
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2014, VOLUME: 04, ISSUE: 02

DOI: 10.21917/ijsc.2014.0100

697

A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

R. Bala Chandar
1
, M. S. Kavitha

2
 and K. Seenivasan

3

1
Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology, India

E-mail: balachandar.raju@gmail.com
2
Department of Computer Science and Engineering, Sri Eshwar College of Engineering and Technology, India

E-mail: kaviktg@gmail.com
3
Department of Computer Science and Engineering, Renganayagi Varatharaj College of Engineering, India

E-mail: srinivassvks@gmail.com

Abstract

Cloud computing is an inspiring technology due to its abilities like

ensuring scalable services, reducing the anxiety of local hardware

and software management associated with computing while

increasing flexibility and scalability. A key trait of the cloud services

is remotely processing of data. Even though this technology had

offered a lot of services, there are a few concerns such as misbehavior

of server side stored data , out of control of data owner's data and

cloud computing does not control the access of outsourced data

desired by the data owner. To handle these issues, we propose a new

model to ensure the data correctness for assurance of stored data,

distributed accountability for authentication and efficient access

control of outsourced data for authorization. This model strengthens

the correctness of data and helps to achieve the cloud data integrity,

supports data owner to have control on their own data through

tracking and improves the access control of outsourced data.

Keywords:

Data Security, Data Correctness, Data Control, Access Control, Data

Integrity

1. INTRODUCTION

Cloud computing is the recent technology that enables cloud

customers to enjoy the on demand high quality applications and

services from a shared pool of configurable computing resources

through storing their data remotely in the cloud. Technology

enabled services can be consumed over the Internet on an as

needed basis through cloud. It refers to both the applications

delivered as a service over the Internet and the hardware and

software in the data centers that provide those services.

Cloud computing is a development of virtualization, parallel,

distributed, utility computing and SOA. Different service

oriented cloud computing models have been proposed which

includes Software as a Service (SaaS), Infrastructure as a

Service (IaaS) and Platform as a Service (PaaS). Generally cloud

computing has several customers such as ordinary users and

enterprises who have different motivations to move to cloud

[13][14][16][17].

In cloud, there are a set of important policy issues, which

includes some non functional requirements such as privacy,

security, reliability and liability. But the most important is security

and how cloud providers assure it. One of the prominent security

concerns is data security and privacy in cloud computing due to its

Internet based data storage and management.

While enjoying the provision of huge amount of storage

space and customizable computing resources, it also eliminates

the responsibility of local machines for data maintenance at the

same time. Cloud provides more powerful and reliable features

but there are threats which still exist for data integrity such as

outages and data loss incidents.

In the mean while users also start worrying about losing control

of their own data. Sometimes the data processed on cloud becomes

a significant barrier to the wide adoption of cloud services. Data

represents an extremely important asset for any organization, and it

will be in trouble if its confidential data is disclosed to their

business competitors or the public. Thus cloud users want to make

sure that their data are kept confidential to outsiders.

In order to address the above problems, a model is proposed

which helps to ensure the data integrity and information

accountability in cloud with flexible access control of the

outsourced data.

2. RELATED WORK

Using Cloud Storage, users can remotely store their data and

enjoy the on-demand high quality applications and services from

a shared pool of configurable computing resources, without the

burden of local data storage and maintenance [1]. The main issue

is how to frequently, efficiently and securely verify that a storage

server is faithfully storing the outsourced data. The storage server

is assumed to be untrusted in terms of both security and reliability

[2]. A growing number of online services, such as Google,

Yahoo!, and Amazon, are starting to charge users for their

storage. Customers often use these services to store valuable data

such as email, family photos and videos, and disk backups.

Today, a customer must entirely trust such external services to

maintain the integrity of hosted data and return it intact.

Unfortunately, no service is infallible. To make storage services

accountable for data loss, we present protocols that allow a third

party auditor to periodically verify the data stored by a service

and assist in returning the data intact to the customer. In

particular, we consider the task of allowing a third party auditor

(TPA), on behalf of the cloud client, to verify the integrity of the

dynamic data stored in the cloud [3]. Thus, enabling public audit

ability for cloud storage is of critical importance so that users can

resort to a third party auditor (TPA) to check the integrity of

outsourced data and be worry-free. To securely introduce an

effective TPA, the auditing process should bring in no new

vulnerabilities towards user data privacy, and introduce no

additional online burden to user [4]. It describes three key

problems for trust management in federated systems and presents

a layered architecture for addressing them. The three problems

we address include how to express and verify trust in a flexible

and scalable manner, how to monitor the use of trust relationships

over time, and how to manage and re-evaluate trust relationships

based on historical traces of past behavior. Trust management

mailto:balachandar.raju@gmail.com
mailto:kaviktg@gmail.com
mailto:srinivassvks@gmail.com

R BALA CHANDAR et. al.: A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

DOI: 10.21917/ijsc.2014.0100

698

and are especially relevant in the context of federated systems

where remote resources can be acquired across multiple

administrative domains [5]. They propose a language that allows

agents to distribute data with usage policies in a decentralized

architecture. They design a logic that allows audited agents to

prove their actions, and to prove their authorization to posses’

particular data. Accountability is defined in several flavors,

including agent accountability and data accountability [6].

