, some set of general test cases should be executed

always to verify its basic requirements [5]. Those test cases are

assigned with highest priority and only after passes through it,

the software is subjected to others. If there are N test cases, then

N! possible orders exist with which the test cases can be applied

on the software for testing it [6]. The order is enforced by

assigning certain priorities for the test cases based on some

factors that are influencing the correctness of the software or

detecting the faults. Various prioritization techniques exist to

assign priority to test cases [7]. Based on the priority order the

test cases are applied on to the software and test log is also

maintained. The priority order in applying the test cases is to

ensure the quality of software. Besides it detects the possible

faults in the program and failures for certain set of inputs. On the

whole it should state the effectiveness of the software in

satisfying the necessary end user requirements.

A prioritization technique should give importance to the

weights assigned to the attributes of the test cases [8]. It should

consider the factors that are highly influencing the detection of

faults. The existing methods selects the best one from the list of

test cases ranked based on the average weights. But if more than

one factors involved then choosing the test case with maximum

average weight is not always providing better results. Even

though it is maximum value it may be lagging in any one of the

factor taken which is contributing more to the testing. Hence this

work proposed an efficient RnK means clustering algorithm

which is based on k-means clustering. Instead of simply

selecting the maximum average weight, it follows a novel

heuristic in selecting the priority of the test cases.

K-means clustering is a method of categorizing or

partitioning the given set of elements into disjoint groups [9]. It

generates flat non overlapping clusters which is highly suitable

for assigning priority to software test cases. Elements that have

similar property are grouped under the same category and

elements belong to the different category are different in nature.

The k-means algorithm is as follows with a data set S Real

number and an integer k:

Initialize centers z1, . . . , zk ∈ Real number and clusters C1, . . .,

Ck in any way

repeat until there is no further change in cost:

for each j: Cj ← {x ∈ S whose closest center is zj}

for each j: zj ← mean(Cj)

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2013, VOLUME: 04, ISSUE: 01

657

This is simple to implement, and takes O(k|S|) time per

iteration. It is implemented in FPGA to speed up the process [10].

FPGA is selected for its rich characteristics like architectural

adaptability, enhanced speed, comfortable routing, and new,

refined hardware definition language to realize completely

automatic implementation of composite, large, high performance

circuits [11]. FPGAs require no assessment vectors to generate

and no bottleneck while waiting for archetype to be

manufactured as they are software oriented and consumer

programmed [12]. Changes of configuration bits are taken place

on the fly and safe. Circuits can be realized in the order of

minutes unlike ordinary gate arrays which take weeks of time.

FPGA devices made a revolution with significant cost reduction

in circuit design and fabrication. FPGA devices possess matrix

like architecture with logic cells enclosed by a frame of I/O

cells. This paper first explains the prioritization of software

testing and designing of clustering algorithm with FPGA

followed by the architectural framework of the proposed method

with its implementation. Finally, the proven results are discussed

with the ATM software application [13].

2. SOFTWARE TESTING PRIORITIZATION

Fig.1. Prioritization of test cases

A collection of test cases is designed for newly developed

software besides the existing general test cases. The objective is

to find the order of applying the test cases to facilitate the

detection of faults rapidly using efficient technique. To enforce

the order, priority for the test cases is assigned and tested on the

software based on it. Priority is assigned based on the factors

that are possessed by the test cases to reveal the quality of the

software as illustrated in Fig.1. The selection of factors should

be in such a way that it covers all the criterion of software

requirements. The selected factors are scalability, Correctness

and User friendliness. After selecting the factors, the weights for

each factor of each test case should be determined to reflect the

capability of the test case to verify and validate the software.

Based on the weights, the priority is assigned for each test case.

The test cases are then applied on the software to check the

efficiency based on the priority assigned. Hence the

prioritization method has the main control in deciding how better

the software is.

3. FPGA BASED CLUSTERING

Fig.2 Hardware modules of RnK-means clustering

Clustering is performed in FPGA by designing the hardware

circuit for clustering algorithm. The modules are memory_ram

module to store the weights, the cluster_mean module to

calculate the cluster means, Testcase_remove module to remove

the selected test cases in every execution of k-means clustering

algorithm. The input and output signals of the modules are

shown in Fig.2. The modules are implemented and simulation

results are checked and verified with the results obtained in

traditional C implementation. The benefit of using FPGA to

configure the clustering algorithm as hardware circuit is that the

circuit can be modified as and when needed for different sizes of

data. It can also be tailored to meet the requirements of various

applications that use clustering as a classification algorithm.

