
A JALILA AND D JEYA MALA: OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

DOI: 10.21917/ijsc.2015.0152

1102

OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING

METHOD

A. Jalila1 and D. Jeya Mala2
Department of Computer Applications, Thiagarajar College of Engineering, India

E-mail: 1mejalila@gmail.com, 2djmcse@tce.edu

Abstract

The adoption of fault detection techniques during initial stages of

software development life cycle urges to improve reliability of a

software product. Specification-based testing is one of the major

criterions to detect faults in the requirement specification or design of

a software system. However, due to the non-availability of

implementation details, test case generation from formal

specifications become a challenging task. As a novel approach, the

proposed work presents a methodology to generate test cases from

OCL (Object constraint Language) formal specification using

Category Partitioning Method (CPM). The experiment results indicate

that the proposed methodology is more effective in revealing

specification based faults. Furthermore, it has been observed that

OCL and CPM form an excellent combination for performing

functional testing at the earliest to improve software quality with

reduced cost.

Keywords:

Software Testing, Specification-based Testing, OCL, CPM, Formal

Specification

1. INTRODUCTION

The fulfillment of requirement of the user is the major aim of

software development. Improper specification and design leads

to high cost in the implementation phase [1]. Therefore, software

systems are formally specified using any one of the specification

languages, namely OCL, Z, B, VBM, alloy.etc. The testing

activity will be more effective when it is applied from the initial

stages of software development. Therefore, there is a great

demand for specification based testing in the field of formal

specification based software development. Hence, formal

specification of the system serves both as a test oracle and

medium to generate functional test cases. It is a black box type

testing and it is used to confirm whether each function of the

system works based on the requirements or not. Specification

based testing approach is used to develop test cases and perform

coverage analysis in a simple and effective manner.

In particular, there is a wide acceptance for OCL in precise

software specification. The OCL specification can be derived

both from requirement specification (during the requirement

specification phase) or from class diagram (during the design

phase). OCL describes the prototyping of a system; hence,

functional test results will be accurate. OCL provides strong

base for system testing [2]. Hence, the proposed approach

extended the application of OCL both for specification and

design time testing. However, OCL is essentially a textual form

of first order predicate logic [3] and non-executable language

[4]. Therefore, the generation of test cases directly from OCL

specification would be ineffective [5]. There are many prior

works which have described the process of test generation from

OCL using various techniques [6, 7, 8, 9, 10 and 11]. The

proposed algorithm adopts existing specification-based testing

techniques named Category Partition Method (CPM) to OCL. In

our work, SUT would mean the requirements specification of the

system.

The CPM was developed by Ostrand and Balcer [12] to

generate test cases from functional specifications. Though it is a

traditional approach, it is more effective in deriving functional

test case generation. Moreover, it has not been used for OCL

specification so far. The main purpose of this approach is to find

all possible choices among constraints more effectively and

generate test cases more efficiently.

The remainder of this paper is organized into the following

sections. Section 2 describes the basic concepts for the proposed

study. The related work is elaborated on in section 3. Section 4

deals the proposed algorithm. The experimentation of the

proposed algorithm appears in section 5. The comparative study

has been detailed in section 6 and section 7 has drawn

conclusions out of this study.

2. BASIC CONCEPTS

2.1 OCL FORMAL SPECIFICATION

OCL standard stands for Object Constraint Language. It was

proposed by OMG organization. OCL is a model based

specification language. An UML diagram can not reflect all

relevant aspects and constraints of a model. Thus, OCL standard

has been developed to extend UML models by defining

constraints.

OCL is based on the simple mathematical notations. There

are three kinds of constraints or conditions which form the

building blocks of OCL expressions, namely invariants, pre-

conditions and post-conditions. To generate the test cases from

OCL based specification, there is need to find out the dependent

classes or the classes which require the service of the given

class. To achieve this, dependent metric is extracted from OCL

and is described in section 2.2.