Finally, they show the soundness of the logic. Here it

analyses the how accountability is transferred by the delegator

when he/she is transferred some of their right to the delegate [7].

It introduces a model for provable data possession (PDP). It

stored data at an untrusted server to verify that the server

possesses the original data without retrieving it. The client

maintains a constant amount of metadata to verify the proof.

Thus, the PDP model for remote data checking supports large

data sets in widely-distributed storage systems. In particular, the

overhead at the server is low (or even constant), as opposed to

linear in the size of the data [8]. They describe an operational

model of accountability-based distributed systems. We describe

analyses which support both the design of accountability

systems and the validation of auditors for finitely accountability

systems. Our study provides the power of the auditor, the

efficiency of the audit protocol, the requirements placed on the

agents, and the requirements placed on the communication

infrastructure [9]. In this Paper they present a system for

realizing complex access control on encrypted data that we call

Ciphertext-Policy Attribute-Based Encryption. By using this

technique encrypted data can be kept confidential even if the

storage server is untrusted; moreover, this method is secure

against collusion attacks. Here the attributes are used to describe

a user’s credentials, and a party encrypting data determines a

policy for who can decrypt. Thus, this method is conceptually

closer to traditional access control methods such as Role-Based

Access Control (RBAC) [10].

This approach is used to keep sensitive user data confidential

against untrusted servers; existing solutions usually apply

cryptographic methods by disclosing data decryption keys only to

authorized users. Here they defining and enforcing access policies

based on data attributes, and allowing the data owner to delegate

most of the computation tasks involved in fine-grained data access

control to untrusted cloud servers without disclosing the underlying

data contents by combining techniques of attribute-based

encryption (ABE), proxy re-encryption, and lazy re-encryption

[10]. They develop a new cryptosystem for fine-grained sharing of

encrypted data that we call Key-Policy Attribute-Based Encryption

(KP-ABE). It constructs a model to supports delegation of private

keys which subsumes Hierarchical Identity-Based Encryption

(HIBE) [11]. Attribute-Based Encryption (ABE) is a new paradigm

where the policies are specified and cryptographically enforced in

the encryption algorithm itself. In this work they focused on

improving the flexibility of representing user attributes in keys.

Specifically, they proposed Ciphertext Policy Attribute Set Based

Encryption (CP-ASBE) [12].

3. PROBLEM STATEMENT

3.1 COMPONENTS

The following are the components used in this scheme:

3.1.1 Data User:

It can be an enterprise or individual customer who consumes

the data stored in the cloud.

3.1.2 Data Owner:

It plays a major role where it deploys the data into the cloud.

It can be an enterprise or individual customer where it depends

on cloud for data storage and computation.

3.1.3 Cloud Server:

It is a cloud service provider which has a pool of

computation resources and storage space.

3.1.4 Assessor:

It is an auditing entity which completely depends on the

users demand.

3.1.5 Logger:

It is responsible for storing the access details of the data

items automatically.

3.1.6 Log Assessor:

It is an entity which is responsible for auditing the logged

information.

3.1.7 Trusted Authority:

It is a powerful entity used to manage the lower level users.

3.2 SYSTEM ARCHITECTURE

The System architecture is illustrated in Fig.1. The first tier

deals with the data at rest to ensure the assurance. The data

owner encrypts the original data file. This encrypted file is then

tokenized and stored in the cloud servers. The second tire deals

with the data under no control to ensure authentication. The

encrypted logger is added with the received file with its

originality. Now the combined file forms the JAR File. The third

tier deal with the data during access to ensure the authorization.

Here the JAR File is accessed only by the trusted authority and

the authorization for the different level of users is delegated by

the trusted authority.

3.3 DESIGN GOALS

To ensure the security, we aim to design efficient mechanisms

and achieve the following goals:

3.3.1 To ensure the data correctness for Assurance of stored

data:

It mainly focuses on the storage correctness, Data error

localization and dynamic data support.