4. ARCHITECTURE FRAMEWORK

The layered architecture of the proposed method is

demonstrated in Fig.3. The software is developed and subjected

to testing to evaluate its efficiency and effectiveness as it is

deployed in real destined environment. Test cases are designed

in such a way to validate the correctness of the software by

simulating the real environment where the software is to be

deployed. Table.1 illustrates the different fields of the test cases.

Among the various test cases implemented, selecting the

appropriate test cases which reveals more no. of faults in lesser

time in the software is more significant. The order of executing

the test cases contributes more in revealing the faults rapidly.

Attributes of the test cases which are detecting the faults are the

deciding factors of the order of applying the test cases. Hence

priority is assigned based on those factors possessed by the test

cases. Each factor of the test cases is assigned with a weight

ranges from 1 to 100 based on how much efficient that test case

is in validating the software.

Table.1. Fields and its definition of a Test case

Field Definition

Test case ID
The unique identity of the test

case

Test priority Highest, high, medium, low,

N BHARATHI AND P NEELAMEGAM: FPGA BASED SOFTWARE TESTING PRIORITIZATION USING RnK-MEANS CLUSTERING

658

lowest – used for prioritization

Module Name Name of the main module

Test Designed By
Name of the tester who designed

it

Test Designed Date Date when it is written

Test Executed By
Name of the tester who executed

this test case

Test Execution Date Date on which test is executed

Test Title/Name Test case name

Test Summary/Description Purpose of the test case

Pre-condition State before the execution of test

Dependencies
Dependent with any other test

case

Test Steps Order of test steps etc.

Test Data Input given at the time of testing

Expected Result Predictable output

Post-condition State after the execution of test

Actual result
Actual output after applying the

test

Status (Pass/Fail)

Checking the equality of

expected and actual result and

specify success if equal

Notes/Comments/Questions Any special or exceptional cases

Fig.3. Layered architecture

The test case is assigned with the weight that reflects the

effectiveness of software in that dimension. Three factors are

selected to efficiently validate the software. Scalability which

checks the whether the software cope with the increase in the

number of users/memory space etc. Correctness is for checking

the software works well under any circumstances and for any

user input without aborting the execution. User friendliness is

one of the important factors because, though the software is

performing extraordinarily well, if it is not providing user

friendliness in operating with, then it becomes inefficient.

The factor weights of the test cases are categorized into any

one of 5 clusters using RnK means clustering algorithm. The

clusters are highest, high, medium, low and lowest. The test

cases of highest cluster are assigned with the highest priorities

followed by high, medium, low and lowest cluster test cases.

The additional time spent in pre-computation for RnK means

clustering is speed up by the FPGA implementation of the

algorithm.

5. IMPLEMENTATION

The set of test case is designed and weights ranging between

1 and 100 are assigned according to their ability to validate the

software and detecting the faults. Scalability, correctness and

user friendliness are the three factors considered for each test

cases. The average weights of these three factors for each test

case are pre-calculated. With these weights the test cases are

subjected to RnK means algorithm. The algorithm assigns

priority to the test cases as follows: Each test case is assigned

with three weights one for each factor. Weights of each test case

for scalability are subjected to k-means clustering with initial

cluster centers as 100, 80, 60, 40 and 20. The clusters are

highest, high, medium, low and lowest. This procedure is

repeated for correctness and user friendliness with their

respective weights of test cases.

After completing the execution, the highest cluster mean is

taken for all the three factors and its average (AHT1) is

calculated. The closest pre-calculated average weight of test case

to the AHT1 is determined and that test case is removed from

the test case set. This procedure is repeated for finding average

of high cluster means AH1, medium cluster means AM1, low

cluster means AL1 and lowest cluster means ALT1. The closest

pre-calculated average weight of test case to AH1, AM1, AL1

and ALT1 are also determined and its respective test cases are

removed. The removed test cases are categorized under priority

groups of highest, high, medium, low and lowest. The priority

groups for the remaining test cases are determined by repeated

executions of k-means. AHT2 …AHTn1, AH2…AHn2,

AM2…AMn3, AL2…ALn4 and ALT2…ALTn5 are determined

in the repeated executions where n1, n2, n3, n4 and n5 are the

no. of test cases under highest, high, medium, low and lowest

priority groups respectively.