2.2 DEPENDENCY METRICS EXTRACTION

FROM OCL SPECIFICATION

The dependency between classes can be identified using

direct class coupling (DCC) metric. DCC metric was proposed

by Bansiya et al. [9]. The DCC metric value is extracted from

OCL specification of the SUT based on the method parameter

definition and invariant declaration.

Let there be a component namely C, containing a method M.

There are two types of parameters can be passed to a method,

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1103

namely parameter as reference, parameter as variable. The

parameters of method M are expressed in OCL as follows

 context C::M(v1 : T1, a1: C1, ..., vn : Tn):RT (1)

where, V= {v1...vn } are the formal parameters of the method M.

T = {T1...Tn} are the parameter types, a1 object for the class C1.

RT is the return type for the method M.

From Eq.(1) it has been observed that component C is

coupled with another component named C1.

The invariant of the component C can be defined using OCL

expressions as follows.

 context C inv invName:Ct (2)

 or

 context C inv invName:self.C2.C2t → Ct (3)

where, C2 is the associated class name, C2t is the associated class

attribute and Ct is the condition as applicable to the class C.

From Eq.(3) it has been observed that the component C is

coupled with another component C2.

2.3 CATEGORY PARTITIONING METHOD (CPM)

CPM is the methodology applied to generate test cases from

formal specifications of the SUT [8]. The following are the steps

involved in category partitioning method

Step 1: Decompose the OCL constraints of SUT into functional

Units.

Step 2: Find parameters, pre and post conditions of each

function unit.

Step 3: Identify categories for each parameter and environment

conditions (pre and post conditions).

Step 4: Find the choices for each category by providing all

different kinds of values that are possible for it.

Step 5: Generate test frame by establishing the constraints

among the choices of different categories.

Step 6: Select a single element from each choice and derive test

cases.

2.4 COVERAGE CRITERIA FOR OCL

SPECIFICATION USING CPM

There are three coverage criteria are used in the proposed

approach namely statement coverage, condition coverage,

parameter coverage and path coverage.

Statement Coverage: It has been endeavored in the proposed

work that statement coverage is the ratio between numbers of

statements exercised to the total number of statements which are

available in the OCL specification of the system.

100

statements of No. Total

excercised statements of No.
 CoverageStatement 

(4)

Parameter coverage: It is the ratio between the total number

of parameters exercised to the total number of parameters in the

OCL specification of the system.

100
parameters of No. Total

excercised parameters of No.
coverageParameter  (5)

Condition coverage: It is the ratio between number of pre and

post conditions exercised to the total number of pre and post

conditions in the OCL specification of the system.

100

conditionspost and pre of No. Total

 excercised condtionspost and pre of No.

CoverageCondition





(6)

Path coverage: It is the ratio between the number of paths in

the ODG exercised to the total number paths in the ODG of the

system.

100
 testpathsof No. Total

 excercisedpath test of No.
CoveragePath  (7)

3. RELATED WORK

According to Amla and Ammann [10] CPM can be applied to

the functional specification of the natural-language. In their study,

they used Z specifications and CPM to generate test cases, whereas

in our proposed approach, OCL specification of the system is used

as a base for test case generation.

Ammann and Offutt [11] devised a methodology to generate test

script and coverage criteria, named base-choice-coverage, for Z

specification. In their approach they used category-partition

method-based testing. In this approach, statement, node and edge

coverage criteria are used.

Offutt and Irvine [12] used mutation approach and CPM to test

C++ programs. In their approach common type of faults in C++

programming are inserted to the programs. Then, test cases are

generated using CPM to uncover seeded faults. In our proposed

methodology depth first search technique is used to generate test

paths.

Grochtmann and Grimm [13] proposed a classification tree

method to construct test cases from functional specifications. Chen

et al. [18] constructed test frames to improve the tree structure for

supporting category-partition based test case generation.

The authors [15] used XML schema mapping and category

partition to identify the related constraints and relevant values for

each category.