3.3.2 To ensure the distributed accountability for

Authentication:

It provides distributed and automated logging in order to

leverage the full control of the data under the data owner.

3.3.3 To ensure the efficient access control of outsourced

data for Authorization:

It supports the fine grained access to achieve flexibility and

scalability of access control.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2014, VOLUME: 04, ISSUE: 02
DOI: 10.21917/ijsc.2014.0100

699

Fig.1. System Model

4. PROFICIENT MODEL

In this section, we design an overview of the enhanced model

and discuss how this model meets the design requirements

discussed in the previous section.

The model proposed in this work conducts various

automated logging and distributed auditing of relevant access

performed by any entity, carried out at any point of time within

any cloud service provider. Then, we create an effective storage

verification scheme for dynamic data support to ensure the

storage correctness of data with fine grained access control of

outsourced data in the cloud with various levels of users in an

organization.

4.1 MECHANISMS

4.1.1 Erasure Correcting Code:

Erasure correcting code is used to distribute the file with

replication. The communication and storage overhead is reduced

as compared with the conventional replication-based file

distribution techniques.

4.1.2 Homomorphic Tokenization:

By utilizing the homomorphic tokenization the original file is

divided into number of tokens.

4.1.3 Verification of tokens:

The TTS achieves the storage correctness and data error

localization by integrating both the erasure correcting code and

homomorphic tokenization. The compromised servers are

identified during the detection of data corruption.

4.1.4 Logging (logger):

The access details are continuously added into the log file as

per the number of data file access. It is automatically

downloaded along with the data file whenever the data is copied.

4.1.5 Auditing:

This is processed with the help of the logged files provided

by the logger. The following are the two modes of operations:

Shove – In: The log files are shoved back to the data owner

periodically in an automated fashion

Fling – Out: The log files are obtained by the data owner as on

demand. It is also dependable for handling log file corruption

4.1.6 Attribute based encryption:

Attribute based encryption scheme will be used for

encrypting both the cipher text and users’ decryption keys that

are associated with a set of attributes or policy. A user is able to

decrypt a cipher text only if there is a match between his

decryption key and the cipher text.

4.2 DATA FLOW

The overall model combines the data items, users, cloud

storage, loggers, logger auditor, tokenization process and how

ABE scheme is applied in the organization (with various levels

of users) is sketched in Fig.2. At the beginning, the client login

into the cloud server through their user name and password

based on the Identity Based Encryption (IBE) scheme. The

uploading file is obtained from the data owner only after

successful authorized access verification. Then the original data

file is tokenized into equal size streams of tokens and stored into

the same size of blocks at various cloud servers randomly with

some access control which is desired by the data owner.

When the data is accessed from the cloud server, the streams

of tokens are merged to form the original file. Before that, the

originality of the file content will be verified through the digital

signature that is generated for each stream of tokenized files

which are in the cloud servers. If any intruder tries to modify the

tokens, the compromised server will be easily identified since

the digital signatures are created for every stream of tokens.

After the rearranging process, the original file is added with

the logger to form the JAR file with some access policies. This

logger file contains the details about the data items which are

accessed by the stakeholder or organization. As for the logging,

whenever there is a data access a log record is generated

automatically, and it is encrypted using the public key which is

distributed by the data owner, and it is stored with the data file.

The log file encryption prevents the unauthorized changes

created by the attackers to the log file. The data owner could opt

to reuse the same key pair for all JARs or create different key

pairs for separate JARs. If any of the unauthorized users or any

cloud service provider is trying to misuse the data items, it will

be easily identified by giving an alert to the data owner. Finally,

the trusted domain of this mode; will read the JAR and generate

a master key for all the domain authorities those who are in need

to access the outsourced data. After the data is outsourced from

the cloud, the privileged domain authorities will generate the

keys for every attribute at each level of users’ in the

organization.

The domain authority/authorities are under the control of the

trusted authority, so it can generate the key for the users in the

next level. The management and generation of keys will be

reduced as well as the scalability and flexibility via efficient

attribute set management will be improved. Each level of users

has their separate key for each of their attributes, so fine grained

access control of the outsourced data is possible with this

scheme.

R BALA CHANDAR et. al.: A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

DOI: 10.21917/ijsc.2014.0100

700

Fig.2. Proficient System Model - Data Flow

5. IMPLEMENTATION

We start this section by considering an illustrative example

which serves as the basis of our implementation and demonstrate

the main features of our system.

Example: Consider ABC as a jewellery shop with some levels

of users as shown in Fig.3, plans to store their jewel reports into

the cloud and to access the same with the following

requirements:

1. The jewel reports are downloaded only by the authorized

users who are in that shop.