The priority of test cases with in a group is assigned in the

order in which the test cases are removed. Early removal gets

higher priority. The priority across the groups is ordered as first

priority of the high group is the next to the last priority of the

highest group. Similarly first priority of the medium group is the

next to the last priority of the high group, first priority of the low

group is the next to the last priority of the medium group, first

priority of the lowest group is the next to the last priority of the

low group.

Factors:

Scalability – supports to any no. of users

Correctness – satisfying programming view and user

requirement view.

User friendliness – should be easily usable by the customers

Clusters for the test case:

Highest: Exactly matching the software requirements.

High: Matching with software but slight deviation with

requirements.

Medium: Deviating slightly with software and matching with

requirements.

Low: Deviating slightly with software as well as its

requirements.

Lowest: Different from software and its requirements

Software development

Software testing

Testing prioritization

RnK-means Clustering

FPGA implementation

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2013, VOLUME: 04, ISSUE: 01

659

Algorithm: RnK-means

Step1: Assign weights for 1 to 3 factors between 1 and 100

based on software requirement.

Step 2: Repeat step 4 for each factor i = 1 to 3.

Step 3: Weight of factor i of all test cases is subjected to K-

means clustering.

Step 4: K-means is performed by taking five clusters as highest,

high, medium, low and lowest.

Step 5: Take the highest cluster mean (HTCM) for each factor

and find the average (AHT1).

Step 6: Do step 6 for high, medium, low and lowest and find the

averages (AH1, AM1, AL1 and ALT1).

Step 7: Scan for the closest match test case (TCHT1, TCH1,

TCM1, TCL1, TCLT1) of AHT1, AH1, AM1, AL1 and

ALT1 respectively in the weighted average ranking.

Step 8: Assign the highest priority of highest group to TCHT1

and remove it from the test case set.

Step 9: Do step 9 for TCH1, TCM1, TCL1 and TCLT1.

Step 10: Repeat the procedure from step 2 to step 10 till no test

cases for assigning priority.

Step 11: Rank test cases with highest group first followed by

high, medium, low and lowest groups in order.

The test cases TCHT1, TCH1, TCM1, TCL1 and TCLT1 are

determined as follows:

{HTCM, HCM, MCM, LCM, LTCM} of scalability = k-means

(scalability weights of 50 test cases)

{HTCM, HCM, MCM, LCM, LTCM} of correctness = k-means

(correctness weights of 50 test cases)

{HTCM, HCM, MCM, LCM, LTCM} of user friendliness = k-

means (user friendliness weights of 50 test cases)

AHT1 = (HTCM of scalability + HTCM of Correctness +

HTCM of User friendliness) / 3

 TCHT1 = closestmatch(AHT1) (1)

AH1 = (HCM of scalability + HCM of Correctness + HCM of

User friendliness) / 3

 TCH1 = closestmatch(AH1) (2)

AM1 = (MCM of scalability + MCM of Correctness + MCM of

User friendliness) / 3

 TCM1 = closestmatch(AM1) (3)

AL1 = (LCM of scalability + LCM of Correctness + LCM of

User friendliness) / 3

 TCL1 = closestmatch(AL1) (4)

ALT1 = (LTCM of scalability + LTCM of Correctness + LTCM

of User friendliness) / 3

 TCLT1 = closestmatch(ALT1) (5)

Similarly TCHT2, TCH2, TCM2, TCL2 and TCLT2 and so

on up to TCHTn1, TCHn2, TCMn3, TCLn4 and TCLTn5 are

determined by repeated execution of K-means. In the above

equations, certain cluster means may be zeros based on the

weights of testcases and clustering.

6. RESULTS AND DISCUSSION

The test cases are designed and implemented. The priority of

the test cases is determined based on the proposed method. The

results of the proposed method are proving the accuracy of the

priority assigned to the test cases by validating the software

efficiently and detecting the faults rapidly. A set of 50 test cases

are designed and tested for an ATM application. The test cases

are as follows:

TC 1: successful card insertion.