Many earlier studies have demonstrated the test case generation

procedure from OCL. However, the implementation details are

either not covered or poorly explained. Thus, there is a need for a

standard and simple procedure to generate test cases from OCL

formal specification. The major difference between our approach

and the previous research works is that, our work is based on OCL-

specification based CPM. In addition different types of OCL-based

coverage criteria are introduced in our approach.

4. PROPOSED WORK

The proposed work includes proposed frame work and

algorithm which are detailed in section 4.1 and 4.2 respectively.

4.1 PROPOSED FRAMEWORK

The proposed framework consists of four modules, namely

OCL constraint extractor, test path generator, test case generator

and coverage analyzer which are depicted in Fig.1.

A JALILA AND D JEYA MALA: OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

1104

First, OCL specification of the system is derived which is

given as input to the test path generator module. The

dependencies between the components of the system are

assessed by deriving Direct Class Coupling (DCC) metric from

invariant and method parameter definitions of a component. In

test case generator module, abstract test cases are generated from

OCL constraints of the system using CPM. Then, test coverage

is analyzed.

Fig.1. Proposed Framework

4.2 PROPOSED ALGORITHM

INPUT: OCL specification of the SUT

OUTPUT: Test suite TS.

Step 1: Derive OCL expressions of a system from requirement

specification and save it with .txt file extension

Step 2: Generate Test path based on the object dependency table

and dependency Graph

Step 2.1: Parse the .txt file using java to derive DCC metric

and generate Object Dependency Table (ODT) and

assign identifier for each object.

Step 2.2: Construct Object Dependency Graph (ODG) from

the Object Dependency Table (ODT) where each node

represents the method and label edges.

Step 2.3: Traverse the Object Dependency Graph (ODG) in

Depth First Search (DFS) manner to derive test paths.

Generate OCL-based test cases with CPM do the

following steps

Step 3:

p = {p [1], p [2]… p[n]} all paths in ODG.

For each path p [i], n = Node, ∀ p[i] ∈ p Apply CPM

method as discussed in section 2.3

ti ← TC // generate test cases for all paths using CPM

 While (n ≠ N (p[i]))

ti=ti + t

C=Nx

End While

TS= TS+ ti

End for

Step 4: Analyze OCL based coverage criteria.

5. EXPERIMENTATION

This section briefs the implementation of the proposed

algorithm. The algorithm is tested with various OCL constraints.

The proposed algorithm is coded in Java. This section explains

the OCL-based test case generation with CPM for simple

PAYROLL System.

Table.1. Object Dependency Table for PAYROLL System

Component

ID

Method with

Object Name

Object

Dependency

based on DCC

Edge

ID

C1: admin C1: calsal C2 E1

C1: admin C1: calatt C3 E2

C1: admin C1: updateemp C4 E3

C2: Salary C2:salaryinfo C3 E4

C3:attendance C3:attendinfo - -

C4: employee C4: empinfo - -

C5:PF C5: PFcalc C2 E5

Step 1: OCL expressions of the PAYROLL system are derived

from its requirement specification document and saved

as payroll.txt as shown in Fig.2.

Fig.2. OCL expressions of the PAYROLL system

Step 2: Test path Generation - This section includes two sub

modules, namely dependency table generation and

graph construction.

Step 2.1: The dependency between each component of the

PAYROLL system is examined by deriving its

DCC metric value from payroll.txt. Based on the

object dependency, the edges between the

components are identified. Then, ODT is

constructed for the PAYROLL system, which

represented in Table.1.

Step 2.2: Based on the object dependency table values the

dependency graph is constructed in which node

represents the components name and edges

connects the dependency components. Fig.3

represents the ODG for the PAYROLL system.