2. Users in this shop should be equipped with security

means so that they can make continuous correctness

assurance of their jewel report even without the existence

of local copies.

3. The online burden of data integrity checking tasks must

be reduced in an efficient manner.

4. The cloud provider or stake holder should not misuse the

data for their own purpose without the knowledge of data

owner.

5. The outsourced data from the cloud should be accessed

only by the authorized domain authorities (ABC Jewel

shop).

6. Each user at various levels in the shop must have limited

access to the outsourced data, as desired by the data

owner or higher level entities in the organization.

In order to achieve the above requirements, we have created

a private cloud environment. According to Fig.3, only the admin

or data owner has the authority to store the jewel report into the

cloud. Before storing the jewel report into the cloud, the report

will be tokenized using homomorphic tokenization mechanism.

The number of tokens depends on the cloud servers. Digital

Signature is created for all the tokens using RSA algorithm.

Then the digitally signatured tokens are maintained locally in

order to assure the data integrity. All the signatured tokens are

placed randomly across the servers. Here the trusted authority

behaves as an intermediator between the server (cloud service

provider) and the client (admin or data owner). When the trusted

authority tries to access the jewel report, initially all the

signatured tokens in the cloud servers are verified with the

locally maintained digital signature tokens.

After the verification, all the tokens are integrated together to

form the original jewel report. The verification process helps to

find the compromised servers in case if their corresponding

tokens are modified.

Through the above procedure we can achieve the second

requirement. To the original jewel report, a logger file with some

access policies is added in order to form the jar file. Now the jar

file behaves as a container which consists the logger file in an

encrypted format and the access policies which are enforced by

the data owner.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2014, VOLUME: 04, ISSUE: 02
DOI: 10.21917/ijsc.2014.0100

701

Number of levels

in the

Organization

Attributes

Users

Jewel

Name

Dealer

Name

Buying

Date

Total

Grams

Sales

Rate

Carat

Type

Buying

Date

Original Data File

Jewel Image and

Description

Level 1
Administrator or

Data Owner
YES YES YES YES YES YES YES YES YES

Level 2 Manager YES YES NO YES YES YES YES YES YES

Level 3 Supervisor YES NO NO YES YES YES YES YES YES

Level 4 Worker YES NO NO YES YES YES NO YES YES

YES – Permission granted for access the attributes NO – Permission not granted for access the attributes

Fig.4. Access control of entity levels in an organization

The log file contains the information about access of the

jewel report such as name, time, location, type of access of the

user. The logger file automatically saves the details when the

jewel report is accessed by the user. Periodic auditing is

processed by the logger auditor to identify the unauthorized

access. The periodic auditing process has two separate modes

such as shove-in and fling-out.

Fig.3. Entity levels in an organization

During the shove – in mode, the log files are automatically

shoved back to the data owner periodically. Fling-out is an on

demand approach, where the log files are obtained by the data

owner whenever it is required. Complete information

accountability is achieved along with the identification of the

misusage of original jewel report. This helps to satisfy the first

and fourth requirements. We implement the third party auditing

to conduct the data integrity checking process to reduce the

online burden of the user. Using third party auditor, we can

achieve the third requirement.

To satisfy the fifth and sixth requirements, the entities at the

higher level are responsible for generating the keys for the lower

level entities in the jewellery shop using Attribute Based

Encryption scheme. According to the access policies defined by

the data owner, some details of the jewel are hidden to the lower

level entities by the higher level entities as shown in Fig.4. This

scheme improves the scalability, flexibility and fine grained

access control of the jewel report in the cloud.

6. PERFORMANCE EVALUATION

The following graphs which are shown in the Fig.5, Fig.6

and Fig.7 evaluate the result analysis of the model using various

metrics. The metrics such as assessing time, log merging time

and key generation time are considered in order to evaluate the

performance.

Fig.5. Assessing Time

7. CONCLUSION

In this paper we introduced a proficient model in order to

address the problems such as data integrity, data loss and secure

data access. It is designed in such a way to provide end – to –

end security in the cloud. It helps to assure the data correctness

and also helps to simultaneously identify the misbehaving

servers in the cloud system. It enables the data owner to have

full control of his own data by monitoring the access logs of data

file through distributed auditing mechanism. To add more

security at the access levels, the data has been converted in a

more flexible and scalable form with fine grained access control.

Finally the data has been secured at all the levels such as at rest,

during transit and access in order to provide a complete end to

end security.