TC 2: unsuccessful operation due to wrong angle card insertion.

TC 3:
check for displaying the message for proper insertion of

card.

TC 4:
unsuccessful operation due to invalid account card (not at

all a debit/credit/cash card).

TC 5: unsuccessful operation due to broken card.

TC 6: unsuccessful operation due to expired card.

TC 7: check for displaying the message for invalid card.

TC 8: check for displaying the message for broken card.

TC 9: check for displaying the message for expired card.

TC 10: check for other banks card.

TC 11:
check for displaying the message for other bank card with

service charge.

TC 12: successful entry of pin number.

TC 13:
unsuccessful operation due to lesser number of character

in pin.

TC 14:
unsuccessful operation due to wrong pin number entered

1 time.

TC 15:
unsuccessful operation due to wrong pin number entered

2 times.

TC 16:
check for displaying the message for entering wrong pin

number.

TC 17:
unsuccessful operation due to wrong pin number entered

3 times.

TC 18: check for displaying the message for blocking the card.

TC 19: successful selection of language.

TC 20: successful selection of account type.

TC 21:
unsuccessful operation due to wrong account type

selected w/r to that inserted card.

TC 22:
check for displaying the message for wrong account type

w/r to the inserted card.

TC 23:
check for displaying the available options (balance

enquiry, withdrawal etc)

TC 24: successful selection of withdrawal option.

TC 25: successful selection of amount.

TC 26: unsuccessful operation due to wrong denominations.

N BHARATHI AND P NEELAMEGAM: FPGA BASED SOFTWARE TESTING PRIORITIZATION USING RnK-MEANS CLUSTERING

660

TC 27:
check for displaying the message for wrong

denominations.

TC 28: successful withdrawal operation.

TC 29:
check for displaying the message for taking cash from the

ATM.

TC 30:
unsuccessful withdrawal operation due to amount greater

than possible balance.

TC 31:
check for message display for lack of requesting amount

in the account.

TC 32: unsuccessful due to lack of amount in ATM.

TC 33: check for message display for lack of amount in ATM.

TC 34:
unsuccessful withdrawal operation due to not able to print

receipt

TC 35:
unsuccessful withdrawal operation due to not taking cash

from ATM in specified time.

TC 36: successful selection of receipt printing.

TC 37: unsuccessful selection of receipt printing.

TC 38: undue to amount greater than the day limit.

TC 39: undue to server down.

TC 40: undue to ATM out of order.

TC 41: undue to click cancel after insert card.

TC 42: undue to click cancel after insert card and pin no.

TC 43: undue to click cancel after language selection.

TC 44: undue to click cancel after account type selection.

TC 45: undue to click cancel after withdrawal selection.

TC 46: undue to click cancel after entering amount.

TC 47: successful selection (to continue) of next transaction.

TC 48: successful selection of balance enquiry option.

TC 49: check for displaying balance amount in the account.

TC 50: successful selection of exit.

Fig.4(a).

Fig.4(b).

Fig.4(c).

Fig.4(d).

Fig.4(a). Three factor weights of 50 test cases (4(b), 4(c) and

4(d)) HTCM, HCM, MCM, LCM and LTCM of scalability,

correctness and user friendliness respectively

0

20

40

60

80

100

120

0 10 20 30 40 50

W
ei

g
h

ts

Test case

Weights for 50 test cases

Scalability Correctness User Friendliness

0

2

4

6

8

10

12

14

1 2 3 4 5

N
o

.o
f

te
st

 c
a

se
s

in
 a

 c
lu

st
er

Clusters

Scalability

I round II round

III round IV round

0

2

4

6

8

10

12

14

16

1 2 3 4 5

N
o

.o
f

te
st

 c
a

se
s

in
 a

 c
lu

st
er

Cluster

Correctness

I round II round III round

IV round V round VI round

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

N
o

.o
f

te
st

 c
a

se
s

in
 a

 c
lu

st
er

Cluster

User Friendliness

I round II round III round IV round

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2013, VOLUME: 04, ISSUE: 01

661

Fig.5. Comparative graph of fault detection rate

The Fig.4(a) shows the scalability, correctness and user

friendliness weights of the 50 test cases that range from 1 to 100.