OCL CONSTRAINTS

GENERATOR

TEST PATH GENERATOR

METRIC EXPTRACTION

OBJECT DEPENDENCY

TABLE

OBJECT DEPENDENCY

GRAPH

APPLY DFS

APPLY DFS

TEST CASE

GENERATOR

COVERAGE
ANALYSER

APPLY DFS

TEST CASES

TEST REPORT

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1105

Fig.3. Object Dependency Graph for the PAYROLL System

Step 2.3: Traverse the graph through the depth first manner to

generate test paths. There are three paths generated

for the PAYROLL system. Here, TRP represents

the test path requirement. The generated test paths

cover all the nodes and edges of its ODG.

 TPR = {C1, C2, C3, C4, C5}

 Test path 1: C1→ C2→C5

 Test Path 2: C1→ C3 → C2→C5

 Test Path 3: C1→ C4

Step 3: As discussed in section 2.3, CPM is used to generate

specification based test case. The steps are given below.

Table.2. Parameters, Pre and Post Conditions for the

PAYROLL System

Functional

Unit with

Object

Name

Parameters Pre-conditions
Post-

conditions

C1: calsal
s:salary,deduct:

Real, amount:Real

s.basicsal > 3000

a.dayspresent > 1

s.basicsal*

a.dayspresent*

1000-

s.deduction

result>0

C1: calatt

a:attend,

att:Integer,

daypreent:Integer,

workday:Integer

pre: a.daypreent > 1

pre:a.workday> 15

a.att =

a.workday-

a.dayspresent

C1:

updateemp
e:employee

pre: self.e.empid >

0

pre:

e.empid.isDefined()

self.e.empid =

self.e.empid

@pre +

self.e.empid

C2:salaryinfo

a:attend,

daypresent:Integer,

basicsal:Real,

amount:Real

pre: s.basicsal >

3000

pre:a.dayspresent >

15

post: amount=

s.amount*

a.dayprsent

post:

s.amount>100

C5: PFcalc

PFcalc(s:salary,

basicsal:Real,

PF:Real)

pre: s.basicsal >

3000

post: self.PF=

s.basicsal*

20/100

post:

self.PF>300

Step 3.1: The functional units or methods of the PAYROLL

system are extracted from payroll.txt, which

include ‘calsal’, ‘calatt’, ‘updateemp’,’

salaryinfo’, ‘PFcalc’.

Step 3.2: The various entities, include parameters, pre and

post conditions of the PAYROLL system are

extracted from payroll.txt, which are listed in

Table.2.

Step 3.3: Categories defines the major characteristics of each

parameter and environment condition hence, it

affects the execution behavior of the system.

Moreover, it is analogous to equivalence classes

and it is a subset of parameter values. The Table.3

presents the categories for the method ‘salaryinfo’

of the PAYROLL system.

Table.3. Categories for the functional unit salaryinfo of the

PAYROLL System

Functional

Unit

Parameters,

Precondition, Post

condition

Categories

C2:salaryinfo

a:attend

daypresent:Integer

basicsal:Real

amount:Real

a:attend

Daypresent< =0

Daypresent>=0

Basicsal >=3000

Basicsal<=3000

amount:>=0

amount: <=0

Precondition s.basicsal > 1

s.basicsal > 3000

s.basicsal = 3000

s.basicsal < 3000

Post

condition

amount=

s.amount*

a.dayprsent

s.amount>0

amount= s.amount*

a.dayprsent

amount= s.amount+

a.dayprsent

amount= s.amount-

a.dayprsent

amount= s.amount*-

a.dayprsent

s.amount>300

s.amount<300

s.amount=300

Step 3.4: A choice for each category is specified by

providing all different kinds of values that are

possible for it. It is similar to boundary conditions.

Furthermore, it is a specific test value, which

includes both valid and invalid values for each

category. The Table.4 depicts the choices for the

method ‘salaryinfo’ of the PAYROLL system.

Due to the space constraint the number of choices

for each entity is limited in this paper.

Sep 3.5: The constraints among choices are identified

according to method invariants and environment

conditions of the system. The Table.5 represents

the constraints which are applicable to various

C1

C3 C2 C4

C5

E1
E2

E4

E5

E3

A JALILA AND D JEYA MALA: OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

1106

choices of the method ‘salaryinfo’ of the

PARYROLL system.