0

80

160

240

320

400

Data Owner Third Party Auditors

Time

TA

DA: Admin or

Data Owner

DA: Admin or

Data Owner

Manager Manager

Supervisor Supervisor

Worker Worker

R BALA CHANDAR et. al.: A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

DOI: 10.21917/ijsc.2014.0100

702

Fig.6. Log Merging Time

Fig.7. Key generation Time

REFERENCES

[1] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy

Preserving Public Auditing for Data Storage ecurity in

Cloud Computing”, Proceedinjgs of IEEE 29
th
 International

Conference on Computer Communications, pp. 525 – 533,

2010.

[2] G. Ateniese, R.D. Pietro, L.V. Mancini and G. Tsudik,

“Scalable and Efficient Provable Data Possession”,

Proceedings of Fourth International Conference on Security

and Privacy in Communication Netoworks, pp. 1 – 10, 2008.

[3] M. A. Shah, R. Swaminathan and M. Baker, “Privacy-

Preserving Audit and Extraction of Digital Contents”, IACR

Cryptology ePrint Archive, 2008.

[4] Q. Wang, C. Wang, J. Li, K. Ren and W. Lou, “Enabling

Public Verifiability and Data Dynamics for Storage Security

in Cloud Computing”, Proceedings of 14
th
 European

Conference on Research in Computer Security, pp. 355 –

370, 2009.

[5] B. N. Chun and A. Bavier, “Decentralized Trust

Management and Accountability in Federated Systems”,

Proceedings of the 37
th
 Annual Hawaii International

Conference on System Sciences, 2004.

[6] R. Corin, S. Etalle, J. I. Den Hartog, G. Lenzini and I. Staicu,

“A Logic for Auditing Accountability in Decentralized

Systems”, Proceedings of International Federation for

Information Processing TC1 WG1.7 Workshop on Formal

Aspects in Security and Trust, World Computer Congress,

pp. 187 – 201, 2004.

[7] B. Crispo and G. Ruffo, “Reasoning about Accountability

within Delegation” Proceedings of Third International

Conference on Information and Communication Security,

pp. 251 – 260, 2001.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson and D. Song, “Provable Data Possession at

Untrusted Stores”, Proceedings of Association for

Computing Machinery Conference on Computer and

Communication Security, pp. 598 – 609, 2007.

[9] R. Jagadeesan, A. Jeffrey, C. Pitcher and J. Riely, “Towards

a Theory of Accountability and Audit”, Proceedings of 14
th

European Conference on Research in Computer Security,

pp. 152 – 167, 2009.

[10] J. Bethencourt, A. Sahai and B. Waters, “Ciphertext-policy

attributebased encryption”, Proceedings of IEEE Symposium

on Security and Privacy, pp. 321 – 334, 2007.

[11] S. Yu, C. Wang, K. Ren and W. Lou, “Achieving secure,

scalable and fine-grained data access control in cloud

computing”, Proceedings of 29
th
 International Conference

on Computer Communications, pp. 534–542, 2010.

[12] V. Goyal, O. Pandey, A. Sahai and B.Waters, “Attibute-

based encryption for fine-grained access control of encrypted

data”, Proceedings of Association for Computing Machinery

Conference on Computer and Communication Security, pp.

89 – 98, 2006.

[13] R. Bobba, H. Khurana and M. Prabhakaran, “Attribute-sets:

A practically motivated enhancement to attribute-based

encryption”, Proceedings of European Symposium on

Research in Computer Security, pp. 587 – 604, 2009.

[14] B. Barbara, “Salesforce.com: Raising the level of

networking”, Information Today, Vol. 27, pp. 45–45, 2010.

[15] K. Barlow and J. Lane, “Like technology from an advanced

alien culture: Google apps for education at ASU”,

Proceedings of the 35
th
 Annual Association for Computing

Machinery Special Interest Group on University and College

Computing Services Conference, pp. 8-10, 2007.

[16] Amazon Web Services (AWS). Available:

https://s3.amazonaws.com/

[17] Google app Engine. Available:

http://code.google.com/appengine/

[18] http://code.google.com/appengine/.

0

3

6

9

12

45 90 135 180 225 270 315

1.96
2.92

3.88
4.84

5.8
6.76

7.72

0.98

1.46

1.94

2.42

2.9

3.38

3.86

T
im

e
(m

s)

Log File Size (KB)

Proposed Method
Existing Method

0

5

10

15

20

25

1 2 3 4 5 6

K
ey

 G
en

er
a

ti
o

n
 T

im
e(

m
s)

Number of Attributes

Key Generation Time - Existing

Key Generation Time - Proposed

http://code.google.com/appengine/
http://code.google.com/appengine/