The Fig.4(b) to Fig.4(d) shows the five cluster means after first

execution of k-means algorithm. The software faults are

intentionally created and tested with the test cases. The Fig.5

proves the better fault detection rate of proposed method over

average weighted method. Proposed method detects 12 faults

with the total of 15 faults with first 20 testcases whereas the

average weighted method detects only 9 faults.

7. CONCLUSION

The proposed test cases prioritization mechanism is

implemented for testing the software effectively based on

clustering. FPGA is used to fasten the process of assigning

priority to the test cases in order to verify the software and detect

the faults rapidly. 50 test cases are taken and are categorized in

the scale of clusters as highest, high, medium, low and lowest.

The highest category is assigned with highest priority and the

successive priorities are assigned with next immediate categories

till lowest. With the resultant priority for the test cases it is

proved that software is tested efficiently and the fault detection

rate is improved nearly 20 percent. The increased number of test

cases is necessary to get better fault detection rate. This work

also concludes that test cases categorized under highest and high

should necessarily be applied on to validate the software.

REFERENCES

[1] Hayden C. M, Smith E. K, Hardisty E. A, Hicks M and

Foster J. S, “Evaluating dynamic software update safety

using systematic testing”, IEEE Transactions on Software

Engineering, Vol. 38, No. 6, pp. 1340-1354, 2012.

[2] Kuhn D. R, Wallace D. R and Gallo A. M. Jr., “Software

fault interactions and implications for software testing”,

IEEE Transactions on Software Engineering, Vol. 30, No.

6, pp. 418-421, 2004.

[3] Bertolino and Antonia, “Software Testing Research:

Achievements, Challenges, Dreams”, Proceedings of the

Future of Software Engineering, pp. 85-103, 2007.

[4] Mustafa K M, Al-Qutaish R. E, Muhairat M. I,

“Classification of Software Testing Tools Based on the

Software Testing Methods”, Proceedings of Second

International Conference on Computer and Electrical

Engineering, Vol. 1, pp. 229-233, 2009.

[5] Datchayani M, Arockia Xavier Annie R, Yogesh P and

Zacharias B, “Test case generation and reusing test cases

for GUI designed with HTML”, Journal of Software, Vol.

7, No. 10, pp. 2269-2277, 2012.

[6] Gend Lal Prajapati, “On the Inference of Automatic

Generation of Software Tests”, Proceedings of Fourth

International Conference on Emerging Trends in

Engineering & Technology, pp. 18-21, 2011.

[7] Mei H, Hao D, Zhang L, Zhang L, Zhou J and Rothermel

G, “A static approach to prioritizing JUnit test cases”,

IEEE Transactions on Software Engineering, Vol. 38, No.

6, pp. 1258-1275, 2012.

[8] Masayuki Hirayama, Osamu Mizuno and Tohru Kikuno,

“Test Item Prioritizing Metrics for Selective Software

Testing”, IEICE Transactions on Information and Systems,

Vol. E86–D, No. 3, pp. 2733-2743, 2004.

[9] Christ M. C. J and Parvathi R. M. S, “Segmentation of

Medical Image using K-Means Clustering and Marker

Controlled Watershed Algorithm”, American Journal of

Applied Sciences, Vol. 8, No. 12, pp. 1349-1352.

[10] An F, Koide T and Mattausch H. J, “A K-means-based

multi-prototype high-speed learning system with FPGA-

implemented coprocessor for 1-NN searching”, IEICE

Transactions on Information and Systems, Vol. E95-D, No.

9, pp. 2327-2338, 2012.

[11] Kumar A and Anis M, “IR-drop aware clustering technique

for robust power grid in FPGAs”, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 19, No.

7, pp. 1181-1191, 2011.

[12] Bharathi N and Neelamegam P, “FPGA based linear

heating system for measurement of Thermoluminescence”,

Measurement Science Review, Vol. 11, No. 6, pp. 207-209,

2011.

[13] Luo H, Masud M and Ural H, “Detecting offline

transaction concurrency problems”, Journal of Software,

Vol. 7, No. 8, pp. 1855-1860, 2012.

0

1

2

3

4

5

6

7

8

after 10 TC after 20 TC after 30 TC after 40 TC after 50 TC

N
o

.o
f

fa
u

lt
s

Fault Detection Rate

Average weighted method Proposed method