Step 3.6: The cross-product of all choices defines the test

cases. Generate test cases by selecting a single

element from each choice and stored in a separate

table. The Table.6 depicts test cases and their

expected results for the method ‘salaryinfo’ of the

PAYROLL system.

Step 4: Coverage Analysis - There are four coverage criteria are

used in the proposed approach to test the adequacy

criteria. As discussed in the section 2.4 the coverage

values are calculated for all components of the

PAYROLL system which is represented in Table.7.

Table.4. Choices for the functional unit salaryinfo of the PAYROLL System

Functional Unit
Parameters, Precondition,

Post condition
Categories Choices

C2:salaryinfo

a:attend

daypresent:Integer

basicsal:Real

amount:Real

a:attend

Daypresent< =0

Daypresent>=0

Basicsal >=3000

Basicsal<=3000

amount:>=0

amount: <=0

a:attend

Daypresent< 0, Daypresent< =0

Daypresent>0, Daypresent=0

Basicsal >0, Basicsal =0

Basicsal<0, Basicsal=0

amount:>0, amount:=0

amount: <0, amount: =0

Precondition s.basicsal > 1

s.basicsal > 3000

s.basicsal < 3000

s.basicsal = 3000

s.basicsal > 3000

s.basicsal <3000

s.basicsal=3000

Post condition
amount= a.dayprsent

s.amount>0 s.amount*

amount= s.amount* a.dayprsent

amount= s.amount+ a.dayprsent

amount= s.amount- a.dayprsent

amount= s.amount*-a.dayprsent

s.amount>0

s.amount<0

s.amount=0

amount= s.amount* a.dayprsent

amount= -1

amount= -1

amount= -1

s.amount>0

s.amount=-1

s.amount=0

Table.5. Constraints for the functional unit salaryinfo of the PAYROLL System

Functional Unit Choices Constraints

C2:salaryinfo

a:attend

Daypresent< 0, Daypresent< =0

Daypresent>0, Daypresent=0

Basicsal >0, Basicsal =0

Basicsal<0, Basicsal=0

amount:>0, amount:=0

amount: <0, amount: =0

a.attend

dayspresent >0

basicsal >0

amount>0

Precondition

s.basicsal > 3000

s.basicsal <3000

s.basicsal=3000

Basicsal >3000

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1107

Post condition

amount= s.amount* a.dayprsent

amount<100

amount= 0

amount= -1

s.amount>0

s.amount=-1

s.amount=0

let sal:Real=0 in

if self.attendance.noofpre=0

then

 sal=0

else

basicsal=sal

endif

totalsal <=1 implies

self.attendance.noofpre <=0 or

self.attendance.noofhol >=30 or

self.attendance.workday <=0

Table.6. Constraints for the functional unit salaryinfo of the PAYROLL System

Test

Case
Functional Parameter / Choices Expected Result

1 a:attend Daypresent> 0 Basicsal >3000 amount:>0 Valid

2 a:attend Daypresent> 0 Basicsal <3000 amount:>0 Invalid

3 a:attend Daypresent> 0 Basicsal >3000 amount:<0 Invalid

4 a:attend Daypresent< 0 Basicsal >3000 amount:>0 Invalid

5 a:attend Daypresent< 0 Basicsal >3000 amount:<0 Invalid

6 a:attend Daypresent> 0 Basicsal >3000 amount:=0 Invalid

7 a:attend Daypresent> 0 Basicsal <3000 amount:>0 Invalid

8 a:attend Daypresent= 0 Basicsal >3000 amount:>0 Invalid

9 a:attend Daypresent= 0 Basicsal >3000 amount:<0 Invalid

 Pre and Post conditions

10 s.basicsal > 3000 amount= s.amount* a.dayprsent s.amount>0 Valid

11 s.basicsal < 3000 amount= s.amount* a.dayprsent s.amount>0 Invalid

12 s.basicsal = 3000 amount= s.amount* a.dayprsent s.amount>0 Invalid

13 s.basicsal > 3000 amount= s.amount+ a.dayprsent s.amount>0 Invalid

14 s.basicsal > 3000 amount= s.amount*- a.dayprsent s.amount>0 Invalid

15 … … … …

6. COMPARATIVE STUDY

Many of the existing studies reported in the related work

showed that there are different approaches [3, 4, 6 and 7] used to

generate test cases from Z specification. Our approach uses OCL

formal specification and CPM to facilitate test case generation

from OCL.

Specification related test generation methods require formal

specifications with specific interpretations to generate test data

or an additional formalism such as higher order logic

transformation, XML schema definition etc. On the other hand,

many of the specification-based testing works [3 and 4] have

reported the manual methods for test data generation.

A.D. Brucker et al.[7] have proposed a method to generate

test data based on higher order representation of OCL

specification. In their approach, the OCL specification of the

system is first transformed into higher order logic. Then, object

graph is constructed. However, their approach does not take into

account the coverage criteria of the program.

In our approach, we use exactly the same OCL specification

derived for precise requirement or model specification, without

requiring any additional transformation or effort specifically

meant for testing purposes. The study of A.D. Brucker et al.

A JALILA AND D JEYA MALA: OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

1108

focused only on the automatic test cases generation. Tests path

and coverage have not been analyzed properly.

The limitation of the prior work [7] is, it focuses on OCL

pre, post conditions and invariants and it ignores method

parameters for test data generation. Therefore, this test case

generation technique could not detect all abstract system level

bugs. A.D. Brucker et al. have generated the object graph based

on the concept of alias closure.

 However, it involves complex processes and mathematical

operations. In our proposed work, the test path is generated

using DCC metric which can be derived easily from OCL

specification of the SUT.

The work of A.D. Brucker et al. is derives test data, but it is

often complex by transforming OCL specification into higher

order logic. It is inferred that the derivation of higher order logic

from OCL specification is the complex operation. As a result of

this, test efforts are wasted which increases the testing cost.

Table.7. Constraints for the functional unit salaryinfo of the

PAYROLL System

Components

Coverage Criteria

Statement Parameter
Pre-Post

condition
Path

C1: admin 80% 92% 75% 100%

C2: salary 90% 97% 88% 85%

C3:attendance 94% 92% 77% 89%

C4: employee 77% 79% 92% 94%

C5:PF 87% 88% 79% 77%

Unlike A.D. Brucker et al. work, our test case generation

approach detects statement, condition and parameter wise faults

in the OCL specification of the SUT. There is no redundant test

data have been generated by our approach. The automation of

our proposed approach is very simple.

Moreover, the corrective measure at the early phases of

software development is more effective than at the later stages of

software development. Our proposed approach is focused on the

specification time testing, which is more effective than design

time testing. We compared our work with the existing work on

specification-based test case generation [7] which is depicted in

Table.8.

Table.8. Comparison of our approach with A. D. Brucker et al.

work

Sl.

No

Comparison

criterion

A.D. Brucker

et al.

approach

Our approach

1 Type of testing Model based
Specification

based

2
Methodology

Adopted

Theorem-

prover- based

Category

Partitioning

Method

3
Parameter

Included
No Yes

4
Intermediate

representation

Higher order

logic

Categories and

Choices

5 Graph used Object Graph

Object

dependency

Graph

6
Path Generation

Technique
Alias Closure DCC metric

7
Coverage

analysed
No Yes

8 Automation Difficult Simple

9 Effectiveness

In appropriate

for complex

system

Applicable to all

type of systems

and systematic

7. CONCLUSION

In this research work, we have adopted the functional test

case generation technique using OCL and CPM. The proposed

approach can generate high efficient test cases at the

specification level. The major merits of the framework are:

The dependency relations between components are realized

using DCC metrics value. Dependency graph serves to construct

test paths. Test cases are generated directly from formal

specification of the system. The proposed work adopts the

systematic way to control the maximum number of generated

test cases. It serves to detect and correct faults due to incorrect

specification.

We have applied our approach to many real-time applications

and observed the effectiveness of specification based testing

using its categories and choices. The proposed approach shall

generate test cases efficiently and thus improves overall software

quality.

As a future work, it has been proposed to adopt search based

techniques, so as to generate and prioritize test cases based on

OCL specification of the system.

ACKNOWLEDGMENT

This paper is a part of the UGC major research project

supported by University Grants Commission (UGC), New Delhi,

India.

REFERENCES

[1] Joseph Gil, John Howse and Stuart Kent, “Constraint

Diagrams. A Step beyond UML”, Technology of Object-

Oriented Languages and Systems, pp 1-10, 1999.

[2] Philippe Collet and Roger Rousseau, “Towards Efficient

Support for Executing the Object Constraint Language”,

Proceedings of Technology of Object-Oriented Languages

and Systems, pp. 399-408, 1999.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2015, VOLUME: 06, ISSUE: 01

1109

[3] Ben Potter Jane Sinclair and Jane Sinclair, “An

Introduction to Formal Specification and Z”, 2nd Edition.

Prentice Hall, 1996.

[4] Percy Antonio Pari Salas and Bernhard K. Aichernig,

“Automatic Test Data Generation for OCL: A Mutation

Approach”, Proceedings of 5th International Conference

on Quality Software, pp. 64-71, 2005.

[5] Li Bao-Lin, Li Zhi-shu, Li. Qing, and Chen Yan Hong,

“Test Case Automate Generation from UML Sequence

Diagram and OCL expression”, International Conference

on Computational Intelligence and Security, pp. 1048-

1052, 2007.

[6] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, “A Search-

based OCL Constraint Solver for Model-based Test Data

Generation”, Proceedings of 11th International Conference

on Quality Software, pp. 41-50, 2011.

[7] Achim D. Brucker, Matthias P. Krieger, Delphine Longuet

and Burkhart Wolff, “A Specification-Based Test Case

Generation Method for UML/ OCL”, Proceedings of

International Conference on Models in Software

Engineering, pp. 334-348, 2011.

[8] Thomas J Ostrand and Marc J Balcer, “The Category-

Partition Method for Specifying and Generating Functional

Tests”, Communications of the ACM, Vol. 31, No. 6, pp.

676-686, 1988.

[9] Jagadish Bansiya and Carl Davis, “Automated Metrics and

Object-Oriented Development”, Dr. Dobb’s Journal, pp.

42-48, 1997.

[10] N. Amla and P. Ammann, “Using Z Specifications in

Category Partition Testing”, Proceeding of the Seventh

Annual Conference on Systems Integrity, Software Safety

and Process Security: Building the System Right, pp. 3-10,

1992.

[11] Paul Ammann and Jeff Offutt, “Using Formal Methods to

Derive Test Frames in Category-Partition Testing”,

Proceedings of 9th Annual Conference on Computer

Assurance, pp. 69-80, 1994.

[12] Jeff Offutt and Alisa Irvine, “Testing Object-Oriented

Software using the Category-Partition Method”,

Proceedings of 17th International Conferences on

Technology of OO Languages and Systems, pp. 293-303,

1995.

[13] Matthias Grochtmann and Klaus Grimm, “Classification

trees for partition testing”, Software Testing, Verification

and Reliability, Vol. 3, No. 2, pp. 63-82, 1993.

[14] T.Y. Chen, Pak Lok Poon and T.H. Tse, “A Choice

Relation Framework for Supporting Category Partition Test

Case Generation”, IEEE Transactions on Software

Engineering, Vol. 29, No. 7, pp. 577-593, 2003.

[15] Antonia Bertolino, Jinghua Gao, Eda Marchetti, and

Andrea Polini, “Automatic test data generation for XML

Schema-Based Partition Testing”, Proceedings of 2nd

International Workshop on Automation of Software Test,

2007.

